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PREFACE 

Like the previous edition. the third edition of Psychometric Theory is a comprehensive 
text in measurement designed for researchers and for use in graduate courses in psy
chology, education, and areas of business such as management and marketing. It is in
tended to consider the broad measurement problems that arise in these areas once one 
steps aside from the specific content that often obscures these similarities. This does 
not mean that all situations are the same. Lee Cronbach (1957) pointed out a major 
difference between the measurement needs of those who study group differences. as in 
experimental manipUlations, and those who study individual differences. This differ-

. ence is noted in the pages that follow. I have also attempted to write the book so that 
the reader needs only a basic background in statistics. 

The previous editions of this book were so widely read and accepted that they be
came a commou denominator for more than a generation of scholars. Prof. Nunnally's 
death a decade ago raised the possibility that this contribution might be forgotten. I 
cannot, of course, know what he would have written for this edition, however, I hope 
that I have stood with sufficient solidarity upon his shoulders. My main goal is to ex
press to the readers of this book. the love of solving measurement problems that he in
spired in me. It is also with pride that I include some contnoutions of my own students 
who have followed this path. They include Victor Bissonnette, Sebiastiano Fisicaro, 
and Calvin Garbin. 

One essential feature that I have tried to maintain is the emphasis upon principles 
that characterized the previous editions. Now, as then, there are many el(cellent refer
ences that go much further into the details of the various analyses. These are found in 
the many references, especially the Suggested Additional Readings at the end of each 
chapter. I have attempted to strike a balance between papers designed for a general au
dience of psychologists and graduate students, which appear in sources like Psycho
logical Bulletin and empirical journals, versus those of a more mathematical orienta
tion, such as Psychometrika and Applied Psychological Measurement. 

I have also maintained the use of several examples that allow hand calculation, 
since many of the newer procedures do not. Consequently. I have included some pro
cedures that many consider obsolete, specifically centroid factor analysis. Not every 
reader or instructor will find this useful, but I can speak frOm my own memories as 
a student on this point. Most recent developments in measurement have had the 

xxi 
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unintended effect of taking students further from the data than older methods. To the 
extent that this reflects the importance of mOre general, latent variables, it is an impor
tant step forward. However, one cannot totally ignore the possibility that the inexperi
enced data analyst, which we all are at some point, may mistake the spurious for the 
profound. I have also made use of the general-purpose statistical packages that are 
now a necessary part of every researcher'S repertoire of tools. I currently use SAS, 
LISREL, and Excel in my own work, but there are no compelling reasons to choose 
them over their competitors. Moreover, I have also included discussion of other proce
dures that are considered obsolete because I believe they have a real place in research. 
The clearest example of this is group centroid confirmatory factor analysis, which 
Prof. Nunnally stressed in previous editions and in his own work. The appropriate dis
cussions, Chapter 13 in this case, provide detailed rationales. 

Without doubt, the major change that has taken place since pUblication of the previ
ous edition of this book has been the shift away from classical procedures that explain 
variance to modern inferential procedures. This is also discussed in many areas of the 
book. This is c1early necessary for those who do fundamental research in measure
ment, and so there is a corollary need to explore the applicability of these newer meth
ods. However, I strongly feel that Prof. Nunnally would have agreed that modern 
methods should be viewed as complements and not as replacements. Unfortunately, 
even some substantive journals have insisted that authors use these inferential methods 
when the investigator's goals may be more traditional in nature. As of this wdting, 
even basic researcherS in measurement are concerned about the many ways that mod
ern methods may provide unnecessarily complicated solutions. These methods are, 
and should be, used when data-gathering limits are present to cast doubt on the statisti
cal reality of findings. Anyone with serious interest in measurement must therefore be 
knowledgeable about these methods. However, you should n.ot allow their current lim
itations to lead you astray. Chapter 13 deals with a common situation where both triv
ial and spurious results may arise. The position I have taken also reflects Prof. Nunnal
ly's stress on the primacy of scientific generalization that was so apparent in the 
previous editions. 

A second major change from the previous edition is that classification has been 
given explicit status as a form of measurement distinct from scaling. Chapter 1 expll
cates this necessary distinction. A well chosen categorization can be as fruitful as an 
improved scaling. I am particularly indebted to Calvin Garbin for discussions on this 
point, and I hope that Chapter 15 is useful to this end. 

The necessity of discussing both classical and modern models and the need to keep 
the book of manageable length forced the deletion of chapters previously devoted to 
specific tests. I regret having to do this. There are several excellent texts that deal with 
specific tests, such as Anastasi (1988) and Cronbach (1990), and also present an excel
lent discussion of theoretical issues. 

Part and chapter overviews and chapter summaries have been added, but the orga
nization ls otherwi.se similar to that of the previous edition. Part One (Chapter 1) con
siders measurment as a general process. Part Two (Chapters 2-5) deals with statistical 
foundations of measunnent, including a discussion of the crucial concept of validity. 
Although there has been a noticeable trend toward unifying the major meanings of 
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validity, I have continued to point out Prof. Nunnally's useful di5tinctions among 
them. This first part also presents basic concepts in statistics and correlational analysis. 
My discussion of certain approx.imations to the ordinary correlation coefficient (r), 
e.g .• polyserial and polychoric correlation. somewhat softens Prof. Nunnally's nega
tive views toward them despite our general agreement. I have also expanded the dis
cussion of statistical estimation, as it has become considerably more complex in recent 
years. Part Three (Chapters 6-10) continues to deal with the internal structure of 
multi-item measures and the process of aggregating items into scales. The previous 
edition mentioned generalizability theory in passing; I feel it noW needs more detailed 
discussion. One minor change is that I have moved some material on speed and guess
ing from the last chapter of the previous edition into Chapter 9 to unify discussion 
with related material. I have also added material on statistical definitions of test bias 
and halo effects to this chapter. A full chapter has been added on modem test theory. 

Part Four (Chapters 11-13) deals with how measures relate to one another. The pre
vious edition devoted two chapters to factor analysis. Its importance led me to devote 
three chapters to it. I have provided a detailed contrast between the component and 
common factor models. In addition, I have provided a detailed discussion of confirma,. 
tory factor analysis and the factoring of categorical data (item-level factoring). I have 
also attempted to maintain the clarity of Prof. Nunnally's discussion of the geometric 
basis of factor analysis. The first of two chapters forming Part Five, Chapter 14, dis
cusses some alternative models that largely share the geometric assumptions of factor 
analysis. Finally, the last chapter deals with a variety of emerging topics in measure
ment: categorical modeling, tests of independence, and alternatives to geometric repre
sentation. 

I thank several people besides those already mentioned. I am indebted to my recent 
group of students: Laura Fields. Paul Havig, Matthew Lee. and Meredith O' Brien and 
apologize for not mentioning by name all of the other fine students who have worked 
wjth me. I thank Laurie Liska and Tim Larey for their comments on an earlier draft, 
and Pauline Gregory, Amy Osborn, and Susan Sterling for clerical assistance. I am 
particularly indebted to Professor Dennis Duffy at the University of Houston Law 
School for his suggestions about the legal aspects of test bias. Professor James Tanaka 
completed his penetrating comments only a short time before the tragic accident that 
claimed his life. Several colleagues at the University of Texas at Arlington (Jim 
Bowen, Jim Erickson. Bill Ickes. and Paul Paulus) and elsewhere (Charles Eriksen. 
Matt Jaremko, iVIichael Kashner, Judith Keith. Rob Kolodner. Paul McKinney, and 
Rick Weideman) stimulated my thinking about many issues. The book could not have 
been written without the help of Professor Nunnally's widow, Kay. Jim Cullum, John 
Sheridan, the late John B. Gillespie. Ferdinand LaMenthe, Thelonious tvlonk, and 
Charles C. Parker played an oblique role but deserve note nonetheless. I especially 
thank my wife. Linda and daughters. Carl and Dina, for their love and support. 

Finally, I extend my appreciation to the following reviewers whose suggestions 
guided my writing of this text: J. William Asher, Purdue University; Jacob O. Beard, 
Florida State University; Jeffrey Bjorck. Fuller Theological Seminary; Richard L. 
Blanton, Professor Emeritus, Vanderbilt University; Donald R. Brown, Purdue Univer
sity; Joseph M. Fitzgerald. Wayne State University; Calvin Garbin, University of Ne-
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braska; Gene V. Glass, University of Colorado; Richard L. Gorsuch, Fuller TbeologiJ 
cal Seminary; Frank M. Gre.o;ham, Louisiana State University; Larry H. Ludlow, 
Boston College; Samuel T. Mayo; Michael Pressley, University of Maryland; Louis H. 
Primavera, St. John's University; John E. Sawyer, Texas A&M University; Roger 
Schvaneveldt, New Mexico State University; Eugene F. Stone, SUNY, Albany; 
Michael J. Subkoviak, University of Wisconsin, Madison; J. S. Tanaka, University of 
Dlinois; and David Thissen, University of North Carolina, Chapel Hill. 

I conclude this preface with the wisdom of one of my oldest friends. Stan Coren of 
the University of British Columbia. He [old me while I was working on my previous 
major effort that "You never finish writing a book; they just take it away from you." 

Ira H. Bernstein 
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INTRODUCTION 

The main purpose of Part One (a single chapter in this case) is to define "measure
ment" in terms of two fairly simple concepts: Measurement consists of rules for 
assigning symbols to objects so as to (1) represent quantities of attributes numerically 
(scaling) or (2) define whether the objects fall in the same or different categories with 
respect to a given attribute (classification). Most of the book is concerned with the first 
of these meanings. The topics of levels of scaling and the general standards by which 
measurement rules are evaluated are focal issues. 





CHAPTER 1 
INTRODUCTION 

CHAPTER OVERVIEW 

This opening chapter begins with a definition of measurement which we break: dawn 
into two subtopics: scaling and classification. Same general properties of good mea
surement are introduced. and the importance of standardization is discussed. The sepa
rate roles of measurement and pure mathematics are contrasted. One major. and still 
controversial. topic in measurement concerns what are known as levels of measure
ment. According to some, the appropriate level of a measure must be established be
fore employing mathematical and statistical procedures associated with that level. 
Many look for ostensive (visualizable) properties of measures like the yardsticks and 
clocks of physics. They view present scales as imperfect correlates of unknown "true" 
scales. We attempt to show that these strategies easily lead to unreasonable outcomes. 
One should demonstrate that a measure has the properties ascribed to it, establish 
scales by convention, but be prepared to change these conventions as better measures 
become available. The chapter concludes by noting some of the changes brought to the 
stud.y of measurement that result from the availability of computers. 

MEASUREMENT IN SCIENCE 

Although tames have been written on the nature of measurement, in the end it boils 
down to two fairly simple concepts: "measurement" consists of rules for assigning 
symbols to objects so as to (1) represent quantities of attributes numerically (scaling) 
or (2) define whether the objects fall in the same or different categories with respect to 
a given attribute (classification). Most of what is historically called measurement in
volves scaling, and therefore properties of numbers. but classification can be equally 

3 
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important. The objects in psychology are usually people, but they may be lower ani
mals as in some areas of psychology and biology or physical objects as in some mar
ket research. The term "rules" indicates that the assignment of numbers must be ex
plicitly stated. Some rules are so obvious that detailed definition is unnecessary, as in 
measuring height with a tape measure. Unfortunately, these obvious cases are excep
tional in science. For instance, assaying a chemical compound usually requires ex
tremely complex procedures. Certainly the rules for measuring most attributes such as 
intelligence, shyness, or priming are not intuitively obvious. 

Rules, in turn, are an important aspect of standardization. A measure is standardized 
to the extent thut (I) its rules are clear, (2) it is practical to apply, (3) it does not demand 
great skill of administrators beyond that necessary for their initial training, and (4) its 
results do not depend upon the specific administrator. The basic point about standard
ization is that users of a given instrument should obtain similar results. The results must 
therefore be reliable in a sense to be discussed at several points in this book. Thus, mea
suring the surface temperature of a planet is well standardized if different astronomers 
obtain very similar estimates. Similarly, an intelligence test is well standardized if dif
ferent examiners obtain similar scores from testing a particular child at a given time. 

The term "attribute" in the definition indicates that measurement a:l.ways concerns 
some particular feature of objects. One cannot measure objects-one measures their 
attributes. One does not measure a child per se, but rather his or her intelligence, 
height, or socialization. The distinction between an object and its attributes may sound 
like mere hairsplitting, but it is important. First, it demonstrates that measurement re
quires a process of abstraction. An attribute concerns relations among objects on a par
ticular dimension, e.g., weight or intelligence. A red rock and a white !,ock may weigh 
the same, and two white rocks may have different weights. The attributes of weight 
and color must not be confounded with each other nor with any other attributes. It is 
quite easy to confuse a particular attribute of objects with other attributes. For exam
ple, some people find it difficult to understand that a criminal and a law~abiding citizen 
can both be equally smart. Failing to abstract a particular attribute from the whole 
makes the concept of measurement difficult to grasp. 

A second reason for empnasizing that one measures attributes and not objects is 
that it makes us consider the nature of an attribute carefully before attempting mea
surement. An attribute we beUeve in may not exist in the form proposed. For example, 
the many negative results obtained in the efforts to measure an overall attribute of 
rigidity make it debatable that such an attribute exists. Even highly popular terms used 
to describe people may not correspond to measurable attributes, e.g., clairvoyance. It 
is also common for an assumed unitary attribute to confound several more specific at
tributes. For example, "adjustment" may include satisfaction with one's life, positive 
mood, skills in coping with stress, and other meanings of the term. Although such con
glomerate measures may be partly justifiable on practical grounds, their use can under
mine psychological science. As this book will show in detail, a measure should gener
ally concern some one thing-some distinct, unitary attribute. To the extent that 
unitary attributes need be combined in an overall appraisal, e.g., of adjustment, they 
should usually be rationally combined from different measures rather than being con
founded within one measure. 
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The first part of the definition of measurement stresses the use of numbers to repre
sent quantities in scaling Technically, quantification concerns how much of an at
tribute is present in an object, and numbers communicate the amount. Quantification is 
so intimately intertwined with measurement that the two terms are often used inter
changeably. This is unfortunate, as the second part, classification, is at least as impor
tant to science. 

Although the definition emphasizes that rules are at the heart of measurement, it 
does not specify the nature of these rules or place any limit on the allowable kinds of 
rules. This is because a clear distinction must be made between measurement as a 
process and the standards for validating measures. The measurement process involves 
such considerations as the levels-of-measurement issue that is discussed later in this 
chapter. Validation involves issues that are discussed in CIrapter 3. Numerous stan
dards can be applied to obtain the usefulness of a measurement method, including the 
extent to which data obtained from the method (1) fit a mathematical model, (2) mea
sure a single attribute, (3) are repeatable over time if necessary, (4) are valid in various 
senses, and (5) produce interesting relationships with other scientific measures. Such 
standards will be discussed throughout this book. Thus, a psychologist might establish 
rules to measure, say, dogmatism, in a manner that seems quite illogical to other psy
chologists, but the measure's usefulness cannot be dismissed beforehand. 

The rules employed to define a particular measure must be unambiguous. They may 
be developed from an elaborate deductive model, based on previous ex.perience, flow 
from common sense, or simply spring from hunches, but the crucial point is how con
sistently users agree on the measure and ultimately how well the measurement method 
explains impon:ant phenomena. Consequently any set of rules that unambiguously 
quantifies properties of objects constitutes a legitimate measurement method and has a 
right to compete with other measures for scientific usefulness. Keep in mind, however, 
that clarity does not guarantee explanatory power. 

What Is "Meaningful" and "Useful"? 

There is both agreement and disagreement among scientists about what is a meaningful 
andlor useful result. It is fair to say that there is a high degree of agreement on two 
points. One is that any result should be repeatable under similar circumstances. It is 
quite possible that a finding obtained on April 8, 1991, from a particular group of psy
chology students at the University of Texas at Arlington was a real effect descriptive of 
that group of people. However, unless that effect also applied to some other group, e.g., 
students at the University of Texas at Arlington tested on another day or at some other 
university on the same day, there is no need for a scientist to be concerned with it. 

The second point of agreement that aU scientists have learned is that any set of re
sults can be understood after the fact even if it is a chance occurrence or even systemat
ically wrong. Perhaps every investigator has analyzed a set of results and formulated an 
explanation only to discover that there was a "bug" in the analysis. That bug probably 
did not hamper a "creative" explanation of the wrong results. In a like manner, some of 
the more sadistic instructors we have known assign randomly generated results to stu
dents for explanation. Students often find the exercise creative until they are let on. 
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The keys to meaningfulness are to proceed from some position that anticipates re
sults. This is where scientists differ. Some are strongly biased toward testing hypothe
ses derived from highly formalized theories; others are more informal and/or result
oriented in their approach. For a debate on this issue. see Greenwald. Pratkanis. 
Leippe, and Baumgardner (1986) and a series of commentaries that appeared in the 
October 1988 issue of Psychological Review. As of this writing, the pendulum seems 
to have swung in a more formal direction. at least in cognitive psychology, but it prob
ably will swing back. Whatever the level of formality preferred, meaningfulness de
pends upon context. One of the most common phrases one hears about results is "So 
what?" The answer lies in placing findings in a relevant context. 

This is not to rule out unanticipated findings, which are always an exciting part of 
science. However, before one becomes too enraptured by an interpretation given a set 
of findings, one should be prepared to replicate them, preferably in some way that 
broadens their generality. 

ADVANTAGES OF STANDARDIZED MEASURES 

Objectivity 

Although you may already have a healthy respect for the importance of measurement 
in science, it is useful to look at some particular advantages that measurement pro
vides. To note these advantages, consider what would be left if no measures were 
available, e.g., if there were no thermometers or intelligence tests. Measures based 
upon well-developed rules, usually including some form of norms that describe the 
scores obtained in populations of interest, are called "standardized." Despite criticisms 
of standardized psychological tests, the decisions that these are used for would still be 
made. What would be left would consist of subjective appraisals, personal judgments, 
etc. Some of the advantages of standardized measures over personal judgments are as 
follows: 

The major advantage of measurement is in taking the guesswork out of scientific ob
servation. A key principle of science is that any statement of fact made by one scien
tist should be independently verifiable by other scientists. The principle is violated if 
scientists can disagree about the measure. For example, since there is no standardized 
measure of "libidinal energy," two psychologists could disagree widely about a pa
tient's libidinal energy. It is obviously difficult to test theories of libidinal energy until 
it can be measured. 

One could well argue that measurement is the major problem in psychology. There 
are many theories, but a theory can be tested only to the extent that its hypothesized at
tributes can be adequately measured. This has historically been the problem with 
Freudian theory: There are no agreed-on procedures for observing and quantifying 
such attributes as libidinal energy, etc. Major advances in psychology, if not all sci
ences, are often based upon breakthroughs in measurement. Consider, for example, the 
flood of research stimulated by the development of intelligence tests and of personality 
tests like the Minnesota Multiphasic Personality Inventory (MMPI), or, in a very 
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different area, the development of techniques to record from single neurons (Hartline. 
1940; Kuffler, 1953). Scientific results inevitably involve functional relations among 
measured variables, and the science of psychology can progress no faster than the 
measurement of its key variables. 

The numerical results provided by standardized measures have two advantages. First, 
numerical indices can be reported in finer detail than personal judgments, allowing 
more subtle effects to be noted. Thus the availability of thermometers makes it possi
ble to report the ex.act increase in temperature when two chemicals are mixed, rather 
than for the investigator to intuitively judge only that "the temperature increases." 
Similarly, teachers may be able to reliably assign children to broad categories of intel
ligence such as bright, average, and below normal, but intelligence tests provide finer 
differentiations. 

Second, quantification permits the use of more powerful methods of mathematical 
analysis that are often essential to the elaboration of theories and the analysis of exper
iments. Although important psychological theories need not be highly quantitative, the 
trend is and will continue to be clearly in that direction. Mathematically statable theo
ries make precise deductions possible for empirical investigation. Also, other mathe
matical models and tools, such as factor analysis and the analysis of variance 
(ANOVA), may be used to analyze various results even when the study does not test 
any formal theory. 

Science is a highly public enterprise requiring efficient communication among scien
tists. Scientists build on the past, and their findings must be compared with results of 
other scientists working on the same problem. Communication is greatly facilitated 
when standardized measures are available. Suppose, for example, it is reported that a 
particular treatment made the subjects "appear anxious" in an experiment concerning 
the effects of stress on anxiety reaction. This leaves many questions as to what the ex
perimenter meant by "appear anxious," and makes it difficult for other experimenters 
to investigate the same effect. Much better communication could be achieved if the 
anxiety measure were standardized, as the means and standard deviations of these 
scores could be compared across treatment groups. Even very careful subjecti ve evalu
ations are much more difficult to communicate than statistical analyses of standardized 
measures. 

Although standardized measures frequently require a great deal of work to develop, 
they generally are much more economical of time and money than are subjective eval
uations after they have been developed. For example, even the best judges of intelli
gence need to observe a child for some time. At least as good an appraisal can usually 
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be obtained in less than an hour with any of several inex.pensively administered group 
measures of intelligence. Similarly, one can use a standardized activity measure such 
as rate of bar pressing in a Skinner box to evaluate the effect of a proposed stimulant 
on animals. 

Besides saving time and money, standardized measures often free professionals for 
more important work. Progress generally favors measures that either require relatively 
little effort to emptoy or allow less highly trained technicians to do the administration 
and scoring. The time saved allows practitioners and scientists more time for the more 
scholarly and creative aspects of their work. 

It is sometimes difficult to disentangle the measurer from the measurement process, 
as in individually administered intelligence tests. Although individual intelligence 
tests are highly standardized, they still require much time to administer and score. 
Context determines whether there are sufficient advantages to compensate for these 
disadvantages over' even more highly standardized pencil-and-paper tests. 

Scientific Generalization 

Scientific generalization is at the very heart of scientific work. Most observations in
volve particular events-a "falling" star. a baby crying. a feeling of pain from a pin 
scratch, or a friend remarking about the weather. Science seeks to find underlying 
order in these particular events by formulating and testing hypotheses of a more gener
al nature. The most widely known examples are the principles of gravitation, heat, and 
states of gases in physics. Theories, including those in the behavioral sciences, are in
tended to be general and thereby explain a large number of phenomena with a small, 
simple set of principles. 

Many scientific generalizations, particularly in the behavioral sciences, must be 
stated in statistical terms. They deal with the probability of an event occuning and 
cannot be specified with more exactness. The development and use of standardized 
measurement methods are just as essential to probabilistic relationships as they are for 
deterministic ones. Figure 1-1 illustrates a simple probabilistic relationship noted by 
the first author between the complexity of randomly generated geometric forms and 
the amount of time that subjects looked at the forms. The data are group averages and 
are much more regular than individual subject data. However, the principle seems 
clear: People look longer at more complex figures than at simpler figures; but this 
would have been much less apparent in the data of indi vidual s11bjects. 

MEASUREMENT AND MATHEMATICS 

A clear distinction needs be made between measurement, which is directly concerned 
with the real world, and mathematics. which. as an abstract enterprise. needs have 
nothing to do with the real world. Perhaps the two would not be so readily confused if 
both did not frequently involve numbers. Measurement always concerns numbers re
latable to the physical world, and the legitimacy of any measurement is determined by 
data (facts about the physical world). In particular, scaling. but not classification. al
ways concerns some form of numerical statement of how much of an artribute is 
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FIGURE 1-1 Viewing tlme as a function of stimulus complexity (number of sides on randomly generated 
geometric forms), 

present, as its purpose is to quantify the attributes of real objects. A measure may be 
intended to fit a set of measurement axioms (a model), but its fit to the model can be 
determined only by seeing how well the data fit the model's predi<;tions. Even if there 
is no formal model, the eventual and crucial test of any measure (scale or classifica· 
tion) is how well it explains relations among variables. As will be discussed in Chapler 
3, the various types of validity for psychological measures all require data rather than 
purely mathematical deductions. 

In contrast to measurement, pure mathematics is limited to deductive sets of rules 
for the manipulation of symbols, of which those used to denote quantities and cate
gories are only one type. Many deductive systems in modem mathematics do not in
volve numbers, though they may involve classification. Any internally consistent set 
of rules for manipulating a set of symbols can be a legitimate branch of mathematics. 
Thus the statement "iggle wug drang flous" could be a legitimate mathematical state
ment in a set of rules stating that when any iggle is wugged it drang a Hous. Mathe
matical systems could be constructed in which both the objects and the opemtions are 
symbolized by nonsense words. This system might not and need not be of practical 
use, as its legitimacy depends entirely on tbe internal consistency of its rules. 

As a result, scientists develop measures by stating rules to quantify attributes of real 
objects, but borrow mathematical systems to examine the structure of the data. Fortu
nately scientifically useful measurement methods can usually be associated with ap
propriate mathematical systems. 

Measurement and Statistics 

Because the term "statistics" is used broadly, some distinctions among different uses 
of the term are necessary in order to see their implications for psychometric theory, 

There is a basic distinction between descriptive and inferential statistics. "Descrip
tive statistics" concerns quantitative statements about an attribute of a pru.ticular group 
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of observations and does not necessarily imply generalization. Thus, one may compute 
the arithmetic mean of the scores on a cla~sroom test, the correlation between two pre
sumed measures of anxiety, or the scores of two job applicants without making any 
broader statements about those not taking the tests. In contrast, "inferential statistics" 
concerns generalizing from observed sample values (statistics) to their counterparts in 
a population (parameters), nearly always in the form of probability statements. A com
mon example is to estimate the probability that the observed mean difference between 
an experimental group and a control group is a chance departure from 0, the expected 
result if the treatment had no effect. 

We will say less in this book about inference than description, as most of the tradi
tional quantitative methods to be presented are primarily designed for description 
rather than inference. Thus correlational analysis, factor analysis, discriminant analy
sis, and other procedures can be discussed and employed with minimal use of infer
ence. This is not to say that inferential statistics are unimportant or that they wUl be to
tally neglected. We will consider some advances in inferential statistics that have 
become prominent since the last revision, particularly maximum likelihood estimation. 
There are three reasons to emphasize description. First, classical psychometric theory 
and some newer models are large-sample theories that assume that many subjects are 
studied. Second, even some investigators who have been very concerned with develop
ing these newer inferential measurement models stress the impoltance of description 
(Bentler & Bonnett, 1980). Finally, we have enough material to present without going 
too far into a somewhat ancillary topic. There are excellent books on the relevant 
inferential statistics for psychometric theory that will be referenced where appropriate. 

A second important statistical distinction is that between the sampling of objects (in 
this conceltt, usually people) and the sampling of content (items). After a measure has 
been developed, it is often important to make statements about objects as in develop
ing test nOllTIS. Before measures are developed, however, measurement is much more 
closely related to 'the sampling of content, as in deciding which test items to include. 
We will later stress how it is useful to think of particular test items as a sample from a 
hypothetical infinite popUlation or universe of items measuring the same trait. Thus a 
spelling test for fourth-grade students can be thought of as a sample of all possible ap
propriate words. Part of measurement theory thus concerns statistical relations be
tween the actual test scores and the hypothetical scores that would be made if all items 
in the universe had been administered. 

There is a two-way problem in all psychology concerned with the sampling of ob
jects to be measured and the sampling of content. The former usually concerns the 
generality of findings over objects, and the latter concerns the generality of findings 
over test items. Some item response theory models (Chapters 2 and 10) simultaneously 
take objects and items into account. However, most analyses take only one of these di
mensions into account explicitly and keep the other in mind or, worse, simply ignore 
it. Thus, a study comparing different approacbes to teaching mathematics upon a par
ticular achievement test may explicitly concern gender differences. However, it might 
have to acknowledge that different results might have been obtained with different 
achievement measures. 

The frequent necessity of considering only one of these two dimensions is not 
ideal, but it is not necessarily fatal. Subsequent studies can deal with generalizing over 
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the other dimension. The most desirable situation is when one samples so extensi vely 
on one dimension that the only sampling error present is on the other dimension, This 
normally requires an extremely large sample of sUbjects. At least hundreds, if not 
thousands, of subjects should be used in the development process, Except as noted, we 
will assume that all mathematical analyses are based on large numbers of subjects so 
that issues will be limited to the sampling of content. Studies conducted on relatively 
small numbers of subjects are usually not sufficient. Thus, even though a few dozen 
subjects may suffice to establish that the test reliability is greater than zero, a more 
precise scatement of the magnitude is nearly always required. 

The idea that sampling content is more important than sampling objects in develop
ing a measure is not easy to grasp, Many students fall into the trap of assuming that a 
test's reliability increases with the number of objects (subjects) used in the study of re
liability, when in fact it is directly related to the number of items on the test and inde
pendent of the number of objects, 

MEASUREMENT SCALES 

TABLE 1-1 

Scale 

Nominai 

Ordinal 

interval 

Ratio 

A series ofartic1es by Stevens (1946, 1951, 1958, 1960) evoked considerable discussion 
and soul searching about the different possible types of measurement scales, Stevens 
proposed that measurements fall into four major classes (some extensions of these basic 
types will be noted below): nominal. ordinal, interval, and ratio. The levels allow pro
gressively more sophisticated quantitative procedures to be peI'formed on the measures 
but in turn demand progressively more of the measurement operations. In addition, the 
levels restrict the transformations possible upon the data. Table 1-1 provides an illustra
tion of this proposed classification which we will embellish on in the sllcceeding pages, 

Stevens' work evoked a great deal of controversy at the time, some of whlch 
continues. One major effect was Umt it led to a healthy self-consciousness about 

STEVENS' LEVELS OF MEASUREMENT, BASIC DEFINING OPERATIONS, PERMISSIBLE 
TRANSFORMATIONS, EXAMPLES OF PERMISSIBLE STATISTICS, AND EXAMPLES 

Basic Permissible Permissible Examples 
operation transformations statistics 

=vs;/: Any one-to-one Numbers of cases, mode Telephone numbers 
(equality vs. 
inequality) 

>vs. < Monotonically increasing Median, percentiles, Hardness of minerals, 
(greater than vs. order statistics class rank 
less than) 

Equality of intervals General linear Arithmetic mean, variance, Temperature (Celsius), 
or differences x'=bx+1iI Pearson correlation conventional test 

scores (7) 

Equality of ratios Multiplicative (similarity) Geometric mean Temperature (Kelvin) 
x' =bx 

Source: Adapted from Stevens (1951) by permission of John Wiley, Inc, 
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psychological measurement, but it also led to some unfortunate conclusions about the 
legitimncy of employing particular classes of mathematical procedures with measures 
of psychological attributes. Of these, the issue of whether or not it is meaningful to 
compute the mean of a series of test scores derived by summing individual items had 
the greatest implications. We will first present Stevens' position in a simplified, con
ventional manner, after which we will discllss the nature of psychological measure
ment in more general terms. 

r-.i'ominal scales contain rules for deciding whether two objects are = (equivalent) or * 
(not equivalent), i.e., for categorizing. Equivalence means that two objects have a criti
cal property in common. e.g .• two people are both females. It does not imply identity or 
equality with respect to all relevant properties. and it will be discussed in a more fonnal 
Sense below. The result of a nominal scale is a series of classes which may be given a 
numeric designation. The numbers are frequently used to keep track. of things, without 
implying that they can be subjected to any mathematical analysis. Telephone and social 
security numbers are common examples of using numbers simply as labels that could 
just as well be expressed without numbers. These labels have no mathematical proper
ties. and so it makes no sense to average a work and a home telephone number. Howev
er, it is important to distinguish between using the category "names" numerically. 
which is improper, and the category "frequencies." which is quite proper, e.g .• to ask 
whether there are more Democrats. Independents, or Republicans in a political poll. 

It is sometimes useful to distinguish between labels and categories even though 
both can be nominal scales. Labels. numeric or otherwise. are used. to identify individ
ual objects. These may be unique, as are the social security numbers given to U.S. citi
zens and residents, or there may be many duplications. as with given names. In con
trast, categories are groupings of objects. in which it is usually desirable to have 
relatively few categories compared to the number of objects. Common categories are 
race, ethnicity, and gender. 

Although categories and labels need not reflect any specific quantitative relation
ship, they may lead to the discovery of important correlates. For ex.ample, the finding 
that people of a certain ethnicity are more prone to a particular disease than people of 
a different ethnicity is vital to geneticists. However. this is an issue of classification, 
discussed below and in Chapter IS, and not scaling. Labels and categories are nominal 
scales, but nominal scales have thus far offered little to formal scaling models even 
though slich models exist. 

Nominal scales can be transformed in any manner that does not assign the same 
number to different categories. Thus. males and females could. respectively. be coded 
1 and 0, 0 and 1 or even -257.3 and 534.8 without gain or loss of infonnation. These 
one-to-one transformations are permissible because the names do not have numeric 
properties. The flexibility with which one can transform nominal scales reflects the 
limited mathematical operations that can be performed with them. For example, as
Sume that a survey has coded potential voters as 1,2, or 3 for Democrat, RepUblican. 
and Independent and that the frequencies of individuals in these three classes are 35, 
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25, and 40. One could compute a "mean" as (35 . I + 25 . 2 + 40 . 3)1100 or 2.05. 
However, this figure would change capriciously if permissible transformations were 
made upon the ca[egories. For example, it would change to 2.95 if Independents were 
coded 0, Democrats were coded 2, and Republicans were coded 9, and there is no logi
cal connection between changes in the scale values and changes in this mean. One Im
portant exception to this principle is when there are two categories. Thls exception un
derlies much contemporary multiple regression theory, as we will see later in this 
book. In this case, statistics such as means do change predictably as categories are 
changed. We will show why this is the case when we consider interval scales. 

Ordinal scaling involves rules for deciding whether one object that is ;= to another is > 
(greater than) or < (less than) with respect to a given attribute (there may also be ties 
so ~ and ~ are also used). A ordinal scale for N persons (Ss) allows one to determine 
that Si ~ Sj ~ Sk ;:: Sn with respect to an attribute (the = part of ~ allows for ties). This 
implies that (1) a set of objects is ordered from "most" to "least" with respect to an at
tribute, (2) one does not know how much any of the objects possess of the attribute in 
an absolute sense, and (3) one does not know how far apart the objects are with respect 
to the attribute. An ordinal scale is obtained if a group of people are ranked from 
tallest to shortest. This scale gives no indication of the average height. The mean rank. 
of the height of N jockeys and N professional basketball players will be (N + 1)12. In 
both cases, the mean of five ranked observations will thus be (5 + 1)/2 or 3. Likewise, 
the variance of the ranks will equal (N2 - 1)/12 regardless of whether the measures are 
very similar or very dissimilar. If there are five ranked observations, the result will be 
(52 - 1)112 or 2. 

Dichotomous (pass-fail) scoring is a special and, indeed, the simplest case of order
ing. It is commonly present in true-false or multiple-choice ability tests. A pass is 
commonly designated I, and a failure is designated O. Items using an agree-disagree 
format in personality or attitude measurement logically also yield pass-fail orderings, 
since agreeing with the key is a form of passing. 

Ordered categories arise when a measure yields relatively precise information, but 
the investigator lumps scores into a smaller number of successive categories. For ex
ample, an economist may categorize family income measures into a small number of 
levels. This can sacrifice a great deal of information, but it may be needed for data pre
sentation. In contrast, data may be gathered as ranks. Likert scale items are a common 
example used in personality and attitude measurement in which subjects describe their 
intensity of feeling toward the item. For example, subjects might be asked whether 
they "strongly agree," "agree," "are indifferent," "disagree," or "strongly disagree" 
with the statement "1 feel uncomfortable asking professors questions in class." The 
st:!bject is then assigned a score from 1 to 5, and the total scale score is the sum of indi
vidual item scores. This format genera[es more information than dichotomous scoring, 
as it may increase the range of scores substantially over dichotomous items scoring, a 
benefit to the statistical analysis as it more faithfully reflects the individual differences 
on the attribute. 
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Rank ordering is basic to higher forms of measurement. Most of the information 
contained in higher level scales is contained simply in the rank orderings (Coombs, 
1964; Parker, Casey, Ziriax, & Silberberg, L988). Thus, if two sets of measures ob
tained from higher level scales are correlated and converted to ranks. and the ranked 
data also correlated (see Spearman's rank order correlation in Chapter 4), the correla
tion between the original numbers and the correlation between the ranks are usually 
quite similar in magnitude. In contrast, considerable information is lost if both sets of 
observations and correlations become much smaller when data are dichotomized. Con
sequently, methods based upon rank ordering, such as rank order multidimensional 
scaling considered in Chapter 14, often do justice to the relations contained in higher
level data, but the common practice of dichotomizing variables when the underlying 
data are of a stronger form should be avoided (Cohen, L 990). 

The class of transformations permissible for ordinal scales is more limited than it is 
for nominal scales. 'The transformation must preserve the rank-order properties of the 
data. Thus, category names 1.2, and 3 may be transformed to 4, 5. and 23 or -1.3, 
2.05, and 5.33, but not 3, 1. and 2. These permissible transformations are called "mo
notonic" and are illustrated in Fig. 1-2. A set of statistical operations has been de
signed for use with ordinal data. The central tendency may be described in terms of 
the median or the mode (which is also meaningful with nominal data) rather than the 
arithmetic mean. The mean and mode will change predictably with permissible trans
formations, whereas the mean will not. For example, if the median and mode are in the 
second of four ordinal categories coded from I to 4, they will remain so under any per
missible transformation, which is not true of the arithmetic mean. A considerably dif
ferent mean will obtain if the categories are recoded as 2, 4,17, and 39, for example, 
but the median and mode simply change to the second category, 4. 

Interval scales reflect operations that define a unit of measurement as well as >. =, and 
<. They are often referred to as "equal interval scales" for this reason. Consequently 
(1) the rank ordering of objects on an attribute is known. (2) the distances among ob
jects on the attribute are also known, but (3) the absolute magnitudes of the attribute 
are unknown. Expressing the height of each of a series of children relative to their 
mean height would yield an interval scale of their height. Thus a child 2 inches taller 
than average would receive a score of +2, a child 3 inches shorter than average would 
receive a score of -3, etc. Deviations from any mean can be calculated without actual
ly knowing how far anyone is from a true zero point, e.g., zero height. The absolute 
magnitudes of the attribute are potentially important but unknown since the tallest 
child is probably' short in a more general sense. However, psychological measures are 
commonly described as deviations from the mean. 

Interval scales do not require an equal number of objects (people) at each point, Le., 
a rectangular distribution of scores. The term "equal" describes the intervals on the 
scale, not the number of people between equally spaced points on the scale. Thus, the 
difference between intelligence measures of 100 and 105 are assumed equal to the dif
ference between intelligence measures of 120 and 125 even though many mOre people 
fall between 100 to 105 than 120 to 125. 
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FIGURE 1-2 Two examples of monotonic transformations permissible on an ordinal scale. The general form of 
Ihesa transformallons Is difficult to define algebraically .. ' 

.. 
Interval properties imply that if a. b. c •...• k are equally spaced points on the scale, 

the scale is defined by two statements: 

1 a>b>c> .. ·>k 
2 a-b=b-c=c-d= .. ·=j-k 

An interval scale is defined by algebraic differences between points, and so addi
tion and subtraction of the sc~e points are permissible operations. Since a - b = b - c. 
the sum of the two intervals equals (a - b) + (b - c) = a-c. 

The difference between the two intervals equals zero: 

(a - b) - (b - c) = a - 2b + c 

The expression equals zero because a + c = 2b: 

a-b=b-c 
a+c=2b 

Since points are assumed to be equidistant on an interval scale, 

a-b 
b-c = 1 

Similarly. the distance from a to c equals twice the distance from a to b. 
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Whereas there is usually little dispute over whether nominal or ordinal properties 
have been estabtished, there is often great dispute over whether or not a scale possess
es a meaningful unit of measurement. Formal scaling methods designed to this end are 
discussed in Chapters 2, 10, and 15. For now, it suffices to note that many measures 
are sums of item responses, such as conventionally scored multiple-choice, true-false. 
and Likert scale items. Data from individual items are clearly ordinal. However, the 
total score is usually treated as interval, as when the arithmetic mean score. which as
sumes equality of intervals. is computed. Those who perform such operations thus im
plicitly use a scaling model to convert data from a lower (ordinal) to a higher (interval) 
level of measurement when they sum over items to obtain a total score. Some adher
ents of Stevens' position have argued that these statistical operations are improper and 
advocate, among other things, that medians, rather than arithmetic means should be 
used to describe cqnventional test data. We strongly disagree with this point of view 
for reasons we will note throughout this book, not the least of which is that the results 
of summing item responses are usually indistinguishable from using more formal 
methods. However, some situations clearly do provide only ordinal data. and the re
sults of using statistics that assume an interval can be misleading. One example would 
be the responses to individual items scored on multi-category (Likert-type) scales. 

The only transformation that preserves the properties of an interval scale is called 
the general linear transformation and is of the form X' = bX + a, where X' is the trans
fonned measure, X is the original measure, and a and b are, respectively, additive and 
multiplicative constants involved in the transformation. Transforming temperatures 
from Celsius (C) to Fahrenheit (F), both of which are interval scales, by the relation 
F = ~C + 32 is a common example. Figure 1-3 illustrates three general linear transfor
mations. Ratios of individual values are not meaningful on an interval scale because 
the zero of an interval scale may be legitimately changed through changes in the addi
tive constant a. The ratios, in degrees Fahrenheit of 64 to 32 and of 100 to SO are both 
numerically computable in degrees as 2: 1. However, these no longer remain equal, and 
indeed the first of them becomes undefined, if these temperatures are expressed in de
grees Celsius. On the other hand, ratios of differences in interval scale values are 
meaningful. For example, assume the summer mean temperature (in degrees Fahren
heit). of a particular city is 90 during the day and 75 at night. These respectively 
change to 50 and 40 in the winter. The ratio of the difference in summer and winter 
temperatures is (90 - 75)/(50 - 40) or 1.5. The corresponding ratio in degrees Celsius 
is (32.2 - 23.9)/{ to - 4.4) or (within rounding error) also 1.5. This is because the ef
fects of changes in b and a cancel in the process of forming ratios of differences. 

When there are only two categories, there is only one interval to consider, so that 
one interval may be considered an "equal" interval. That is why binary (dichotomous) 
variables may be considered to form interval scales, the point noted above as being so 
important to modern regression theory and elsewhere in statistics. 

A ratio scale is an interval scale with a rational (true) zerO rather than an arbitrary 
zero. A rational zero for children's height in the above example would be physical 
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FIGURE 1-3 Three examples of general linear transformations permissible on an Interval scale: X' = X + 2, 
X' = O.SX + 1, and X' = O.3X. The general form of the transformation is X' = bX + s. 

zero rather than the mean height. The presence of a meaningful zero makes ratios of 
any two measures meaningful. Unlike the three lower types of scales. all four funda
mental. operations of algebra-addition, subtraction, division, and multiplication
may be used with individual values defined on ratio scales. 

A rational zero means absence of the attribute and not simply "reasonable," e.g., 
zero height or weight. It is often reasonable to reference scores to the mean, but the 
mean clearly does not denote absence of the attribute, and so it is not a rational zero in 
the present sense. If there is no rational zero, it does not make sense to fonn ratios 
since ratios change as the arbitrary zero changes, another way of saying that ratios of 
individual values on an interval scale are not meaningful. For example, suppose the 
class average on a test is 30 and two particular students obtain scores of 50 and 40. 
Relative to a score of zero, the ratios of these two scores is 1.25: 1. However, zero cor
rect is not a rational zero because a student obtaining a score of zero might be able to 
answer some simpler items correctly. Relative to the mean, the ratio becomes (50 -
30)/(40 - 30) or 2: 1, but this ratio is just as arbitrary as the 1.25: 1 ratio relative to zero. 

There are many examples of rational zeros in physics-zero time and absolute zero 
(Kelvin) temperature being two others. However, it has proven difficult to define 
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absolute zeros for most psychological attributes like intelligence. Zero reaction time is 
based upon physical time, and so it is a rational zero. This means that it is sensible to 
fonn such ratios as the mean reaction time obtained from a more versus a less intense 
stimulus. The major example of ratio scales comes from the fact that differences be
tween observations on an interval scale form a ratio scale. Thus, if pre- and posttest 
scores on a measure are obtained, the resulting change score can be assumed to form a 
ratio scale with 0 representing no change. However, Chapter 5 will discuss why 
change scores may have other problems-it is difficult to compare two change scores 
based upon different pretest scores. 

Actually, ratio scales are rarely needed to address the most common needs of scal
ing. Defining an interval is very important, but ordering is the most crucial concept. In 
contrast, nominal measurement rules suffice for most classification problems. It is not 
proper to employ the general linear transformation permissible with interval scales, 
only the more restricted fonn X' = bX is allowable. This more specific forot of linear 
transformation, depicted in Fig. 1-4, is also called a mUltiplicative transformation. Em
ploying an additive constant (a) implies that the zero point is not fixed, which it is in a 
ratio scale, by definition. Changing from feet (F) to inches (1) by the relation J = 12F is 
a frequently used mUltiplicative transformation. 

Ratios of height, weight, etc., as measured from their true zero points are meaning
ful. These ratios do not change with permissible transformations since these permissi
ble transformations do not allow a change in the zero point. This is why the term "ratio 
scale" is Llsed. Someone who weighs twice as much as another person in pounds will 
also weigh twice as much in kilograms. 

Those within the tradition exemplified by Stevens have proposed scale types other 
than these basic four, and it is important not to think that all scales are divided into 
four levels. Coombs (1964), Coombs, Dawes, and Tversky, (1970) and Stine (1989a) 
have discussed these in some detail. One additional type is an ordered metric in which 
(I) the rank order of objects is known, (2) the rank order of intervals between objects 
is known, but (3) the magnitudes of the intervals are unknown. Such a scale allows 
One to say that a and b differ more than c and d but does not allow more precise state
ments about the relative magnitudes of difference. Stevens (1958) proposed a logarith
mic interval scale where the ratios of magnitudes corresponding to successive points a, 
b, e, d are alb = ble = dd, etc. Then log a - log b = log b - log c = log c - log d, etc. 
Tbe decibel scale tbat is familiar to physicists is a logarithmic interval scale (it is not 
limited to the measurement of sound intensity), since it involves transforming stimulus 
energies to their logs. 

The absolute scale formed from counts is the strongest type of measurement be
cause it has the interesting property of being its own invariant scale of measurement: 
When one says "There are three people in the room," the meaning of "three" is inher
ent in the real number system. In contrast, if you were told a room is three units wide, 
this might refer to yards, meters, or some other unit of measurement. As interesting as 
some of these other scales are, though, the four basic ones listed above are far and 
away the roost important to psychometric theory and application. 
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FIGURE 1-4 Two examples of multiplicative transfonnations permiSSible on a ratio scale: X' = 1.2Xand X = 
0.5X. The general form of the transformation is X' >: bX. 

In variance 

It is important to consider the circumstances under which a particular type of scale re
mains invariant, Le., maintains its properties when the unit of measurement is changed. 
As we have seen, the more powerful the mathematical operations meaningful with a 
given scale, the less free one is to change it. Thus, nominal scale labels may be 
changed in an almost unlimited manner as long as no two categories are given the 
same label, but at the other extreme absolute scales lose their absolute properties when 
changed in any way. 

Invariance is basic to the generality of scientific statements derived from a scale 
(Luce, 1959b, i990). It is easy to imagine the chaos that would result if some physical 
measures lacked the invariance of ratio scales. Without invariance, a stick that is twice 
as long as another measured in feet might be three times as long when measured in 
inches. The range of invariance of a scale determines the extent to which principles re
main unaffected by expressing the scale in different units, e.g., feet rather than inches. 
This does not mean that the results of using the scale will not change. A mean temper
ature in degrees Fahrenheit will be numerically different than a mean temperature in 
degrees Celsius even though both are permissible operations. The point is that the 
means will change in an orderly fashion: Specifically, the same equation will relate the 
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means as the one presented above thut relate the individual values. Any permissible 
transformation of u scale produces an equivalent scale-one that maintains the same 
general form of relationship. Similar statements apply about operations meaningful on 
other scales. 

DECISIONS ABOUT MEASUREMENT SCALES 

A strong view of measurement is called the representational position (or the "funda
mentalist" position in the previous edi.tion of this book) about measurement scales be
cause it states that scale values represent empirical relations among objects (Michell. 
1986, also see Stine, 1989b). Its main assertions are that (J) measurement scales have 
empirical reality in addition to being theoretical constructs, (2) a possible measure of 
an attribute can be classified into one of a small number of distinct levels, and (3) in
vestigators must document the scale properties of particular measures before analyzing 
data obtained from the scale because the scale's level limits the permissible mathemat
ical operations. Besides Stevens, the tradition includes Krantz, Luce, Suppes, and 
Tversky (l971), Luce (1959b), Suppes and Zinnes (1963), and Townsend and Ashby 
(1984; also see Ashby & Perrin. 1988; Davison & Sharma, 1988, 1990). 

Representational theory had great impact in the 1950s. Investigators tended to avoid 
parametric tests (t, the F ratio of the ANOVA, etc.) that required an interval scale (at 
least according to representational theory) and used nonparametric tests (Siegel & 
Castellan, 1988) tha[ required only ordinal or nominal assumptions instead. Representa
tional proponents of nonparamerric tests argued that these tests were only slightly weak
er (less able to detect differences) than their parametric counterparts, a difference that 
could generally be overcome by gathering slightly more data. However, they largely 
ignored the greater flexibility of parametric methods in evaluating interactions (com
bined effects of two or more variables that are not predictable from the individual vari
ables). Starting in the 1960s, investigators returned to the use of parametric tests. 

As a simple example of the representational approach. consider this approach to 
defining the equivalence (";;:") of two objects (the presence of a property in common, 
e.g., being enrolled in the same college course). Equivalence requires transitivity, sym
metry, and reftexivity. "Transitivity" means that the relation passes across objects-if 
John and Richard are enrolled in the course and if Richard and Mary are enrolled in 
the course, then John and Mary must be enrolled in the course. "Symmetry" means 
that the relationship extends the same way in both directions-if John is enrolled in 
tbe same course as Mary, then Mary must be enrolled in the same course as John. "Re
flexivity" states that the relation extends to the object itself-every object is eqUivalent 
to itself (if John is enrolled in the course, then John is enrolled in the course but not all 
examples are that obvious, as we will see in Chapter l5). Parallel considerations yield 
definitions of the U>" and u<" relationships used to define ordinal scales, the unit used 
to define interval scales, and the zero point used to define ratio scales. These latter re
lations are not symmetrical. among other things. If Mary is u>", e.g., taller than, 
Susan, then Susan cannm be ">" Mary. Representationalists have been most con
cerned with whether a particular measurement achieves interval status so that comput
ing the mean is permissible. We have already stressed the issue of whether scores on a 
conventionally scored test form an interval scale, and they have often argued that they 
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do not. We strongly suggest thtlt this posicion can easily become too narrow and coun
terproductive. Michell (1986) describes two other traditions that he terms operational 
theory (Gaito, 1980; Bridgman, 1928) and classical theory (Rozeboom, 1966). Neither 
accepts Stevens' view that one must have achieved a particular level of measurement 
to perform a particular statistical operation. Operational theory views a concept as syn
onymous with the operations that define it. In other words, a score on a test does not 
represent (stand for something beyond) a measure. It is the measure, but it may con
tain an error so that it merely estimates the trait; operationalism does not require the 
measure to be the trait itself. Finally, classical theory views measurement as the deter
mination of quantity or how much of an attribute is present in an object (as noted 
above, we assume that measurement also includes classification). 

Gaito (1980; also see Baker, Hardyck, & Petrinovich, 1966) termed his position 
"statistical theory" and was highly critical of representational theory (which he called 
"measurement theory"). His tone was very clearly pejorative, but his view nonetheless 
strikes a sympathetic chord with many investigators who have had to defend what they 
considered to be obvious aspects of their statistical analyses. Perhaps his major point 
is that using presumably impermissible transformations usually makes little, if any, 
difference to the results of the most common analyses. For a counterexample, see 
Townsend and Ashby (1984). 

Ostensive Characteristics 

The physical characteristics of the measurement operations provide one way to judge 
the scale characteristics of a particular measure, e.g., length with some form of yard
stick. To prove that the attribute in question is measured on a ratio scale requires proof 
of both (1) equal intervals and (2) an axiomatically unquestionable zero point. Anyone 
can see the zero point where the yardstick starts. The beginning of the measuring in
strument is the front of the yardstick, and open space is behind that point. Who could 
argue for a more meaningful zero point? The equality of intervals is also easy to de
monstrate, e.g., saw the yardstick inch by inch and compare the inch long pieces to en
sure equality. 

To a lesser o.r greater extent, all other measures employ correlates of the attcibute 
rather than the attribute itself and are therefore indirect. We can establish equality of 
time intervals but, strictly speaking, we observe the effects of time and not time it
self-ticks, pendulum swings, and the earth's rotation are only consequences of time. 
Nearly all measures of interest to behavioral scientists are indirect. We cannot observe 
intelligence per se but only its by-products. Likewise, a subject's perception can only 
be inferred from subjects' ability to discriminate andlor report what they experience 
(Eriksen, 1960). 

Many investigators, who may not even consider themselves representationalists in a 
formal sense, tend to evaluate scale properties in terms of ostensive characteristics and 
think of actual measures as imperfect correlates of "real" ones even though the scales 
may have been developed from a formal scaling model. We suggest that if the data ob
tained from applying a measurement scale fit the axioms of the particular model under 
consideration and the axioms (assumptions) of the model are appropriate, then the 
measure has scale properties specified by the model. For example, Chapter 2 contains 
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a model proposed by Louis Guttman for the construction of ordinal scales. It is based 
upon assumptions about patterns of responses to test items. Relevant data can be ana
lyzed to detennine how well the actual score patterns relate to the patterns predicted 
by the model. A good fit implies that an appropriate scale ex.ists. 

Since, for example, there are no ostensive properties to guarantee the equality of in
tervals measuring intelligence, some have argued that intelligence tests, for example, 
provide ordinal scales at best. We hope the above discussion illustrates that few mea
sures in aU sciences would be considered more than ordinal scales by these standards; 
the following sections will show that proper standards for judging the scale properties 
of a measure do not require observing the ostensive characteristics of an attribute. In 
particular: 

1 Standards can be based on data rather than ostensive characteristics. One studies 
the results of applying a measure to real objects when using a scaling model. or one 
studies the measurement tool directly when using ostensive characteristics. Thus, in
stead of relying upon the osrensive properties of yardsticks, one could test a model 
concerning properties of ratio scales and then see if it fits data obtained from yardstick 
measurements. One could therefore derive the scale properties of the yardstick from 
the model before seeing a yardstick. People have done this. and the data fit a-variety of 
scaling models beautifully, e.g., produce transitivity. This is what psychological scal
ing is about: It is an attempt to work backward from data to test the fit to a model. In 
this way, ratio, interval, ordinal, or perhaps nominal scales for psychological attributes 
which pannot be seen directly may be constructed. 

2 Using scaling models is a healthy trend in the development of measurement 
methods. Many models are intuitively quite appealing. Because they specify the char
acteristics that should be found in data, they are subject to refutation (can be falsified, 
Popper, 1959). Some models have produced scales that have led to interesting scientif
ic findings. 

3 A model is no better and no worse than its assumptions (axioms). There is ample 
room for disagreement, and there is plenty of it, about the fruitfulness of different 
models. For example, we have argued that measures like multiple-choice test scores 
should be viewed as having interval properties. However, if psychologists disagree 
about the correctness of different scaling models, how are scale characteristics ever 
determined? If. for example, several interval scaling models are being tried on a par
ticular type of data, a failure of the data to fit one model does not automatically pre
vent the measure from being considered as an interval scale. Conversely, even if the 
data fit all the models, the measures should not automatically be thought of as consti
tuting an interval scale. A more final decision should be made with respect to stan
dards to be discussed in the following sections. 

Consequences of Assumptions 

Even if one believes that there is a real scale for each attribute that is either directly 
present in a particular measure or mirrored in a monotonic transformation. an impor
tant question is What difference does it make if the measure does not have the same 
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zero point or proportionally equal intervals as the real scale? If the scientist assumes, 
for example, that the scale is an interval scale when it really is not, something will go 
wrong in the daily work of the scientist. What could go wrong? How could the diffi
culty be detected? The scientist could misstate the specific form of the relationship be
tween the attribute and other variables. For example, a power function might be found 
between two measures using an imperfect interval scale, whereas the right scale may 
produce a linear relationship. 

How seriously would such a misstatement affect the progress of the behavioral sci
ences? At present, the usual answer is "very little." Most results are reported as either 
correlations or mean differences. We have stressed and will stress that correlations are 
little affected by monotonic transformations on variables. These correlations are the 
basis of still more powerful methods like factor analysis. However, we also stress that 
justifying the rank order is vital. Even if one accepted the representational point of 
view about measurement scales, what sense does it make to sacrifice powerful meth
ods of corre~ational analysis just because there is no way of proving the claimed scale 
properties of the measures? 

There is also often major concern about the ratios of variances among different 
sources of variation in analyzing mean differences among groups, e.g., F, the variance 
among means relative to the variance within groups. This ratio and related statistics 
are also little affected by monotonic transformations of the dependent measure. If it is 
granted that the measure used in the experiment is at least monotonically related to the 
real scale, it usually makes little difference which is used in the analysis. There are 
some ex.ceptions of import. Two of these are (1) in ex.amining details of functional re
lationships, such as whether a particular monotonic relation is linear, logarithmic, a 
power function, or some other form, and (2) for some goodness-of-fit tests used in 
structural modeling (see Chapters 5, 10, and 15). 

A simple rule of thumb is that transfonnations become more important as the level 
of sophistication of the research hypotheses increases. Thus, tests simply concerned 
with looking for group differences and rank. orderings of groups typically involve sta
tistical procedures that are little affected by transformations. Numerically, these per
haps account for the vast majority of research. Interval assumptions are therefore no[ 
crucial when interest centers on ordinal relations among group means, etc. However, 
more refined tests of highly quantitative models are very sensitive to the interval prop
erties of the scale, virtually by definition. 

After analyzing the results of investigations, as in correlations andlor ratios of vari
ance components, it often is important to make probability statements about the results 
after applying inferential statistics. Thus, it may be important to set confidence zones 
for a correlation coefficient or to test the significance of a particular ratio among com~ 
ponen[S of variance. Such statistical methods are completely indifferent to the zero 
poim on a scale and consequently do not require ratio scales. However, they do as
sume interval properties, but since they are based on ratios of variation and covaria
tion, they are also little affected by monotonic deviations from any true interval scale. 
Moreover, statistical methods are completely blind to any meaning in [he real world of 
the numbers involved. These methods require only a definable population of numbers 
that meets the assumptions in the particular statistical method, such as normality of the 
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population error distribution. We suggest that it is perfectly permissible to employ the 
ANOVA to test hypotheses about the average size of the numbers 011 the backs of foot
ball players on ditTerent teams. What use you may make of the result is, of course, a 
different story, since there is no meaning to a theory of football numbers beyond iden
tifying the position individuals play, rather than how well they play it (see Lord, 
1953). 

Chapters 14 and 15 will consider some ex.tremely useful consequences of the repre
sentational point of view. We merely note that it is easily misused when the usual in
tent is to compute correlations or infer the ordering among groups means. Moreover, 
even when the intent is to study specifics of functionall'elations, one may discover that 
two perfectly good definitions of attributes are not linearly related to one another so 
that the "true" relation to other measures depends upon how the attribute is defined. 

We have thus far considered the representational point of view that scientists normally 
think in terms of "real" scales and obtain measures as approximations to such "real" 
scales. Our opinion is that (1) this point of view frequently leads to unanswerable 
questions and (2) violations of even relatively important assumptions are not harmful 
in most settings. The authors oppose the concept of "real" scales in most settings and 
deplore the confusion that this conception has wrought to the average investigator. It is 
much more appropriate to think of measurement scales as conventions or agreements 
among scientists about a "good" scaling. 

In saying that scales are established by convention and not God-given, we do not 
mean that such conventions should be arbitrary. Before measuring an attribute, all 
manner of wisdom should be sought as to the nature of the attribute-one cannot mea
sure something unless one has some general conception about what is to be measured. 
The nature of a "good" scaling of certain measures can be so readily agreed that a con
vention is easily established, e.g., length. weight, and time. Exasperation about theo
ries of measurement has tempted some to wish that there were no yardsticks and no 
balances for the measurement of weight so that all scientists could see that measure
ment always involves convention rather than discovery of the "real" measure. 

Sometimes, one person establishes a measurement convention and other scientists 
often neglect to participate in establishing the particular convention. Consequently, the 
particular scale becomes accepted as the scale. The Fahrenheit thermometer was once 
taken as the scale of temperature. Later, the discovery of absolute zero led to a new 
and more useful scaling. In psychology, intelligence was once defined as the ratio of 
mental age to chronological age, i.e., as an intelligence quotient (IQ); but intelligence 
is now measured relative to performance within a given age distribution. Both these 
instances illustrate why it is wrong to think that "real" scales had been discovered. It is 
better to say that conventions changed because better conventions were developed. 
The key is continued validation of measures. 

After applying all available wisdom to the problem, it is good to apply some type 
of formal scaling model when actually constructing measurement scales. Although any 
set of rules for the assignment of numbers constitutes measurement, silly and/or ad 



CHAPTER 1: If\lTROOUCTIO~1 25 

hoc rules probably will not result in a useful meaSLLre. It is useful to think of u seulit\!' 
'" model as an internally consistent plan for scaling un attlibute. When the plan is put to 

use, the measure may eventually prove ummtisfactory to the scientific community. but 
having a plan increases the probability thut it will be acceptable. Sometimes, useful 
measures are simply stumbled upon. However, explicit plans based on common sense 
and past experience improve the probabilities of a useful measurement scale. 

A convention establishes the scale properties of a measure. If it is established as a 
ratio scale, then the zero point can be taken seriously and the intervals may be treated 
as equal in any fonn of analysis. If it is established as an interval scale, the intervals 
may be treated as equal in all forms of analysis. This is not meant to imply that such 
conventions are. or should be, established quickly or until much evidence is in, but in 
the end they are conventions, not discoveries of "real" scales. 

Certain conventions are not employed because they make no sense or do not lead to 
useful results. For example, the Celsius scale's use of the freezing point of water to de
fine temperature's zero point has limited scientific utility. Water is an important sub
stance, but it not the only important substance. On the other hand, the absolute zero of 
the Kelvin scale based upon the absence of molecular activity is useful to a wide range 
of physical laws. It similarly makes little sense to establish zer9 points on scales of 
many, but not all, psychological attributes. Zero intelligence might be defined us the 
problem-solving ability of a dead person, but the utility of this convention in establish
ing a ratio scale of intelligence remains to be determi.ned. Psychologists seek to devel
op interval scales for many attributes because it is reasonable to ask how far apart peo
ple are on the scale and not simply their ordering. For example. we frequently need to 
determine if a is closer to b than to c. 

Scaling procedures that make sense may still not produce scales that work well in 
practice. These last four words are the key to establishing a measurement conven
tion-a good measure is one that mathematically fits well in a system of lawful rela
tionships. Chapter 3 will emphasize that the usefulness (validity) of a measure is the 
extent to which it relates to other variables in a domain of interest. The "best" scaling 
of any particular attribute is that producing the simplest forms of relationship with 
other variables. An increasing hierarchy of simplicity is (1) a random relationship, 
(2) a nonrandom pattern fitting no particular line of relationship, (3) an unevenly us
cendlng or descending monotonic relationship, (4) a smooth monotonic relationship, 
(5) a straight line. and (6) a straight line passing through the origin. The only way to 
describe a random relationship completely is to describe every point. However, a 
straight line passing through the origin is completely described by Y = bX. and the b 
(slope) parameter is usually arbitrary. Since the scientist's task is to translate and sim
plify the complexity of events in the univ~rse through lawful relationships. the simpler 
these relationships, the better. 

One way to make relationships simpler is to change the scaling of one or more of 
the variables. Thus, an irregular monotonic relationship can be smoothed by stretching 
some of the intervals, a procedure widely used by Anderson (198 L, 1982) under the 
name "functional measurement." Any monotonic curve can be transformed to a 
straight line by this device. A straight line can be made ·to pass through the origin by 
changing the origin (zero point) on one of the scales. Of course, conventions about 
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a patticular attribute should not be altered because of the relationships found with only 
one or two other measures. One should consider the effects LIpan several measures. 
Nonetheless, if many relationships are simplified by a particular transformation, the 
new scale is logically a better scale. Such transformations are made actually quite fre
quently. For example, logarithmic transformations are quite common, especially in 
sensory psychology. 

Following this point of view to the el(treme, there is no reason why all variables 
known to science could not be rescaled to simplify all relationships. This would be a 
wise move if it could be done-a big "if." The new scales are as "real" as the old ones, 
and there might be every reason to take the zero points and the intervals on the new 
scales seriously. 

There are two major problems with considering scaling merely as a matter of con
vention. First, it is disquieting to those who think of real scales and futilely wish for 
infallible tests of the relationships among real scales. LOOking at measurement scaling 
as convention also seems to make the problem "messy." How well a particular scaling 
of an attribute fits in with other variables is vague. Which variables? How good is a 
particular fit? To avoid such questions, however, is to blind oneself to the realities of 
scientific enterprise. 'To seek shelter in the apparent neatness of conceptions regarding 
real scales is not to provide answers about the properties of measurement scales but to 
ask logically unanswerable questions. 

A second, and more serious, problem with considering scaling as a matter of con
vention is that two or mOre conventions often compete with one another. For example, 
there has been much dispute about whether Thurstone's law of comparative judgment 
or Stevens' magnitude-estimation methods better describe the results of measuring 
sensations (see Chapter 2). As it turns out, Thurstone's procedures are more useful in 
describing lawful relations involving confusion among stimuli, and Stevens' methods 
are more useful in predicting how stimuli will appear (the two are also simply related 
through a logarithmic transformation). More appropriate than asking which is correct 
would be to ask whether confusion among stimuli or their appearance is at issue in the 
particular siruation. 

Having competing conventions regarding the scaling of attributes is not as bad as it 
sounds for two reasons. First, if the two scalings are monotonically related to each' 
other, as is usually the case, and if one has a monotonic relationship with a third vari
able, so will the other. 'Thus the principles established with the two scatings will pro
duce the same general functional relations, even though the specifics may differ. The 
specific form of relationship is rarely the major issue in contemporary psychology 
even though it can be. The more common question is the strength of relationship be
tween the two variables. Correlations greater [han .60 are the exception rather than the 
rule, and, as was said previously, such correlations are largely insensitive to monotonic 
transformations. Consequently if there are two competing, monotonically related con
ventions for scaling that are equally reliable in the sense to be describe later, both will 
produce about the same correlation with any other variable. In sum, the specific forms 
of relationship can be settled only when there are firm conventions for scaling. The 
specific form of a relationship is relative to the measurement convention. To hope to 
find the relationship is either to continue to search vainly for real scales or to assume 
that one measurement convention eventually will win out over ochers. 
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gr~sslficat!on as Measurement 
We have devoted nearly all of this chapter to the first part of the definition of measure
ment, measurement as scaling. This is because measurement as scaling has led to more 
issues of dispute than has measurement as classification, and because until recently 
there were few sophisticated techniques to use with categorical (nominal) data, the 
usual fruits of classification. This has changed. especially since the last edition of this 
book. and Chapter 15 will focus on some of these new developments. 

Classification demands a nominal scale (rules to define "=" and ";e") at a minimum 
and. conversely, illustrates that a nominal scale, which was considered "lowly" in 
terms of scaling, can be extremely important. Consider two common statements: 
(1) "Everyone is unique; no two people are the same" and (2) "People are pretty much 
alike." Although these two statement appear totally contradictory, both share the char
acteristic that they lead one away from some useful, if not obvious. results. For example, 
people who describe themselves as RepUblicans are quite likely to answer a variety of 
politically related questions differently from people who describe themselves as Dem
ocrats, e.g., "Should prayer be allowed in public schools?" Similarly, the relation 
betWeen political affiliation and response to the political issue may jointly vary with ad
ditional variables such as whether the person lives in a rural, suburban, or urban area. 
Note that this analysis does not necessarily ignore individuality. Two people who faU 
within the same "cell" of the analysis (e.g., who are both Democrats, live in a suburban 
area, and oppose school prayer) may differ in countless ways (e.g., gender, religion, 
height, or weight). As with scaling, classification assumes equivalence and not identity. 

Although classification is relatively simple conceptually, it can be quite difficult 
empirically. Useful classification along one dimension implies that the dimension in 
question will relate to another dimension (which in turn could be at any of the previ
ously mentioned levels). There is no reason to classify people as type alpha versus 
type beta unless these categories have a useful external correlate. Even such obvious 
categories as Catholic, 'Protestant. Jewish, and Muslim may not be widely useful 
(though religiously orthodox. versus religiously nonorthodox, disregarding the speci.fic 
religion, may be). Moreover. apparent relations between a categorical variable (or any 
other) and a given criterion may be an artifac[ of a third variable; religious differences 
may, for example. be an artifact of differences in education and/or income. Thus, one 
may obtain apparent differences between Catholics and Protestants on an issue that in
volves liberal versus conservative attitudes because more affluent individuals also tend 
to be more conservative and the two groups differ in affluence. Likewise, empirical . 
disputes often arise between "lumpers" (people who favor a small and therefore more 
parsimonious number of broad categories) and "splitters" (people who favor a larger 
number of more finely defined categories). 

RECENT TRENDS IN MEASUREMENT 

The Impact of Computers 

It is very easy to think. that the main role of a computer is to expedite analyses that one 
would have perfonned anyway. This is certainly important Anyone who has used 
computers for a long time appreciates the increasing flexibility and user-friendliness of 
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major computer packages such as BMOP, SAS. SPSSX, SYSTAT, and UniMult. One 
likewise appreciates the related factors of greater power, increased reliability. and 
lower cost in the personal computers that are now beginning to dominate statistical 
analyses and the availability of supercomputers for massive undertakings. However, 
one additional point must be stressed---computers now allow fundamentally different 
kinds of analyses to be performed, i.e., open form analyses that are effectively impos
sible to do by hand. 

Closed versus Open-Form Solutions 

Many of the techniques, concepts, and measurement theories that have recently be
come popular actually have long histories. However, they were essentially interesting 
statistical curiosities before computers became generally available. The distinction be
tween closed- and open-form solutions helps make this point more understandable. 
Consider your first statistics class where you were taught to compute the arithmetic 
mean of a sample by adding up the scores and dividing by the number of scores and 
given the associated equation X::: 'SXlN. This is a closed form solution because all you 
need do js plug the numbers into the formula to obtain the result. You might wish to 
use a computer if N were very large, but the principle would be the same. 

On the other hand, suppose YOll did not know the formula but for some bizarre rea
son you remembered that the mean minimizes the sum of squared deviations. This tOO 

can be expressed by a kind of formula: 'S(X - C)2 ::: a minimum when C = X, but the 
formula does not tell you how to obtain X. You might use this information to compute 
X by plugging in different values of C, computing the sum of squared deviations for 
each value, and accepting the one producing the smallest sum. If you performed 
enough calculations, you could in fact obtain an open-form estimate of X. 

Many statistical quantities of interest, particularly those of recent prominence, re
quire an open form of estimation because they lack a closed-form solution. This is 
often true of maximum likelihood estimates discussed at several points in this book. 
For all intents and purposes, such estimates require a computer and, even then, can be 
very time-consuming. The process involves repeated calculations or iterations. Numer
ical analysts often specialize in developing better algorithms to obtain the necessary 
successive approximations. Iterative proportional fitting and Newton-Raphson algo
rithms are two such common computational processes. You wiU not need to know how 
to use either one yourself, but they are widely employed in programs you may llse. 

Computer Simulation 

Computers are also invaluable in simulating processes. A particular form of simulation 
that is widely performed on computers is the Monte Carlo method in which an esti
mate of a parameter is obtruned by random sampling. If you were asked to verify that 
the probability of obtaining heads on a coin flip is .5. you might actually flip a coin a 
large number of times and count the actual number of heads, hoping the coin was fair. 
This would illustrate the Monte Carlo method but would not be a computer simulation. 
The experiment may be done more efficiently on a computer where the program would 



SUMMARY 

CHAPTER 1: INTRODUCTION 29 

conduct a series of trials. On each trial, the program generates a random number from 
o to I and adds one to the count of heads if the random number is greater than 0.5. 
When finished, it prints the proportion of times heads occurred. Computer simulations 
are often performed when it is difficult to obtain a solution analytically (algebraically) 
or if no solution is known to exist. . 

Measurement consists of rules for assigning symbols to objects to (1) represent quanti
ties of attributes numerically (scaling) or (2) define whether the objects fall in the 
same or different categories with respect to a given attribute (classification). Both scal
ing and classification involve the formulation and evaluation of rules. These rules are 
used to measure attributes of objects, ~suany, but not exclusively, people. It is impor
tant to remember that we can measure only attributes of objects. not the objects them
selves. Among the characteristics of good rules are repeatability (reliability) and, more 
importantly, validity in senses to be described. Standardization is an important goal of 
measurement because it facilitates objectivity, quantification. communication, econo
~y, and scientific generalization. 

Measurement uses mathematics, but the two serve separate roles. Measurement 
needs to relate to the physical world. but pure mathematics is solely concerned with 
logical consistency. One traditionally important. but controversial, aspect of scaling 
that involves mathematics is the co~cept of ~evels of measurement: Scales generally 
fall at one of four levels (others have been suggested): nominal. ordinal, interval, and 
ratio. These four levelS repres~nt progressively better articul!ited rules. For example, 
nominal scales simply define whether or not two objects are ~quivalent to one another 
with respect to a critical attribute, but ordinal scales deterqilile whether one object 
that is not equivalent to another is greater than or less than tpe other. Stronger results 
are possible from higher levels of measurement. Basic to these levels of measure
ment is the concept of invariance, which concerns what remains the same as permis
sible changes are made in the scale (e.g., in its unit of measurement); higher-level 
scales are more restricted as to how they may be transfonned and still preserve key 
invariances. 

Focal to the debate about levels of measurement is what statistical operations arr:: 
permissible on a given set of measures. The representational position asserts that scale 
properties must be established before performing relevant operations; e.g., a scale 
must demonstrably have interval properties before it is proper to comp4te an arith
metic mean. Alternative positions, classical and operational, do not share this view. 
Many, who need not be formally aligned with a specific position, look for scales to 
have ostensive (visualizable) properties like yards~cks or clocks have before accepting 
a scale as real; they view existing measures as highly imperfect correlates of true 
scales. We suggest that very few measures in science are ostepsive. A much better cri
terion is the extent to which tl1e results of using the scale fit a scaling model. All mea
surement use is essentially based upon convention, and progress is made when better 
conventions are agreed upon. In general, the more well elaborated a hypothesis is stat
ed quantitatively, the more important fonnal scaling issues are. 
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The most important single factor in the recent progress in measurement has been 
the computer. Although computers obviously allow analyses that could be done by 
hand to be done more easily and accurately, they allow fundamentally different analy
ses to be performed. Many of these use open-form solutions, so named because the re
sults cannot be defined directly by a formula (closed-form solution). In addition, com
puters allow simulation of processes that are difficult to study directly. 
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FOUNDATIONS 

Part Two contains four chapters that deal with statistical concepts basic to measure
ment First, we look at some models used to construct scales. One central concept is 
that of the item trace line (item-characteristic curve) which relates the magnitude 
along a dimension (trait) to the magnitude of response to a particular item. The next 
chapter deals with the three basic meanings of test validity: content validity, construct 
validity. and predictive validity. Many have debated whether these are ultimately the 
same or DOt. Though they sbare important similarities. there are also important differ
ences among them. The third chapter considers statistical description and estimation. 
Much of this involves traditional issues in correlation and regression that you may 
have been previously exposed to. However, two additional topics may be less familiar: 
structural relations and altemati ve fonns of statistical estimation. The latter is impor
tant because statistical inference plays a much larger role in psychometric theory than 
it did in the previous edition. The method of maximum likelihood is especially impor
tant. Finally. we discuss properties of linear combinations which are central to psycho
metric theory. 

3' 





CHAPTER OVERVIEW 

CHAPTER 2 
TRADITIONAL 

APPROACHES 
TO SCALING 

Scaling was defined in Chapter 1 all the assignment of numbers to objects to represent 
quantities of attributes. Although any relevant set of rules can be spoken of as mea
surement, it helps to have some internally consistent plan when developing a new 
measure. The plan is a "scaling model," and the reSUlting measure is a "scale" or a 
"measurement method." The simplest example is a ruler used as a scale of length. The 
methods for constructing and applying rulers constitute the scaling models. Scaling 
models are designed to generate one or more dimensions (continua) to locate people or 
objects. In the following example, persons Pit P2• P3• and P4 fall along one such di
mension, which could be social anxiety. spelling ability, attitude toward abortion. etc. 

Lower foE ------------------~) Higher 
Attribute 

Because this is an interval scale. the distances between people are meaningful. 
Thus PI is considerably higher in the attribute than P2• P:2 and P3 are close together. 
and P 4 is far below the others. 

We begin this chapter with an introduction to the concept of a data matrix. which is 
central to nearly all measurement data. and some differences between scaling stimuli 
and scaling people. Next, we present a brief history of "psychophysics," which is the 
study of the relation between variation in physical dimensions of stimuli and their as
sociated responses-as it forms the foundation for "psychometric" theory. In contraSt, 

33 



DATA MATRICES 

TABLE 2-1 

34 PART 2: STATISTICAL FOUNDATIONS 

"psychometrics" in general mayor may not study the effects or variation in a single 
physical dimension, and so it includes psychophysics as a topic. Then, some distinc
tions among different types of stimuli and, especially, responses are made. We then 
consider some general principles underlying the development of ordinal, interval, and 
ratio scales. Following this, we present what is probably the historically most important 
scaling model for stimuli, Thurstone scaling. 'The ensuing section considers some mod
els used to scale people. In particular, we introduce the linear model (also called the 
summative or centroid mode!), which simply involves the familiar process of defining a 
score as the ordinary sum, perhaps weighted, of responses to individual items. 

Most measurement problems begin with a data matrix or two-way array or table (we 
will describe some other matrices from time to time). Rows typically represent N dif
ferent objects (usually people), and columns represent K different stimuli (content), 
e.g., questionnaire items (see Table 2-1). It is convention to denote the entire matrix by 
an uppercase letter in boldface, e.g., X. The data are responses, e.g., 0 = incorrect ver
sus I = correct, Likelt scales, etc. Individual element,; appear in lowercase italics. The 
first subscript conventionally denotes the row (usually the Object being measured, e.g., 
a person), and the second SUbscript denotes the column (stimulus, as a questionnair.e 
item number), so that xi} denotes the response of subject i to stimulus j. However, the 
stimuli !l!ld responses can represent anything that the experimen~er does to the subjects 
and anything the subjects do in return. Consequently, we need not limit the discussion 
to people and test items in the ordinary sense. Subjects might estimate the weights of 
various objects, for example. It is possible, though rare, that the matrix is a single per
son's response to a series of stimuli studied over occasions (e.g., Nunnally, 1955), 
among other variants. 

Most classical psychometric models treat scale items as replicates of one another in 
the sense that differences among the items are ignored in scaling. Thus, a patient's 
anxiety is typically defined by counting the number of anxiety-related symptoms that 
are endorsed regardless of which specific items these are. Alternative models, mainly 
of recent origin, derive scale scores from the pattern of responses. These latter models 

A BASIC TWO-WAY DATA MATRIX (X) CONTAINING RESPONSES OF N PERSONS 
(ROWS) BY K STIMULI (COLUMNS) 

Stimuli 
2 3 J K 

X11 X1Z X13 XII Xlk 

2 X21 X22 X23 ~I Xu 

Objects 3 X31 X32 X33 X3/ X3k 

(People, usually) 
i XII Xi2 Xi!) Xij X/k 

n Xn l Xnz Xn3 Xn/ Xnk 
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will be introduced here but are discussed in more detail in Chapter 10. Likewise, 
methods of scaling objects, as in market research studies, often assume that people are 
replicates of one another. For exampLe, the percentage of persons in a group that 
prefer one brand of cereal to another is assumed to be the same as the percentage of 
times a typical (modal) individual would have this preference over occasions. These 
classical methods, by definition, treat individuai differences among items and people 
as random error. In contrast, newer methods incorporate individual differences in a 
more systematic manner. 

It is only meaningful to obtain a single measure by counting the number of positive 
responses if the stimuli measure a single attribute. This in turn implies that differences 
in response to the various stimuli are highly correlated; e.g., if people who admit to 
one anxiety-related symptom also tend to admit to others, and vice versa for people 
who deny these symptoms. Various correlational methods are used to evaluate the ex
tent to which people or stimuli can be viewed as replicates. If responses correlate 
poorly with one another, two or more scales would have to be formed from the items. 
These involve methods discussed throughout the book, especially in Chapters 11 
through 14. This chapter will be limited to models that assume the stimuli measure a 
single attribute (unidimensional sca!ing)-situations in which the data under consider
ation can be summarized satisfactorily with only one "yardstick." 

Mora Complex Organizatit;>ns 

The two-way organization of Table 2-1 contains the minimal elements of interest to a 
measurement problem. If there were but a single column (stimulus), there would be no 
way to evaluate the structure of the stimuli, which is basic to psychometric theory. The 
only results possible would be descriptive statistics on the single measure (e.g., the 
mean and standard deviation) for the single group of subjects. These data are rarely of 
interest to the psychometrician because nothing can be said about the structure. Like
wise. data from a single row (subject) in isolation are unlikely to be informative. At a 
minimum, we need to compare that person's data to normative data. 

More complex arrangements of the data are extremely common. First, the two-way 
matrix may be repeated over occasions, as when a pre- and a posttest are administered. 
This gives rise to a three-dimensional arrangement in which there are rows and 
columns, as before. plus "slices" that represent the two or more occasions. Another 
possibility is that subjects are sampled from two or more groups; e.g., one studies gen
der differences in response to items measuring depression. A third possibility is that 
two or more attributes are investigated simultaneously, as when one series of items 
measures job satisfaction and another series of items reflects job performance. This de
sign involves methods of multidimensional (multivariate) analysis considered later in 
the book. 

Scaling objects often involves a three-dimensional array, as when a market re
searcher conducts a taste test and has people judge multiple attributes of several 
brands of cola, e.g., sweetness and intensity of flavor. (As an incidental point, the ap
plication of measurement methods to quantify the perceived appearance, including 
taste, of consumer product preferences is known as "sensory evaluation" to marker re-
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searchers.) These pmisibilities may be combined in still higher-order ways, e.g., by ob
taining pre- and posttest me.lsures that compare two or more groups. 

We have frequently used the phrase "people or objects," but the vast majority of 
studies examine people's responses to different stimuli. In fact, objects (which may 
be abstract concepts) play the same role as people in some studies and as stimuli in 
others. 

"Holes" in the Matrix (Missing Data) 

In an ideal situation, there is an outcome at each location in the matrix; e.g., each per
son is administered each stimulus. Sometimes this is not possible or even meaningful. 
For example, the number of stimuli may be too large to allow a gi yen person to re
spond to each one. Similarly, the effects of administering one stimulus may influence 
subsequent behavior, known as "carryover" effects. Subjects are then often deliberate
ly given a subset of the stimuli chosen according to a predesignated plan usually in
volving random assignment of stimuli to a given subject. This is part of the experi
mental design. Perhaps the most comprehensive text dealing with these problems is 
Winer, Brown, and Michels (1991). Although some statistical power is lost when sub
jects do not respond to all stimuli, this loss of power can be offset by increasing the 
sample size. The problem will not be considered further since it poses no additional 
complications. 

Far more serious problems emerge when the resulting holes in the data matrix are 
nonrandom. For example, the second author once was given neuropsychological test 
data. The data involved many scales (subtests) that were normally not an adminis
tered to each patient. Thus, patients with frontal lobe damage were given one set of 
subtests, patients with temporal lobe damage were given a different set of subtests, 
etc. Such limitations on data gathering caused the missing data to be nonrandom. 
Type of injury was confounded with the particular scales that were administered. The 
results obtained from analyzing these data might well differ substantially from a 
srudy in which all subjects responded to all measures or the pattern of administration 
was random. Good design dictates minimizing the impact of missing data. If aU mea
sures are equally important, randomize the order of administration or administer ran
dom subsets if all cannot be administered to each subject. Conversely, if some are 
relatively unimportant because they are being used for more exploratory purposes, 
administer these at the end. 

EVALUATION OF MODELS 

Often different models can be applied to a given set of data to develop alternative 
scales. These models and their associated scales sometimes lead to different substan
tive conclusions. Two different models might produce scales that are not linearly relat
ed. One model might suggest that the data do not even possess ordinal properties, 
whereas another might indicate they clearly form an interval scale. How, then, does 
one· know which model to choose? Chapter I noted why this cannot be known in ad
vance. We suggest that the most crucial test is how well the scale provides meaningful, 
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repeatable relations with other variables. Before time and effort are spent on sllch 
investigations, however, some additional criteria can be applied. 

1 The intuitive appeal of a scaling model provides one criterion for "reasonable." 
Although the data of science must be public, a scientist's intuition plays an indis
putable role in the gathering and analysis of data. Looked at in one way, a measure
ment model is nothing more than an explicitly defined hunch that particular operations 
on data will be useful. In particular, we suggest that psychologists lean toward mea
surement models that are most analogous to the measurement of simple physical at
tributes, e.g., length. 

2 Another aspect of "reasonable" is that one should exploit what is already known 
about similar data. For example, power functions are well known to describe relations 
between physical and perceived intensity (see below). On the negative side, some 
models assume that individual test item responses are highly reliable; yet, a wealth of 
evidence shows that such responses usually are highly unreliable. 

3 Preliminary analyses often provide cues about the usefulness of a scale. If the 
scale values for objects or persons are markedly affected by slight procedural differ
ences, the scale will probably not work: well in practice. There are, for example, nu
merous ways in which subjects can judge weight. If two similar appearing approaches 
yield very different intervals of judged weight, either or both methods are suspect. 
Conversely, different models that yield similar results provide converging operations 
(Gamer, Hake, & Eriksen, 1956) that mutually strengthen the confidence one may 
have about any given method. ''Triangulation'' is another cornman term used to de
scribe this. 

4 Another important type of evidence is the magnitude of measurement error in 
using a particular scale, which we will discuss in detail in Chapters 6 to 10. A scale 
that yields a great deal of measurement error cannot possibly be useful. 

Beyond the standards of good sense, however, the ultimate test of any model is the 
extent to which it yields useful empirical results. 

Scaling Stimuli versus Scaling People 

Although psychometric methods can be used to scale people, stimUli, or both, different 
methods are often used when the focus is on scaling people than when the focus is on 
scaling objects. As Cronbach (1957) pointed out in a classical article, clinical, counsel
ing. and school psychologists are more inclined to think in terms of individual differ
ences among people, e.g., in measuring such attributes as intelligence and level of ad
justment. These individual differences are a nuisance to experimental psychologists 
and market researchers who largely ignore individual differences. though both may be 
interested in group differences. Their problems typically involve scaling stimuli, e.g., 
measuring which words or advertisements are most readily recalled. Regardless of the 
focus of the research, the basic data are representable as a two-dimensional array, per
haps extended into other dimensions because of additional considerations. 

Unidimensional scaling of people is probably the easiest situation to describe. For 
example, a spelling test contains words as stimuli and students as subjects. The data 
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are simply I = correct and 0 = incorrect. The simplest model for scaling subjects (see 
the linear model below) collapses the stimulus dimension of words by adding the num
ber of ls for each person. Although additional analyses are usually conducted to deter
mine the interrelations among responses to different words, these simple sums of cor
rect responses scale students on their spelling ability. Consequently, Dina may obtain a 
score of 48 and RaJph may obtain a score of 45 out of 50 words. [t is quite possible 
that a simple ranking of the students will suffice so that an ordinal scale may be all that 
is necessary for such purposes as grading. The major requirement in scaling people is 
that alternative scatings be monotonically related to one another, i.e., that they rank
order people in the same way. Thus if two different methods for scaling anxiety have a 
strong monotonic relationship, research results will be much the same regardless of 
which scale is employed. 

The roles of people and stimuli are often reversed to scale objects. Specifically, 
sums over students for each word describe differences in the difficulty of the words, 
e.g., if 50 students spell "abacus" correctly but only 35 spell "mnemonic" correctly, 
"mnemonic" is considered more difficult than "abacus." ill fact, these data are usually 
a standard part of a test analysis, even when interest is directed toward scaling people. 
However, studies directed toward scaling stimuli are also more likely to be concerned 
with establishing functional relationships to various attributes. in which case ordinal 
scales are quite likely to be insufficient. Assume, for example, that the stimuli are 
tones of different intensity which subjects rate for loudness. Everyone knows that 
more intense tones will be rated louder; the key to the study is whether the relationship 
is logarithmic, linear, or of some other form. A unidimensional scale of stimuli should 
also fit a typical (modal) individual. Such a scale should be typical of a group even if it 
imperfectly represents the data from anyone individual. 

Because of the thornier problems in stimulus scaling, most of the issues and more 
complex scaling models have arisen from scaling stimuli. This difference has influ
enced the language used to describe psychological research. "Scaling" and "scaling 
methods" usually denote the scaling of stimuli. Problems of scaling people are more 
likely to evoke the terms "measurement" and "test construction." Those who are inter
ested in the details of stimulus scaling could well consult the classical works of Guil
ford (L954), Torgerson (1958), and Woodworth and Schlossberg (1954). Despite their 
age, all three of these books describe the major models in unique step-by-step detail; 
more recent books have tended to concentrate on newer models. 

Perhaps the main consideration in measurement is what kind of response is to be 
obtained from the subject, because this has profound effects on what subsequent 
analyses may be performed-one cannot analyze data that one has not obtained. There 
are two broad approaches, and both derive from psychophysics. In one, which origi
nuted with Gustav Fechner, subjects make only ordinal judgments as to whether a 
stimulus was seen or not and whether a comparison stimulus is more or less intense 
than a standard stimulus. The methods require very little of subjects. [ndeed, animals 
can be trained to make requisite responses by means of such devices as bar pressing. 
In the other approach, most strongly associated with S. S. Stevens (see Chapter L), 
subjects are required to use properties of the real-number system to make interval or 
ratio judgments, as by saying how much more intense a comparison stimulus was than 
a standard. Such methods normally require adults or older children. 
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11 BRIEF INTRODUCTION TO PSYCHOPHYSICS 

The overview defined psychophysics as the study of the relation between variation in 
physical dimensions of stimuli, which we will symbolize as cP (for physical). and their 
associated responses. historically called "sensations," which we will symbolize as 'P 
(for psychological). The physical dimension need not be intensity, but it will be for all 
examples in this chapter, and the associated responses will describe apparent intensity. 
We have already noted the obvious ordinal relation between the physical and apparent 
intensities of weights, flashes of light, and tones. A 5-pound weight obviously feels 
heavier than a I-pound weight. In particular, the probability that a weak event will be 
detected also increases as the intensity increases. Psychophysics is concerned with 
making more detailed statements about the relations between cP and I{J which, as was 
also noted, are usually required by the problem under study. Three particular questions 
are historically important yet relevant to many contemporary problems: 

1 What is the minimal energy needed for a particular event to be perceived under 
particular conditions. Le .• the absolute threshold or limen? For reasons to be noted 
below. this normally involves determining the stimulus event that is perceptible 50 
percent of the time. 

2 How different must two stimuli be in order to detect a difference between them 
or to determine which is of greater intensity? This involves what is variously called 
the "difference threshold," "difference limen," or "just noticeable difference" (JND) 
between a standard and a comparison stimulus. 

3 How may the relation between physical intensity and its associated sensation be 
described in the interval or ratio terms of Chapter I? This is known as the problem of 
psychophysical scaling. 

The history of these questions is covered in several excellent books on the general 
history of experimental psychology (Boring, 1950; Robinson. 1981) because early ex
perimental psychology was psychophysics. Simple but useful discussions of current 
applications may be found in any standard undergraduate textbook on perception such 
as Coren and Ward (1989). For a more detailed treatment, see Engen (1972a, 1972b) 
or Woodworth and Schlossberg (1954). Psychophysics is important for its own sake as 
exemplified by its use ill such areas as communications engineering and photography. 
Audiologists perform psychophysical scaling on individuals in testing for hearing loss 
when they compare absolute thresholds they obtain with norms. An abnormally high 
threshold implies hearing loss. Psychophysics is limited to the study of relationships 
that hold when stimuli vary along a specified physical dimension such as sound inten
sity. Measuring intelligence. psychopathology, etc., is not psychophysical because no 
physical dimension underlies these attributes. Nonetheless. concepts like the threshold 
are applicable to psychometrics in general. 

Psychophyslcal Methods . 

Methods used to gather psychophysical data were first developed by Fechner 
(1860/1966) to study the relation between mind and body. Later, J. M. Cattell, Fuller
ton (Fullerton & Cattell, 1892), Thurstone (1928), and others expanded upon their use. 
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Several psychophysical methods developed by Fechner are still widely used. One is 
culled the method of constam stimuli. Assume that u tone whose physical intensity is 
185 units is essentially never reported as being heard, but a tone whose physical inten
sity is 215 units is nearly always reported as being heard. The experimenter might 
choose to use intensities of 185. 190, 195 .... ,215 units. On each trial, one level (mag
nitude) is chosen at random for presentation. There is no limit upon the number of lev
els the e:cperimenter may use. The levels need not be equally spaced and they need not 
occur equally often. but it is typical to use from 5 to to equally spaced and equally 
probable levels. The results are the probabilities of an affirmative response (e.g, saying 
the tone was heard) for each level. 

Two related procedures are the method of adjustment and the method of limits. In 
the "method of adjustment," a standard is varied until it is barely sensed to determine 
an absolute ~reshold, or a comparison is made to barely differ from a standard to pro
vide a difference threshold (JND). The method of limits takes two forms. The "ascend
ing method" as used to determine an absolute threshold starts with a stimulus that is 
not sensed. The stimulus is progressively increased until it is sensed. The "descending 
method" starts with a stimulus that is sensed and decreases the intensity. The modifica
tion made to determine difference thresholds is straightforward. The comparison stim
ulus is presented either below (ascending method) or above (descending method) and 
incremented or decremented. 

Absolute Thresholds 

The original idea of an absolute threshold goes very far back in philosophy. It implied 
a "cut" in <tl-the subject never sensed the stimulus below the cut (threshold) and al
ways detected it above the cut. Imagine that the method of constant stimuli is used to 
present a series of weights. This predicts a step function relating Ci' to 'P (in this case, 
the probability of reporting that the stimulus was sensed or detected). as illustrated in 
Figure. 2-1a. The general name given to any relation between c:tl and 'P is a "psycho
metric" (mind/measuring) function. This particular function describes local psy
chophysics. because 'P is defined in terms of sensations in the location of the thresh
old. However, it is e:ctremely unusual for data to provide a step function, which we 
will later show is of general importance to psychometric theory. The data will more 
likely resemble panel (b) of Figure 2-lb. known as an ogive or S-curve. 

Figure 2-2a illustrates an ogive and irs associated data points as simulated by meth
ods defined below. Although several mathematical functions produce ogives and there 
are many explicit curve fitting methods (see Chapter 15), curve fitting can often be 
done by inspection. The point at which the curve crosses the .50 level for '¥ defines 
the absolute threshold. This is approximately 200 units in the present case. 

In order to explain this lack of a step function, the original threshold hypothesis 
was modified to incorporate sensory noise. "Sensory noise" refers to random error in 
perceiving an event, causing a fixed stimulus to have variable effects on different tri
als. The process may be thought of as physiologjcal in origin, but it need not be so 
viewed. The most popular specific conception of sensory noise is the phi-gamma 
hypothesis-numerous independent factors contribute to the error. and so it varies 
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FIGURE 2-1 (a) A step function representing the initial concept of the threshold and (b) an ogive (S curve) 
representing a more realistic outcome. 

normally over trials because of the central limit theorem (see Chapter 5). The specific 
form of the ogive (psychometric function) is the cumulative normaL An alternative 
model (Luce, 1959a, 1963) leads to a logistic function, defined below. Cumulative 
normals and logistic ogives are closely related mathematically and cannot be differen
tiated by eye. A third, but thus far less fruitful, possibility is neural quantum theory 
(Stevens, Morgan, & Volkmann, 1941). It leads to a linear function which will not 
be considered further. The 0.5 point that describes the absolute threshold is therefore 
arbitrary. 

The location of the psychometric function is one of its two basic parameters. If 
auditory stimuli are used, the function of a subject with more acute hearing and COD

sequently a lower threshold will fall to the left of the function of a subject with less 



42 PART 2: STATISTICAL FOUNDATIONS 

1.00 
(al 

.90 

.SO .. 
~ .10 

8.. .60 e 
=a'I .50 >. • .... 
0 .40 a 
'-2 .30 8. 
£ .20 

.lO Absolute threshold 

.00 
185 

Physical magnitude. «I 

(b) 

1.00 
Physical magnitude. of 

.90 standard (200 unirs) 

.80 .. 
..r .70 fA 

i .60 Interval of ... uncertainty · t .SO 
• 
~ .40 
.~ 
i .30 

£ .20 

.10 

Physical magnitude, q, 

FIGURE 2-2 Psychometric functions derived from applying the method of constant stimuli (simulated data) to 
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acute hearing. Likewise, we hear tones at middle frequencies better than lower- or 
higher-frequency tones, holding intensity constant. so that middle-frequency tones 
produce psychometric functions to the left of higher- and lower-frequency tones. Lo
cation thus defines task difficulty. The second parameter of importance is the slope of 
the function or the extent to which it resembles a step fU'Clction. The steeper the 
slope, the more discriminating the responses are. Quantities related to these two pa
rameters play a crucial role in psychometric theory, as we will show later in this 
chapter. 

Now consider a question like "Are you unhappy at life" on a depression inventory. 
The probability that this question will be answered in the affinnative should be quite 
low for people who are low in the attribute (not depressed) and increase with the level 
of depression until it reaches 1.0. This implies that there should be a level of depres
sion for which the probability of endorsing the item is .5, and so it is meaningful to 
think of an absolute threshold associated with the item. Similar considerations hold for 
items for which there is a correct answer and the underlying dimension is course 
knowledge or general intelligence. We will exploit the generality of the threshold and 
psychometric function concepts. especially in this chapter and in Chapter 10. The fact 
that there are physical dimensions of weight. sound intensity, and light intensity, bilt 
none of depression, course knowledge, or general intelligence, might appear to reflect 
a major difference between psychophysical and other applications. However, as we 
noted in Chapter 1, such ostensive characteristics are not needed to provide a scale. 
'The scaling models considered in this book allow dimensions that are not defined 
physically to be inferred. 

Simulating a Threshold 

The data in Fig. 2-2 were actually derived from a very simple computer simulation to 
iHustrate the absolute threshold and sensory noise. We defined the absolute threshold 
as 200 units. Sensory noise was produced by choosing a random number from a nor
mal distribution with a mean of 0 and a standard deviation of lOin accord with the 
phi-gamma hypothesis. The mean of any given physical magnitUde ($) was its physi
cal value (185 to 215 in 5-unit steps), but it varied normally about this mean on any 
given trial. The sensory effect for a stimulus on any given trial equaled III plus the ran
dom number. We ran 100 trials per stimulus. 

For example, the two random numbers obtained for the first two trials using the 195-
gram stimulus were +20.6, and +2.8. These produce sensory effects of 215.6 and 
197.8. If the effect equaled or exceeded the threshold value of 200, the subject said yes 
(the stimulus was felt); otherwise the subject said no. Consequently, the subject said 
yes in the first case and no in the second. Note that the sensory effect of any compari
son stimulus can exceed 200, but the probability of this happening increases as its 
physical magnitude increases. The resulting proportions of yes responses ('1') for the 
seven stimuli were 0.07, 0.17, 0.35, 0.53, 0.66. 0.87, and 0.94, as plotted. The impor
tant point to remember is how sensory noise can cause physically unchanging stimuli 
to vary over trials. 
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Difference Thresholds 

Defining u difference threshold (1ND) is a bit trickier when the subject compures two 
stimuli in order to detennine which is of the greater magnitude. The cOITesponding 
point at which the psychometric function is .5 describes the comparison stimulus per
ceived as equal to a standard half the time, not the threshold. This is called the point of 
subjective equality. Its value need not match the physical magnitude of the standard 
(the point of objective equality). For example, suppose the standard and comparison 
stimuli in Fig. 2-2b were weights of different density, e.g., were lead versus wood. A 
200-gram lead standard stimulus would obviously be much smaller than a ZOO-gram 
wood comparison, and so there might be an illusory difference in weight. The two 
weights might have to differ in physical magnitude to appear equal. 

The "interval of uncertainty" is that range of stimulus differences for which judg
ments can "go either way" and is usually taken from .25 to .75 on the function, as il
lustrated in Fig. 2-2b. The concept also applies to absolute thresholds, even though 
that is not depicted here. The difference threshold (not presented in the figure) is usu
ally defined as half this interval of uncertainty, again by convention. The key to both 
types of threshold is the varied psychological effect of a fixed physical stimulus due to 
sensory noise. 

It is possible to simulate a difference threshold in a manner similar to the absolute 
threshold. However, sensory noise would affect both the standard and the comparison. 
Although this might seem to decrease subjects' ability to make judgments, this need 
not be the case. The covariance (or correlation) between the two noise sources is also 
important for reaSons that will become clear when we consider the logic Thurstone 
(1928) used to develop his discriminant model. 

The Weber Fraction, Fechner's Law, and Psychophysical Scaling 

E. H. Weber noted an important property of the JND which was the main stimulus to 
Fechner's subsequent ideas-its magnitude is proportional to the standard against 
which it is derived. Subsequent research indicates that his findings are a good first ap
proximation for a wide variety of sensory dimensions as long as the standard is not ex
tremely weak or strong. Thus, suppose he found that a I.OS-gram weight was just no
ticeably different from a I-gram standard weight so that the JND was 0.05(1.05 - 1) 
grams. The Weber fraction is the JND divided by the magnitude of the standard (ctl), 
or 0.05/1 or 0.05 in this particular case. Weber's results were that a lO.S-gram compar
ison stimulus was just noticeably heavier than a 10-gram standard, a lOS-gram com
parison was just noticeably heavier than a lOO-gram standard, etc. His results may be 
generally stated as .1<t>/ctl equals a constant where ~q, is the physical magnitude of the 
JND associated with a given ctl. 

Suppose that Weber's law had held exactly, a L.O-unit standard was also the ab
solute threshold, and the fraction was 0.05. A L.OS-unit comparison will be 1 JND 
more intense than this standard. Now, let the resulting I.OS-unit stimulus become a 
new standard. A 1.10, i.e., l.05( 1 + 0.05) unit comparison will be just noticeably 
more intense. Keep repeating the process of obtaining a stimulus that is 1 JND more 
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intense by mUltiplying by 1.05 and use it as the next standard. The resulting values 
will be 1.16, 1.22, 1.28, 1.34, ... , to two decimal places. It does not matter what type 
of stimulus is being judged. 

Fechner made what in essence is a simple yet dramatic (and controversial) proposal: 
Let each of these steps, separated by a IND, define equal units on an interval scale of 
sensation. A corollary is that one can speak of two stimuli in terms of how many INDs 
separa.te them-2.3, 0.5, or whatever. Mathematically, this relationship can be ex
pressed as Eq. (2-1), which is called Fechner's law: 

~ = b 10g(<P) + Cl 

where 'P = scale value of the sensation (apparent magnitude) 
<P ;;:: physical magnitude 

b, a ;;:: scaling constants 

(2-1) 

Neither scaling constant is important to our discussion; a is commonly chosen to 
make 'P = 0 when ~ is at threshold, but this is usually not viewed as a rational zero in 
the ratio scale sense. Figure 2-3a depicts Fechner's law. Unlike Figs. 2-1 and 2-2, val
ues of ~ need not fall near threshold. The relation appUes to the entire physical dimen
sion (CP) and is known as global psychophysics. 

Logarithmic functions have several important characteristics. The one particu
larly important for our purpose is that equal physical ratios yield equal sensory 
differences. Suppose stimuli a, b, c, and d are, respectively, 10, 20, 100, and 200 
grams. Since alb = c/d, a and b are just as many JNDs apart from each other as 
are c and d. 

Fechner'S methods are called indirect methods because subjects do not define 
sensory magnitudes directly, and discriminant methods because they concern the 
subject's ability to discriminate. They are also called confusion methods because 
scale values require that stimuli generally be confusable with one another in magni
tude. 

Direct Psychophysics and the PlateaU/Stevens Tradition 

Coren and Ward (1989) described a test of Fechner's law made by Plateau in 1872. He 
had artists mil{ black and white pigments to make a gray appear midway between the 
two. Fechner's law predicts that the gray's intensity should be the average of the 
black's intensity and the white's intensity. Plateau obtained a systematic departure in 
that the grays fell near the cube roots of the two other intensities. Four important 
things about Plateau's research and Stevens' (1951, 1956. 1975) subsequent exten
sions are that (1) unlike Fechner's approach, subjects respond directly through subjec
tive estimates; (2) equal physical ratios provide equal sensory ratios and not differ
ences with these subjective estimates; (3) equal numbers of JNDs between different 
pairs of stimuli are not equal appearing, the emphasis is upon global and not local psy-
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FIGURE 2-3 (a) Fechner's logarithmic law for indirect psyohophysics, (b) Stevens' power law for direct 
psychophysics with an exponent a = 1. 

chopbysics. Point 2 may be stated as Eq. 2-2, called Stevens' law, since he examined it 
so thoroughly, or the power law from its mathematical form: 

where 'P = scale value of the sensation (apparent magnitude) 
4> = physical magnitude 
b = scaling constant 

(2-2) 

The a parameter is more complex. It describes the sensory ratio associated with the 
pbysical ratio of two stimuli that differ along the physical dimension in question, <II. 
Let the two stimuli be x and y. their associated sensory ratio be '£I ~/'¥ Y' and their phys-
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FIGURE 2-3 (e) Stevens' law with an exponent a < 1, and (d) Stevens'law with an exponent a :> 1. 

ical ratio be 1'1)1(/l'1)y. If the two are the same C¥ J'¥, = 1'1)1(/(f},), the relatj.on is linear; 
a = 1. For example, doubling the duration of a noise also makes it appear to last twice 
as long. However, the sensory ratio is smaller than the associated physical ratio for 
most dimensions (,¥z/'¥, I'1)I('IP,), and so a < 1. The brightness (apparent intensity) of 
many light sources increases only as the cube root of the change in physical intensity. 
This means the physical intensity of two lights must be in an 8: 1 ratio for the more in
tense light to appear twice as bright. Finally, a few sensory ratios are larger than their 
associated physical ratios ('I' J'¥, > 1'1)/¢),), and so a > 1. If one electric shock is physi
cally twice as powerful as another, it will actually appear more than 10 times as intense. 
Stevens and his associates devoted many years to a thorough study of different sensory 
modalities. In particular, Stevens (1961) "cataloged" the exponents of various dimen
sions. Figure 2-3b through 2-3d depict these three outcomes (a = I, a < 1. and a > 1). 
Note that even though the function for a < 1 resembles Fechner's law in being concave 
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downward, the two are quite different. Data fitting Fechner's law become linear when 
the abscissa, but not the ordinate, is logruithmic (semi log graph paper), and data fitting 
a power law become linear when both axes are logarithmic (log-log graph paper), re
gardless of the magnitude of the exponent. The slope of the line in the latter case de
fines the magnitude of the exponent. Although Fechner and Stevens' laws were once 
regarded as competitors (investigators commonly asked which one was "right"), it is 
now generally recognized that the '¥ of Fechner's law for discrimination need not be 
the same as the '¥ of Stevens' law for subjective estimates, and so there need be no in
compatibility. Indeed, the tWO would be completely compatible if Stevens' '¥ were the 
logarithm of Fechner's (Luce. 1963). 

Stevens also developed several methods for inferring the exponents and showing 
that any given estimate was not an artifact of a single method; i.e .• he used converging 
operations as defined above. The most commonly used of these methods are the fol
lowing: 

1 Ratio production. A subject is shown a standard stimulus and is then asked to ad
just a comparison so that it appears in a specified ratio to the standard. The simplest 
and most common ratio is 2: 1, so that the subject is asked to make the second stimulus 
appear twice as intense. If, for example. the comparison has to be physically four 
times as intense. the ratio (a) will be .5. However, the subject might also be asked to 
make the second stimulus three times as intense. 

2 Ratio estimation. The subject is shown standard and comparison stimuli and 
asked to define the ratio of their apparent intensities. Thus, they might report that a 
comparison tone is 1.5 times louder than a standard tone. 

3 Magnitude estimation. The subject is shown a single stimulus and simply asked 
to define its magnitude numerically. Usually. subjects are also shown a different stimu
lus. called the modulus, which is given an assigned value to fix the units of the scale, 
making it somewhat similar to ratio estimation. 

4 Bisection. As in Plateau's experiment. subjects are shown two stimuli and asked 
to adjust a third so that it appears midway between the first two. Unlike other subjec
tive estimates. bisection requires interval rather than ratio judgments. 

5 Cross-modal matching. The subject is presented a stimulus in one modality and 
asked to adjust a stimulus in another modality to apparent equality. For example, the 
task might be to make a tone appear as loud as a light is bright. As bizarre as the task 
may seem, the exponent relating the two modalities is predictable from the exponents 
inferred from the other tasks. For example, the sweetness of a sucrose solution and the 
apparent thickness of wood blocks both have exponents of about 1.3. Suppose a given 
sucrose solution is matched with a given thickness. Then the concentration of the su
crose is then doubled. According to Stevens' power law, the matching wood block 
should seem twice as thick, which it does. 

In all methods, the procedure is repeated with different stimuli in order to deter
mine the consistency of the exponent. 

Although it is not associated as strongly with the Stevens tradition as the above. the 
method of equal-appearing intervals (category scaling) also tends to fit Stevens' power 
law (Marks, 1974; Ward, 1974). Subjects simply sort stimuli into categories so that the 
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intervals betw.een category boundaries appear equal. In particular, the sensory differ
ence between the upper and lower boundaries of each category should be the same. 

The Fullerton-Cattell Law 

The Fullerton-Cattell (Fullerton & Cattell, 1892) law is a basic link between Fechner
ian indirect psychophysics and psychometrics in general. It states, simply and eupho
neously, that equally often noticed differences are equal unless always or never no
ticed. This is certainly true in the psychophysical case since the unit (the JND) is 
defined by equally often noticed differences. The significance of the Fullerton-Cattell 
law is that it does not depend upon how the stimuli differ or on the basis of the judg
ment. In particular, the ">" relationship that meant brighter, heavier, or louder above 
can also mean "is more preferred," among other things. If you prefer bananas to apples 
75 percent of the time and apples to pears 75 percent of the time, the distance between 
apples and bananas and the distance between apples and pears may be assumed equal; 
i.e., apples are at the midpoint of a scale defined by these three stimuli. The "always or 
never" part is simply a caveat that one cannot draw inferences when there is no confu
sion over trials: If you always prefer bananas to apples and always prefer apples to 
pears, their relative distances cannot be inferred from these data alone. However, if 
you sometimes prefer plums over each and sometimes not, a scale can be constructed. 

Signal Detection Theory and Modem Psychophysics 

In early studies of the absolute threshold, a stimulus was always presented. Subjects, 
who were often also the investigators, typically knew this but were trained at analytic 
introspection to report their sensations and to ignore this knowledge. Sometimes, how
ever, the equipment would malfunction and fail to produce a stimulus, but subjects 
might say "Yes, I saw (heard, felt, etc.) it," thus committing the stimulus elTOr by re
sponding on the basis of their conceptions of the stiml1lus rather than the sensation it
self. Gradually, "catch" trials were regularly used to "keep subjects on their toes," but 
no systematic use was made of the data obtained on these trials since the purpose of 
the experiments was to measure sensations. 

Measuring sensations was the exclusive goal of nineteenth-century psychophysical 
research and is often a valid goal today, but it is not the only goal. Reflecting a variety 
of factors such as the behavioristic rejection of menta! states like sensations, much of 
psychophysics eventually became concerned with subjects' ability to discriminate the 
presence of stimulation from its absence. A particular tradition emerged known as the 
theory of signal detection (TSD) (Egan, 1975; Green & Swets, 1967; Macmillan & 
Creelman, 1991; Swets, 1986a, 1986b; Swets, Tanner, & Birdsall, 1961; Tanner & 
Swets, 1954). It bears a close kinship to Thurstone scaling, and we will consider it in 
more detail in Chapter 15. For the present, it is most important in helping to illustrate 
the difference between the classical psychophysics of judging sensations and the more 
modem emphasis upon accuracy of discrimination. 

TSD has proven particularly important because of its emphasis upon assessing re
sponse bias or differential Willingness to use the response alternatives independently 
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of sensitivity or accuracy at discrimination. Threshold measures using psychophysical 
procedures derived from Fechner are particularly influenced by a subject's wi11ingness 
to report having sensed tbe stimulus. A practical example of a response bias involves 
the diagnostic accuracy of two clinicians who See the same set of patients. Clinician A 
correctly diagnoses 90 percent of the patients determined to have a given disorder on 
the basis of some appropriate method, but clinician B diagnoses only 80 percent of the 
patients correctly. Does this mean that clinician A is the better diagnostician? The data 
are insufficient since only their hit (true positive) rates in identifying those who have 
the disease are known. We also need to know the false alarm (false positive) rates of 
diagnosing nomals as having the disease. Perhaps clinician A has a false alarm rate of . 
90 percent, in which case he or she is just blindly guessing the presence of the disease 
in 90 percent of the population. If this is true and if clinician B's false alarm rate is less 
than 80 percent, cHnician B could be the better. 

TYPES OF STIMULI AND RESPONSES 

Endless distinctions could be made about stimuli and responses that are important to 
psychometrics, but we wi.ll consider only the most important. Most are derived from 
psychophysics. 

Judgments versus Sentiments 

Although no two words perfectly symbolize the distinction, the distinctions between 
what we call "judgments," where there is a correct response, and "sentiments," which 
involve preferences, is very basic. There are correct (veridical) versus incorrect an
swers to "How much is two plus two?" and "Which of the two weights is heavier?" 
There may also be degrees of correctness, as in line-length judgments of visual illu
sions. In contrast, sentiments cover personal reactions, preferences, interests, attitudes, 
values, and likes and dislikes. Some examples of sentiments include (0 rating how 
much you like boiled cabbage on a seven-category Likert scale, (2) answering the 
question, "Which would you rather do, organize a club or work On a stamp collec
tion?" and (3) rank-ordering 10 celebrities in temlS of preference. Veridicality does 
not apply to sentiments-a subject is neither correct nor incorrect for preferring 
cbocolate ice cream to vanilla ice cream. This distinction is very close to the differ
ence between making discriminations in TSD and reporting sensations in classical 
psychophysics. Judgments also tend to be cognitive, involving "knowing," whereas 
sentiments tend to be affective. involving "feeling." 

Ability tests nearly always employ judgments regardless of whether an essay, short
answer, multiple-choice, .or true-false format is used. Coversely, tests of interests in
herently concern sentiments as the subject identifies liked and disliked activities. Atti
tudes and personality measures can use either fonn. Items like "Do you like going to 
parties?" involve sentiments, but items like "How often do you go to parties?" are es
sentially judgments. The distinction may be obscured because the perceived frequency 
may reflect preference as well as actual frequency. 

Social desirability may bias sentiments in the signal detection sense so that the pop-
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ularity of socially endorsed behaviors may be overestimated. This is less likely to be a 
problem with judgments. However, the internal consistency or extent to which items 
measure the same thing is important to both. Temporal stability or the e.ttent to which 
the measure tends to remain the same over time mayor may not be important. Chap
ters 6 through 9 consider how these statistics are obtained. In general, the logic of 
using judgments is generally clearer than the logic of using sentiments because of ad
vantages inherent in having a correct response. Other terms are frequently employed 10 

describe these two categories. Goldiamond's (1958) distinction between what he 
called "objective" and "subjective" indicators of perception corresponds in essence to 
the judgment-sentiment distinction. The word "choice" is frequently used in place of 
the word "sentiment." 

Absolute versus Comparative Responses 

In general, an absolute response concerns a particular stimUlUS, whereas a comparative 
response relates two or more stimuli. The distinction applies to both judgments and 
sentiments. ''How many concerts have you been to' in the past year?" versus "Rave 
you been to more concerts than movies in the past year?" illustrates this distinction for 
judgments. Likewise, "Do you like peas?" versus "Do you like peas more than you 
like com?" involves sentiments. 

One of psychology's truisms is that people are almost invariably better (more con
sistent andlor accurate) at making comparative responses than absolute responses. This 
is because there is a frame-of-reference problem present to at least some extent in ab
solute responses that is avoided in comparative responses. Asking a consumer ''Is this 
cola sweet?" raises the question of how sweet is sweet that is avoided when one is 
asked to judge which of several colas is the sweetest since the criterion of sweetness 
can be applied equally to all colas. One possible application of this principle is in abil
ity testing. If there are no "none of the above" or "all of the above" alternatives, 
multiple-choice tests are comparative judgments of the relative truth of the alterna
tives. We suggest (and some disagree) that these alternatives be avoided because they 
compromise the comparative nature of the test by asking whether none or all of the 
other alternatives are true in an absolute sense. Similarly, true-false tests are absolute 
judgments of the truth or falsity of a single item, and we suggest the use of multiple
choice questions for this and other reasons to be considered. 

People rarely make absolute judgments in daily life, since most choices are inher
ently comparative. There are thus few instances in which it makes sense to employ ab
solute judgments. One important exception is when absolute level is important, as in 
attitudes toward various ethnic groups. A subject could, for example, rank various 
groups from most to least preferred. However. the subject may dislike all the national 
groups or like them aU, which would not be apparent from the comparative rankings. 
Absolute responses are especially important when some ~dicator of neutrality is need
ed. For example, people who are more neutral with respect to candidates in an election 
are probably more susceptible to influence and change than those who have a clear 
preference. By requiring absolute responses from subjects, one is able to approximate 
a neutral point. 
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Another case in which it makes sense to phrase items in absolute tenns is when the 
inherent ambiguity of absolute judgments is of interest. For ex-ample, the MMP[ con
tains several items like "f often have headaches" und "I frequently have trouble falling 
asleep." A psychologist is probably not actually interested in the actual frequency Qf 
headaches or sleepless nights. If he or she were, more objective tests could be devel
oped through clinical observation. The issue is how the patient interprets words like 
"often" and frequently." Absolute judgments are perfectly appropriate in that case. 

Absolute responses are also uset'ul because they are much easier and faster to ob
tain than comparative responses. For example. the method of paired comparisons is an 
extremely powerful way to gather data. A market research example could involve 
preferences among K brands of cola. The subject is given two brands in succession 
and asked to state a preference. This is repeated for all possible pairs of brands. Unfor
tunately, this requires anywhere from K(K - 1)/2 pairs (if a given brand is presented in 
only one of the two possible positions in the pair) to K2 pairs (if all brands appear in all 
orders and a given brand is paired with itself). The number of comparisons increases 
rapidly with K. For example, if there are 20 brands in the study, from 190 (20)(19/2) to 
400 (202) trials are required per subject. However, it is much quicker to have subjects 
rate each brand individually. Any of several scaling models can be used to obtain 
interval estimates of preference from each cola's average rating over subjects. Con
versely, paired comparison methods generally give much more reliable results when 
applicable. 

To the extent that a person answering an item phrased absolutely has a criterion to 
define tenns like "frequently," "seldom;' or "hardly ever," the judgment becomes part
ly comparative. Individuals generally have feelings about their absolute liking for an 
object or activity, but such sentiments are influenced by the range of objects or activi
ties available. An individual who rates how much they like boiled cabbage probably 
thinks "What else is there to eat?" Differences among subjects and/or time contribute 
to unreliability. However, temporal instabilities can be of interest in themselves (Spiel
berger, Gorsuch, Lushene. 1970). 

If an absolute fonnat is appropriate, anchoring by specifying the meaning of the re
sponse scale is generally important to reducing unwanted error due to differences in 
implicit bases. of comparison. For example, instead of simply asking subjects to rate 
how often they go to the movies on a five-point scale, indicate that 1 means once a 
month or tess, 2 means at least once a month. etc. (the actual anchors should be devel
oped by pretesting). Similarly, if a pretest reveals that subjects nearly always answer 
the question "I absolUtely adore rutabagas to the point that I must eat them daily" 
causes everyone to respond in the negative. change the anchor to favor a higher inci
dence of positive responses, such as "I would eat rutabagas if they were served to me." 
Not all situations demand anchors. as in the MMPI example where the ambiguity was 
intentional. 

Preferences versus Similarity Responses 

Different methods are required to study responses denoting which stimuli are preferred 
versus most similar. Preference responses are also known as dominance responses. Ex-



CHAPTER 2: TRADITIONAL APPROACHES TO SCALING 53 

amples of these responses (which are nearly always sentiments) include which stimu
lus is most liked, tastes best, is least filling. would be most likely purchased, etc. Simi
larity responses denote which stimuli are most like one another. Preferences are clearly 
asymmetric; preferl"ing A to B means not preferring B to A. In contrast, similarity re
sponses are normally symmetric-saying A is similar to B implies that B is similar to 
A (Chapter 15 will consider an interesting exception). Thurstone scaling, described 
below, requires preferential dura. However, the most common methods of analysis, 
(e.g., factor analysis. and multiple and partial correlation) require similarity data be
cause they are based upon the ordinary Pearson correlation coefficient (Chapter 4), a 
measure of similarity rather than preference. 

specified versus Unspecified Attributes 

By definition, psychophysical responses are obtained with respect to an attribute de
fined by the experimenter. This may also be the case when the attribute is not a single 
physical dimension. For example, a marketing study may ask which of several pack
ages differing in height, width, and depth looks largest even though all contain the 
same volume. Conversely, subjects may be asked to evaluate similarities or prefer
ences among stimuli without being told in what respect. If the stimuli clearly differ in 
a Single, dominant respect, instructions may be unnecessary. However, if the stimuli 
are multidimensional. the goals of the experiment dictate whether or not some particu
lar attribute should be specified. The study' may concern bow well subjects ignore a 
given attribute, so that it is important to tell him or her which attribute is critical. On 
the other hand, subjects should not be told, implicitly or explicitly, if the goal is to find 
out which actual attributes subjects actually use. 

METHODS FOR CONVERTING RESPONSES TO STIMULUS SCALES 

Ordinal Methods 

Fechnerian methods, which provide ordinal data, Stevens' methods, which provide in
terval or ratio data are applicable outside the confines of psychophysics. Keep in mind 
that the level at which data are gathered may well ,differ from the level of the resulting 
scale, particularly for Fechnerian methods. Scaling models often take data obtained at 
one level and transform it to a higher level. most specifically to produce an interval 
scale from ordinal data. Of course, data gathered at a ratio level need not be trans
formed. One part of successful scaling involves choosing an empirical procedure that 
is appropriate to the subjects' ability to respond; another part: is to use a scaling model 
appropriate to the resulting data. 

In general, the simplest way to obtain ordinal data is the -method of rank order 
in which subjects rank stimuli from "most" to "least" with respect to the specified 
attribute. 

In the A-B-X method, subjects are presented with stimuli A and B followed by a 
third stimulus (X) which is either A or B. The subject is asked to say whether X is A 
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or B. The process is repeated, comparing all pairs of stimuli. The probability of con
fusing any two stimuli is an ordinal measure of their similarity. This method is particu
larly useful in scaling stimuli that are difficult to describe. For example, suppOse 
Alpha Cola and Beta Cola are fairly similar in taste, but both differ somewhat from 
Gamma Cola. Subjects' A-B-Xjudgments may be only 60 percent correct when Alpha 
and Beta are paired (50 percent is chance), but 80 percent correct when Alpha and 
Gamma are paired and 85 percent correct when Beta and Gamma are paired. 

In contrast, the method of triads uses three different stimuli which may all be high
ly discriminable from one another and asks which two are most similar. For example, 
the subject might taste string beans, lima beans, and green peas. It is probable that lima 
beans and green peas would be found to be the most similar pairing. The data obtained 
from all possible triads in a larger set (the number of combinations of K things taken 
three at a time) provide similarity rankings. 

In the method of successive categories, the subject sorts the stimuli into distinct 
piles or categories that are ordered with respect to a specified attribute. For example, 
subjects could sort the U.S. presidents into five piles ranging from "very effective" to 
"very ineffective." This information can be obtained most easily by having the sub
jects mark a printed rating scale. This method has many variants depending on the in
formation sought by the experimenter. If the experimenter is seeking only ordinal in
formation, the subject may be allowed free choice as to the number of stimuli per 
category and number of categories. In contrast, the categories may be constrained to 
appear equally spaced in the method of successive categories. Sometimes, subjects are 
required to place an equal number of stimuli in each category. Perhaps the most impor
tant variant is the Q sort where subjects sort the stimuli so that the distribution of stim
uli in successive piles forms a normal distribution. These methods necessarily provide 
numerous tied ranks. Thus if stimuli are placed in a series of categories, those in the 
first category can be thought of as tied for the top rank. Averaging over subjects elimi
nates most of these ties. 

The primary methods used to obtain interval data from subjects are variations upon the 
method of successive categories and Stevens' methods of bisection. This involves in
structing the subject to use the scale as though the distances between successive cate
gories were the same; e.g., the difference between a rating of 2 and 4 is equal to the 
difference between a rating of 6 and 8. Frequently anchors are also employed. For ex
ample, pleasantness could be anchored with adjectives ranging from "extremely pleas
ant" to "extremely unpleasant." Rating anchors also may be expressed as percentages 
to further ensure the interval nature of the responses so that subjects can be asked what 
percent of the general population they feel agrees with each of a series of statements. 

The method of bisection may be applied outside psychophysics as follows. Subjects 
may be given two statements differing in how favorable they are toward the President 
and asked to select another statemem from a list that falls closest to halfway between 
them. Rather than bisecting the distance between the two stimuli. other ratios may be 
used, as in psychophysics. For example, subjects may be asked to select a stimulus X 
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such that the interval between one of two fixed stimuli and X appears twice as great as 
the distance between the two standards. Another approach is to present subjects with 
two stimuli that are at the extremes of the attribute and have them judge the ratio of in
tervals fonned when a third stimulus is inserted. 

In all these methods, the subject evaluates intervals of judgment or sentiment. Even 
though he or she may describe 1: I ratios in the method of bisection. these ratios are 
not formed with respect to the absolute magnitudes of the stimuli as in ratio scaling. 
The experimenter might eventually use a scaling model to obtain these absolute mag
nitudes, but it is important to maintain the distinction between what the subject is re
quired to do and the experimenter's use of the data in a scaling model. 

Ratio methods require subjects to evaluate the absolute magnitudes of stimuli. For ex
ample, subjects may be given the name of a food liked moderately well by most peo
ple and asked to name a food liked twice as mUch. half as much, etc. Note that in ratio 
production, the subject generates the actual stimulus, unlike in other ratio methods. 
This may be somewhat difficult outside psychophysical applications. 

If a zero point can be taken seriously, previously described percentage scales can be 
employed for ratio estimation. For example, subjects might rate the complexity of 100 
geometric forms. The stimulus rated as most complex in pilot research is used as a 
standard, and the other stimuli are rated in relation to thi~ standard on a percentage 
scale. If the least complex fonn is rated at 20 percent, its scale value will be .20, where 
the standard is 1.0. These ratio scales closely resemble scales obtained from more di
rect ratio estimation methods (Stevens, 1951, 1958, 1960). 

Interval and ratio estimation methods may appear superficially similar. For exam
ple, choosing a stimulus that is halfway between two others (bisection) seems similar 
to choosing a stimulus that is twice as great as another (ratio production). In both 
cases, the subject forms two equal-appearing intervals. The important difference be
tween these two methods is that the lower interval is bounded by a phenomenal zero in 
ratio production. The subject is essentially required to form an interval between two 
stimuli that is equal to the interval between the less intense stimulus and zero. More
over, if subjects are sophisticated enough to provide interval judgments, they can also 
usually provide ratio judgments, making interval methods somewhat unnecessary. 

MODELS FOR SCALING STIMULI 

The next step in scaling is to generate an ordinal, interval, or x:atio scale as desired. 
The models considered in this chapter are considered classical primarily because they 
have been available for a long time. They may also be considered classical because 
they provide relatively simple closed-form solutions and therefore do not require a 
computer (in practice, computers would probably be used), In contrast, modem psy
chometrics, considered in Chapter 10, usually requires open-form estimation. 

Ordinal scales do not require complex models, and the various methods of gather
ing data and scaling usually produce the same rank ordering. In general, simply aver-
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age individual subjects' ranks and rank-order the average of these ranks. This final set 
of ranks is the desired ordinal scaling of a modal subject. 

In paired comparison methods. the first step to detennine the percentage of subjects 
that rate each stimulus as being higher on the particular response dimension than each 
of the other stimuli. Thus. each of 10 stimuli produce 9 percentages comparing that 
stimulus to the rest. The full data from the group of subjects are summarized by a 
square matrix containing all possible percentages of paired comparison preferences. 
These percentages are summed for each stimulus (column of the matrix). and these 
sums are then ranked from highest to lowest. 

Formal scaling models are more important in constructing interval (the more com
mon situation) or ratio scales. The remainder of this section will consider models used 
for these purposes. They fall into two broad classes of models paralleling the distinc
tion between Fechnerian indirect (discriminant) methods and Stevens' direct (subjec
tive estimate) methods. Stevens' approach will be discussed first because it is simpler. 

Direct (Subjective Estimate) Models 

Direct models are usually close to the data because the experimenter takes the sub
ject's interval responses (e.g., bisections or ratio responses, magnitude estimations, 
ratio estimations, ratio productions) seriously. Often, the experimenter needs only to 
average responses over repeated measurements of one individual to obtain an individ
ual scale or. more commonly, over subjects in a group to obtain a group scale. The 
Stevens tradition, like the Fechner tradition, recognizes variability from sensory noise 
but simply as error rather than as an intrinsic part of scaling. 

One example is to use the aforementioned method of equal-appearing intervals. 
Subjects might sort 100 occupations into 10 successive categories ranging from least 
to most prestigious. The subjects are instructed to treat the to numbered categories as 
an interval scale. Error is minimized by averaging judgments over subjects or occa
sions. Thus "psychology professor" may be rated 9, 9, 8. and 8 by four subjects. This 
yields an average rating. and therefore a scale rating. of 8.5 on the interval scale. Mea
surements are obtained in a like manner for the 99 remaining occupations. This scale 
may then be used in any situation requiring an equal-appearing interval scale, e.g., to 
study the relation between job prestige and job satisfaction. A ratio scale can be 
formed in a like manner using ratio production. For example, one occupation (e.g., 
dentistry) can be anchored at 50 and subjects asked to rate others as ratios relative to 
this norm. See Stevens (1958. 1960) and the Suggested Additional Readings for fur
ther details. It is important to test the assumption that the subjects are behaving consis
tently. One important statistic is the internal consistency reliability (homogeneity) of 
the data. Chapters 6-8 will illustrate the process. 

Indirect (DiSCriminant) Models 

Although the logic traces back to Fechner, Fullerton, Cattell, and others, L. L. Thur
stone's law of comparative judgment (Thursrone, 1928) is the foundation of modem 
discriminant models. This law takes on numerous forms depending upon more specific 
assumptions. We will consider only the basic ideas and stress the single most popular 
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model. A more complete discussion may be found in Bock and Jones (1968), Guilford 
(1954), and Torgerson (1958). The law of comparative judgment leel to signal detec
tion theory and general recognition theory (Ashby & Townsend, 1986; Ashby & Per
rin, 1988, see Chapter 15). 

Although the same computational procedures can be applied to testing one individ
ual repeatedly by pooling individual data, we will illustrate the logic here with the 
classic example of how One individual's subjective rank orderings can be "brought 
into the open" as an interval scale. Any stimulus is assumed to yield a discriminal 
process with respect to a specified attribute. The "discriminal process" is simply a 
broadly defined reaction which correlates with the intensity of the stimulus on an inter
val scale for an attribute. Because of what is equivalent to sensory noise, each stimulus 
has a discriminal distribution (discriminal dispersion) which reflects the variation in 
response to that stimulus. The model assumes the phi-gamma hypothesis by assuming 
reactions to a given stimulus are nonnaily distributed, as shown in Fig. 2-4. 

These distributions and the attribute continuum on which they fall, most simply 
caned a "strength axis," are entirely hypothetical. Unlike psychophysics, the experi
menter cannot locate the stimuli directly on the attribute-any model would be 
unnecessary jf this could happen. Only after the experimenter makes a series of 
assumpions about what is going on in the subject's head and about the statistical rela
tionship of such covert reactions to the hypothetical dimensions can a suitable model 
be formulated. . 

The mean discriminal process (reaction) to each stimulus is the best estimate of the 
scale value of that stimulus in several senses, such as most likely and least squares 
(see Chapter 4). If all stimulus means were known, an interval scale would complete 
the scaling probl~m, which is unfortunately not directly possible. They must be in
ferred from the subject's responses. Each of several variants upon the basic model 
make somewhat different assumptions about the nature of these discriminal processes. 
The standard deviations depicted in Fig. 2-4 are unequal, and so some stimuli are more 
variable than others. Because this'is a discriminant model. the dis criminal processes of 
at least some stimuli must overlap measurably. If the discriminal distribtion of any 
stimulus does not overlap with any of the others, its interval location cannot be deter
mined. The major assumptions and deductions of the general model are as follows: 

1 DenoLe the covert discriminal responses to stimulus j as fj. and the covert dis
criminal responses to stimulus k as rk' 

FIGURE 2-4 Discriminal distributions of three stimuli which fall at progressively higher points along the 
strength axis and are also progressively more variable. 

SlI10IIgth of ullribu,o 
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2 The means of these discriminal responses. I) and i\. are the best estimates of their 
respective scale positions. That is, if each stimulus' discriminal processes could be de
termined directly, its mean (arithmetic average) would be the best estimate of a typical 
reaction and therefore its location on the interval scale of judgment or sentiment. 

3 The overlap in discriminal distributions causes the difference in response to the 
two stimuli, rd = rj - rk, to be positive on some trials and negative on others, producing 
the varied response to fixed stimuli that is necessary in discriminant models. In the 
present case, there is variation in the perception of difference. Understanding distribu
tions of difference scores is absolutely cluci.al to understanding discriminant models 
used in comparisons. By analogy, two weight lifters each vary in their skill because of 
a variety of random factors. The varied amounts of weight they lift at a competition 
produce distributions analogous to those in Fig. 2-2. Heavier weights quite literally 
mean greater strength. One lifter may be better than the other on average. However, if 
their abilities are sufficiently similar, their distributions will overlap; the weaker ath
lete may sometimes lift a heavier weight than the better athlete. One could subtract the 
weight of the poorer lifter from the weight of the better lifter in any competition to ob
tain a difference score. Most of these differences will reflect the fact that the poorer 
lifter cannot lift as heavy a weight as the better lifter. It is perfectly proper to place 
these difference scores into a frequency distribution which summarize the overlap of 
the two separate distributions. In this case, the weights can actually be scaled directly, 
but this is the exception. 

4 Because the individual discriminal processes rj and rk are assumed to be normal
ly distributed. the distribution of their difference, rd = 1j - rio will also be normally dis
tributed. This distribution of differences is illustrated in Fig. 2·5. The shaded area is 
proportional to the percentage of times stimulus j is judged greater than stimulus k, 
and vice versa for the unshaded area. Note that the mean (rd) is positive. This is be
cause the mean discriminal response to stimulus fj ('j) is greater than the mean dis
criminal response to rk ('0; consequently, the majority of the differences (the shaded 
portion) are positive rather than negative. 

S The mean of the differences between responses to the two stimuli on numerous 
occasions, rd =='j - rio is the best estimate of the interval separating the two. Although 
this mean cannot be estimated directly because it is entirely hypothetical, Thurstone's 

FIGURE 2·5 Distribution of dlscrlminal differences for two stimuli, j and k. where j is ordinarily preferred to k. 
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law of comparative judgment allows it to be estimated from paired comparisons as fol
lows. 

6 Ask a subject to state whether stimulus j is greater or less than stimulus k with 
respect to an attribute. Denote the proportion of times j is judged greater as PJ>k' 

7 Neltt. assume that discriminal differences are normally distributed with a mean 
of I'd and a standard deviation of 1.0. The zero point will fall to the left or to the right 
of the mean depending on which stimulus is more frequently judged greater with re
spect to the attribute. Convert P]>k into a corresponding number of standard deviation 
units from a table of the normal distribution. If, for example, j is judged greater than k 
92 percent of the time (Pj>k = .92), the corresponding nonnal deviate (ZjJ is approxi
mately 1.4. This implies that the zero point is 1.4 standard deviations below the mean. 
More importantly, rd = ?j - ric is 1.4 standard deviations above 0, which moves us 
close to a solution. . 

8 With rd = rj - ric expressed in standard deviations units, all that needs to be done 
is to express I'd in terms of the actual standard deviation of the dispersion of discrimi
nal differences. This is necessary because the standard deviations of discriminal differ
ences might differ for differem pairs of stimuli. In the above analogy to weight lifters, 
this would bappen if some lifters are more consistent than others. If that occurs, two 
pairs of stimuli separated by the same mean distance could be separated by different 
scale distances. Thus even if Zjt and Zjlc are the same, the standard deviations of the 
discriminal differences might require different intervals. 

9 The standard deviauon of the dispersion of discriminal differences can be ex
pressed in the same way as the standard deviation of any set of difference scores. The 
formula is 

(2-3) 

where O"d = the standard deviation of discriminal differences 
O"j and 0"1c = the respective standard deviations of discriminal distributions for stimulij 

andk 
rjk = the correlation between the discriminal distributions of the two stimuli 

The standard deviation of the distribution of discriminal differences thus involves 
the standard deviations of the two dis criminal distributions and the correlation 
between them. A correlation that differs from zero implies that the sensory noise 
components of the two discriminal processes are correlated over trials. Note that pos
itive correlations reduce the magnitudes of discriminal dispersions. This is in fact the 
norm. For example, people vary in how highly they rate all the stimuli on the covert . 
continuum. Thus, if people made absolute responses to the stimuli, one person might 
like all of the stimuli and rate them highly, and a second person might feel the con
verse. However, the process of comparison eliminates this difference. This is one 
reason why comparative judgments are more consistent (reliable) than absolute judg
ments. 

10 The interval separating two stimuli is obtained from the standard deviation of 
the distribution of discriminal differences using Eqs. 2-4: 
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(2-40.) 

(2-4b) 

Equations (2-4) multiply the normal deviate by the standard deviation of the distri
bution of discriminal differences between the two stimuli. This allows the proper inter
val to be found on the underlying measurement scale. These equations define the 
"complete law of comparative judgments." Their use requires knowledge of (I) the 
proportion of times each stimulus is judged greater than another with respect to an at
tribute, (2) the standard deviation of discriminal dispersions for the two stimuli, and 
(3) the correlation between the two discriminal distributions. 

Information is rarely obtained about all three of these statistics; consequently, some 
simplifying assumptions are usually made. These are discussed in Bock and Jones 
(1968), Guilford (1954), and Torgerson (L958). The two most common assumptions 
are (1) the correlations between discriminal dispersions are zero (i.e., responses are in
dependent) and (2) the standard deviations of discrirninal dispersions are all equal. 
Equation 2-4 then reduces to 

(2-5a) 

(2-5b) 

Since all dispersions (standard deviations) of discriminal processes are assumed to 
be the same, the tenn under the radical reduces to V2 times any of the standard devia
tions. Since that term is constant for all pairs of stimuli and since the intervals on an 
interval scale are unaffected when all scale values are multiplied by a constant, the for
mula reduces to 

(2-6) 

Thus, these assumptions allow the normal deviate representing the proportion of times 
one stimulus is preferred over another to define the interval separating two stimuli. 
Equation 2-6 is by far the most frequently used fonn of the law of comparative judg
ment. Further simplifying assumptions are made when the law of comparative judg
ment is actually applied. The most general form of the model is based on response dis
tributions of one subject on numerous occasions. This is seldom done for tnree 
reasons. First, it is difficult to find subjects who will devote the time to the task. Sec
ond, most responses are not independent-subjects tend to remember their previous 
responses. Third, the usual goal of scaling stimuli is to obtain a scale that applies to a 
definable group of people. A scale that applies to only one person is usually of limited 
generality. 

The law of comparative judgment can be applied to any form of ordinal data, such 
as the method of successive categories, but the method of paired comparisons is the 
most obvious approach. Consequently, each subject is presented with all possible pairs 
of stimuli in a set, which usually ranges from 10 to 20. The subjects indicate which 
member of each pair is preferred (greater) with respect to the attribute in question. The 
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PROPORTIONS OF SUBJECTS PREFERRING EACH VEGETABLE (COLUMNS) 
COMPARED TO EACH OF THE OTHER VEGETABLES (ROWS) 

Vegetable 

Vegetable 2 3 4 5 6 7 B 9 

1. Turnips .500 .81B .no .811 .878 .892 .B99 .892 .926 
2. Cabbage .182 .500 .601 .723 .743 .736 .811 .845 .858 
3. Beets .230 .399 .500 .561 .736 .676 .845 .797 .81B 
4. Asparagus .189 .277 .439 .500 .561 .5BB .676 .601 .730 
5. Carrots .122 .257 .264 .439 .500 .493 .574 .709 .764 
6. Spinach .108 .264 .324 .412 .507 .500 .62B .682 .628 
7. String beans .101 .189 .155 .324 .426 .372 .500 .527 .642 
B.Peas .108 .155 .203 .399 .291 .318 .473 .500 .628 
9. Com .074 .142 .182 .270 .236 .372 .358 .372 .500 

Source: Adapted from Guilford (1954) by permission of the author and publisher. 

result is a table containing the proportion of persons who prefer one stimulus to anoth
er (Pj>J. Table 2-2 lists typical results from a study of food preferences. Values of .5 
are placed in each diagonal position in the table as each stimulus is assumed to be 
judged greater than itself half of the time. Each value of PJ>k is then converted into a 
nonna! deviate ZjtCl presented in Table 2-3'. 

If it is proper to assume Eq. 2-6, each nonna! deviate in Tllble 2-3 is an interval be
tween the two stimuli. However, these normal deviates are likely to be affected by 
sampling error, which can be reduced as follows. The sum of the normal deviates for 
each colunm (stimulus) is obtained and then averaged. However, pairs that are widely 

TRANSFORMATIONS OF THE PROPORTIONS IN TABLE 2-1 TO NORMAL DEVIATES 
(z SCORES) 

Vegetable 

Vegetable 2 3 4 5 6 7 8 9 

1. Tumips .000 .908 .739 .B82 1.165 1.237 1.276 1.237 1.447 
2. Cabbage -.908 .000 .256 .592 .653 .631 .882 1.015 1.071 
3. Beets -.739 .256 .000 .154 .631 .456 1.015 .831 .908 
4. Asparagus -.882 -.592 -.154 .000 .154 .222 .456 .256 .613 
5. Carrots -1.165 -.653 -.631 .154 .000 -.018 .187 .550 .719 
6. Spinach -1.237 -.631 -.456 -.222 .018 .000 .327 .473 .327 
7. String beans -1.276 -.882 -1.015 -.456 -".187 .327 .000 .068 .364 
B.Peas -1.237 -1.015 -.831 -.256 -.550 -.473 -.068 .000 .327 
9. Com -1.447 -1.071 -.908 -.613 -.719 -.327 -.364 -.327 .000 

Sum -8.891 -4.192 -3.000 -.073 1.165 1.401 3.711 4.103 5.nS 
Average -.988 -.465 -.333 -.008 +.129 +.156 +.412 +.456 +.642 
Final scale .000 .523 .655 .980 1.117 1.144 1.400 1.444 1.630 

Source: Adapted from Guilford (1954) by permission of the author and publisher. 
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separated (e.g., Zjk > 2.0), are eliminated from this averaging process because the as
sumption that these stimuli overlap is not tenable (the "always or never" part: of the 
Fullerton-Cattell law). The results are normal deviates ex.pressed as deviations from 
the average stimulus in the set. Finally, the value of the lowest (most negative) stimu
lus is subtracted from each of the values to eliminate negative values in the final scale. 
This produces the final interval scale, e.g., of food preferences for the data in Table 
2-3." Corn is the most liked vegetable, and turnips are the least liked. The latter is arbi
trarily designated as zero on the scale. This zero is arbitrary, by definition, since this is 
an interval scale. 

Simulating Thurstone Scaling 

TABLE 2-4 

One can work backward from the scale values presented at the bottom of Table 2-3 to 
estimate the proportions found in Table 2-2 directly by applying Eqs. 2-3 through 2-6 
in reverse order. Consequently, a Monte Carlo approach is unnecessary. However, it is 
instructive to peIform one and compare it to our previous simulation. The first step is 
to multiply the scale values in the bottom line of Table 2-3 by V2 to conform to 
Eq. 2-5b. This provides values of .000, .740, .926, ... , which are the mean discriminal 
responses-rj, rk ..... 

To compare turnips with cabbage, two numbers were chosen from a normal distrib
ution having a mean of zero and a standard deviation of 1.0. The first number was 
added to the value associated with turnips (.000), and the second number was added to 
the value associated with cabbage (.740). These independent, normally distributed ran
dom numbers provided discriminal dispersions. When added to the scale values, they 
yielded the covert discriminaL responses, fj and rk, of assumption 1. They were as
sumed normally distributed because of assumption 4. The subject preferred turnips 
over cabbage if rj - flc was> 0 but preferred cabbage over turnips if rj - rk was < O. 
This was repeated 1000 times for each stimulus pair. The resulting probabilities appear 
in Table 2~4. 

ESTIMATED PROPORTIONS OF SUBJECTS PREFERRING EACH VEGETABLE BASED 
UPON COMPUTER SIMULATION 

Vegetable 

Vegetable 2 3 4 5 6 7 8 9 

1. Turnips .500 .710 .745 .845 .844 .870 .927 .923 .956 
2. Cabbage .290 .500 .550 .684 .735 .761 .B13 .804 .864 
3. Beets .255 .450 .500 .614 .676 .697 .748 .784 .821 
4. Asparagus .155 .316 .386 .500 .525 .567 .649 .668 .745 
5. Carrots .156 .265 .324 .475 .500 .529 .601 .633 .700 
6. Spinach .130 .239 .303 .433 .471 .500 .575 .613 .675 
7. String beans .073 .187 .252 .351 .399 .425 .500 .523 .585 
B.Peas .on .196 .216 .332 .367 .387 .477 .500 .548 
9. Com .044 .136 .179 .255 .300 .325 .415 .452 .500 

Source: Adapted from Guilford (1954) by permission of the author and publisher. 
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These probabilities are only a first approximation to those in Table 2-2. For exam
ple, turnips are preferred to cabbage .810 of the time, but the simulation only predicted 
a difference of .710. On the other hand, the observed preference for com over cabbage 
(.858) is fairly close to the predicted preference (.864). Consider why the fit was not 
better. One major factor was that the simulation assumed the equal discriminal disper
sions of Eqs. 2-5 and 2-6 instead of the more general Eqs. 2-3 and 2-4. Another possi
bility is that the stimuli vary along more than one axis, i.e., are multidimensional. 
Should one try a more general model with more parameters to estimate? Perhaps yes; 
perhaps no. This is a question of the tradeoff of completeness and goodness of fit 
against parsimony. 

A Comparison of the Two Simulations 

Two simulations have been presented in this chapter. The first involved absolute judg
ments along a single physical dimension, i.e., was psychophysical. The second 
involved a comparison of two sentiments with stimuli that did not vary along one 
physical dimension, i.e., was not psychophysical. 

The law of comparative judgment has had both historical and continuing impor
tance. The first author had the privilege of sitting in Thurstone's classroom when he 
indicated that the law of comparative judgment was his proudest achievement. This 
carne from a m~ for whom the word "genius" is appropriate. Hundreds of journal 
articles and numerous books have been stimulated by the law of comparative judg
ment. Although the derivation of the law is not simple, the law itself is held in rever
ence by some psychometricians, and for good reason. 

In the end, the law is very simple. It consists of transforming percentages of 
"greater than" responses for pairs of stimuli into <: scores reflecting their difference. 
The process uses the inverse of the cumulative nOl1l1a! curve introduced in basic statis
tics. This inverse function is depicted in Fig. 2-6. The interval between any two stimuli 
is the z score that corresponds to the percentage of "greater than" responses. Intervals 
are computed for all pairs of stimuli. Although these z scores themselves can define in
tervals, they are usually averaged to increase the reliability of the estimates, and the 
lowest one is set to zero to simplify description. 

The point basic to both simulations is that variability due to noise unified the two 
types of response. The additional factor of a correlation between the separate process
es in a comparison is also important in reducing the magnitude of error. The simula
tions reasonably document what the subjects do. 

The Logistic Distribution and Luca's Choice Theory 

Although much statistical theory used in scaling employs the familiar normal distribu
tion, more recent work tends to stress the logistic distribution. The ogival shape of the 
logistic distribution is visually indistinguishable from the cumulative normal distribu
tion, but it is much more convenient mathematically. This will be especially important 
in Chapters 10 and 15. Equation 2-7 defines the logistic function: 
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FIGURE 2-6 Interval saale values based upon the law of comparative judgment (Zjk) as a luntion of the 
percentage of "greater than" responses ('~>0. 

e l •7X 

y::: -1-+-e""':I-=.7':':'X (2-7) 

where e::: 2.718281828+. The constant 1.7 causes Y to differ from the standard cumu
lative normal distribution by no more than 0.01 for any value of X. Had this distribu
tion been used instead of the cumulative normal, tbe final scale values would have 
been indistinguishable. 

Just as it is reasonable to use the cumulative normal distribution because the com
bined effects of independent sources of error tend to form a normal distribution, the lo
gistic distribution may also be justified mathematically through Luce's choice theory 
(Luce, 1959a, 1963, 1977). Choice theory deals with preferences just as the law of 
comparative judgment does. Consider choosing one vegetable from menus on which 
(1) asparagus and beets are the only two choices and (2) there are other options. The 
probabilities of choosing asparagus and beets are obviously smaller when there are 
other options since one may prefer com, cabbage, etc., over either. 

The essence of choice theory is the constant ratio rule which predicts that the ratio 
of choosing asparagus over beets will be the same in both situations. Thus, Table 2-2 
indicates that 56. t percent of subjects chose asparagus over beets when they are the 
only options. This ratio is 56.11(100 - 56.1)::: 56.1143.9 or 1.28. Now suppose that 10 
percent of subjects choose beets from a larger menu. According to the model, aspara
gus should be chosen 12.8 percent of the time. These constant ratios in tum are also 
the ratios of their scale values. The logistic transformation relates scale values (X) to 
probabilities (Y). In contrast, Eqs. 2-3 through 2-6 show that Thurstone's law of com~ 
parative judgment is a conscaOl-difference rule. 
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Bo[h Thurstone's law of comparative judgment and choice theory are representational 
models of interval scaling in the sense of Chapter I. The reason for choosing either the 
normal curve transformation that gave rise to Table 2-2 or the logistic transformation 
follows from the constant-difference and constant-ratio rules (assumptions). Consider 
what would happen if the scale were simply formed from the preference probabilities 
in Table 2-2 themselves. One first computes the column sums, which are 1.634, 3.00 I, 
3.438,4.439,4.878,4.947,5.764.5.925, and 6.4l4. Dividing each in tum by 9 to form 
averages gives 0.181. 0.333.0.382, 0.493, 0.542, 0.554, 0.640. 0.658, and 0.712. Next, 
subtracting 0.181 from each average gives values of 0.000,0.152,0.201,0.3 l2, 0.361, 
0.373, 0.459, 0.477. and 0.53 1. 

In order to visualize the similarities between these values, based upon simple sums, 
and either Thurstone's or Luce's fonnal assumptions, mUltiply each value by the ratio 
of the highest scale value in Table 2-3 (1.630) to the highest scale value here (0.53\) 
or 3.07. This makes the first and last values of the two scales the same. Both this and 
the subtraction of the smallest scale value (0.181) are permissible transformations of 
an interval scale. The resulting scale values are 0.000, 0.466, 0.615, 0.957, l.l08, 
1.145, 1.409, 1.464, and 1.630. The similarities to the proper Thurstone values are ap
parent and important. 

This similarity is one justification for the operationalist position (Gaito, 1980) dis
cussed in Chapter 1. Were the table comprised of outcomes for nine baseball teams. 
the result would be familiar won-loss percentages. However. the operation and there
fore the scale values are meaningless in a representational sense since, unlike the ratio
nale provided by ThurstOne and his predecessors, there is none for summing probabili
ties as opposed to z scores. The operationalist position 1s that it is difficult to see why 
one operation is meaningless when it gives results nearly identical to those of another 
that is meaningful. 

Checks and Balances 

So far in this chapter numerous assumptions have been discussed regarding the use 
of various models for scaling stimuli. How does one know if the assumptions are 
correct? 

1 We have already noted the importance of internal consistency in developing sub
jective estimate scales. Similar considerations hold for discriminant models. Basically, 
an ordinal scale is developed by averaging individual subjects' rankings, and the data 
are internally consistent to the extent that different subjects give similar rankings. As 
previously noted, suitable methods for obtaining internal consistency measures are dis
cussed later in Chapters 6 through 8. 

2 As indicated in the simulations, one can work backward from Thurstone scale 
values to paired comparison probabilities. These estimated probabilities should be 
similar to the observed probabilities. 

3 One should examine the transitivity of the response probabilities. If stimulus i 
is preferred to j and j is preferred to k, then i should be preferred to k. Violations of 
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transiti vity are an indication that the i)cale is not unidimemiional. Of course, i)light vio
lations of transiti vity may simply retlect measurement error. 

4 A stronger (interval) criterion for unidimensionaliEY is the additivity of the scale 
values, an issue we will consider in detail in Chap. 14. Tests of additivity depend upon 
which form of the model is being used. but the basic idea is simple. Suppose chat Eq. 
2-6, which assumes that the stimuli have equal variances. is used. Now suppose stimu
lus i is preferred to stimulus j 65 percent of the time (Pi>j = .65). A table of the normal 
curve indicates that stimuli i and j are separated by .39 units. Further, suppose that 
stimulus j is preferred to stimulus k 70 percent of the time (Pj>1t = 0). This implies that 
stimuli j and k are separated by .52 z-score units. Additivity holds to the extent that the 
distance between i and k is close to .91 (.39 + .52) z-score units. Consequently, Pi>k 

should be .82, the value of p associated with a z score of .91. within measurement 
error. A failure of additivity could imply that the data are multidimensional. but it 
could also imply correlated error or unequal variance. Guilford (1954) describes a for
mal chi-square test of significance. 

S As in any scientific endeavor, relative scale values should be replicable within 
the linear transformations permitted by an interval scale. As with any other criterion, 
the degree of replicability is a function of the sample size: The larger the sample, the 
more stable the expected results. However, otber factors, particularly the care with 
which the data are gathered, are also important. Thus, the relative sizes of the intervals 
among the stimuli should remain much the same. If the relative sizes of these intervals 
change markedly across situations, scalings would be highly context-dependent. These 
findings would therefore ordinarily not be useful unless the changes occurred in a the
oretically interesting way. 

Multi-item Measures 

This book stresses the need for mtllti-item measures, where "item" is broadly used to 
stand for any stimuli used in measurement. Thus items may be words on a spelling 
test, comparisons between weights, statements concerning attitudes toward the U.S. 
Congress, response latencies, etc. There are a number of important reasons for com
bining several items when measuring a psychological attribute. 

1 Individual items usually correlate poorly with the particular attribute in question. 
2 Each item tends to relate to attributes other than the one to be measured. For ex

ample, the ability of children to speU "umpire" correctly may partly depend on their 
interest in baseball. 

3 Each item has a degree of specificity in the sense of not correlating with any gen
eral artribute or factor. The concept of specificity for individual test items will become 
clearer when factor aoa1ys18 is discussed in Chaprers 11 through l3. 

4 Individual items have considerable random measurement error, Le., are unreli
able. This can be seen when people rerate stimuli. A person who initially rates stimu
lus A as 3 on one occasion may rerate it as 5. Some of this may reflect changes in the 
attribute over time, but it may occur even when one has every reason to believe the 
trait itself is stable. To the extent that some stimuli are rated higher and others are 
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rated lower, measurement error averages out when individual scores are summed to 
obtain a total score. 

S An item can categorize people into only a relatively small number of groups. 
Specifically, a dichotomously scored item (one scored pass versus fail) can distinguish 
between only two levels of the attribute. Most measurement problems require much 
finer differentiations. 

All of these difficulties are diminished by the use of multi-item measures. The ten
dency of items to relate to incidental factors usually averages out when they are com
bined because these different incidental factors apply to the various items. Combining 
items allows one to make finer distinctions among people. For reasons which will be 
discussed in Chapters 6 and 7, reliability increases (measurement error decreases) as 
the number of items increases. Thus, nearly all measures of psychological attributes 
are multi-item measures. This is true both for measures used to study individual differ
ences and for measures used in experiments. The problem of scaling people with re
spect to attributes is then one of combining item responses to obtain one score (mea
surement) for each person. 

Item Trace Lines (Item Characteristics Curves) 

Nearly all models for scaling people can be described by different types of Curves re
lating the attribute tney measure to the probability of responding one way versus an~ 
other. Functions of this form are called "item trace lines" or "item characteristic 
curves" (ICCs). For ex.ample, a trace line might denote the probability of recognizing 
Thurstone as the author of the law of comparative judgment as a function of overall 
knowledge of psychology. We will define response alpha as passing rather than failing 
an ability item scored as correct versus incorrect, answering an personality test item in 
the keyed direction, agreeing rather than disagreeing with an opinion statement, or re
membering versus not remembering an item on a list. Response beta is the alternative 
outcome. More complex models can handle multicategory responses such as Likert 
scales and the nominal categories of a multiple-choice item. Figure 2-7 depicts four of 
the possible fonus a trace line based upon dichotomously scored items may take: (a) a 
step function, (b) an ogive, (c) an irregular but monotonic function, and Cd) a nonmo
notonic function. 

The point to note about all trace lines is their similarity to local psychometric func
tions like Figs. 2-1 and 2-2. The difference is that the abscissa of a psychometric func
tion is a physical dimension (Cl» that can usually be described in ostensive terms. The 
abscissa of a trace line denotes an abstract attribute defined in terms of its strength as 
in Thurstone scaling and is commonly denoted "8". Different models make different 
assumptions about trace lines. Some are very specific as to fonn and require trace lines 
like those in Fig. 2-7a and 2-7b; others desctibe only a general form like that in Fig. 
2-7c. Figure 2-7d generally represents what is normally an undesirable outcome. It is 
most likely to arise when a distractor on a multiple-choice test tends to be chosen by 
high-ability subjects, perhaps because it is correct in a way that the test constructor did 
not think of. However, there are some models that use nonmonotone items. 
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FIGURE 2·7 Trace lines (item-characteristic curves). (a) A step function, (b) an ogive. 

In general, it is important to distinguish among (1) a single observation (test item), 
(2) a more general attribute measured by a finite number of items that may be spuri
ously influenced, an obtained or fallible score, and (3) a hypothetical, perfectly mea
sured attribute or true score perhaps as measured on an infinite number of trials. A 
I.:ritical difference between the classical approach of Chapters 6 and 7 and the modem 
approaches of Chapter 10 (item response theories) is that classical approaches usually 
define e in terms of obtained measures (fallible scores), but item response theories al
ways define e in terms of true scores. The ordinate in both cases is the probability or 
proportion of response alpha. and thus refers to a test item. 

Attributes Ilre also commonly called "constructs" or, in the narrower sense of per
sonality theory, "traits." When an attribute is inherently categorical (e.g., political 
party or religious membership), the attribute is called a "class." Classes may vary 
complexly, but amibutes are otherwise generally assumed to vary in only one way, 
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FIGURE 2-7 (0) A monotonic function with no well-defined ronn, and (d) a nonmonoton/c function. 

i.e., be unidimensional. The measurement of constructs is discussed in Chapter 3, and 
the principles involved in estimating fallible and true scores are considered in Chap
ters 6 through 10. The response of a subject in recalling a particular word from a list 
of words presumably relates to a more general attribute of memory. The principles 
apply to measuring any response. not just pencil-and-paper items. 

An attribute is defined somewhat circularly in terms of whatever the items tend to 
measure in common. Chapter 3 considers the process of validation that is used to 
"break the circle." Appropriate methods also exist to infer how much the items have in 
common. Thus a list of spelling words are assumed to measure spelling ability. and the 
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number of words correct(y recalled are a (fallible) measure of memory for the particu
lar material. The word "tend" indicates that no attribute is perfectly mirrored in any fi
nite set of items. Perfectly reliable measurement demands that children be adminis
tered all words in the English language on a spelling test or subjects in a memory 
study be given an infinitely long list to recall. 

Difficulty and Discrimination 

Two basic propenies of a trace line are its difficulty and its discrimination. '·Difficulty" 
refers to how much of the attribute an indi vidual must possess to achieve a given prob
ability of response alpha. Increasing the difficulty of an item is equivalent to "sliding" 
irs trace line to the right, as has been done with the item denoted a in Fig. 2-8. This 
might occur when a group of primary school children are asked to spell "cattle" in
stead of "caL" Making the item easier slides the trace line to the left. The classical 
psychometric index of difficulty is simply the probability of response alpha. Howev
er, modern theories use the amount of an attribute (8) necessary to achieve a .5 
probability of response alpha, Le., the "threshold." This reflects the analogy to psy
chophysics. 

The "discrimination" of an item describes the extent to which the probability of re
sponse alpha correlates with the attribute. An item with a perfectly flat trace line does 
not discriminate and should be eliminated from the test. Most models are called "mon
otone" models in that the probability of response alpha is expected to increase with the 
attribute in the general form of Fig. 2-7c. In that case, making an item more discrimi
nating increases its slope, as depicted by the item designated b in Fig. 2-8, which com
pletes the analogy with the psychometric function of psychophysics. The most com
mon classical index of discrimination is the corre1ation over people between response 
alpha and total test score, the "item-total" correlation. The concepts of difficulty and 
discrimination are logically independent, as an item may be difficult or easy regard
less of whether it is discriminating or nondiscriminating. However, modem test theo
rists stress that the probability of response alpha and the item-total correlation are not 
independent because, as will be noted in Chapter 4, the proportion 
of alpha responses places limits on the item-total correlation. [n fact, item response 
theories use the slope of the trace line to describe discrimination, just as in 
psychophysics. 

There must be a large number of persons at each point on the trace line. Save for 
ciasses, attributes are continuous, so that it is theoretically possible to make infinitely 
fine discriminations. The trace line thus shows the expected response probability for 
people at that level of the attribute or class. This expectation either defines the proba
bility of response alpha for dichotomous items or the mean for Likert or other multi
category items. Such expectations inherently contain error. For example, there is a 
probability of response alpha at each point for dichotomous items, but there is no cer
tainty as to who will respond alpha and who will respond beta. Multicategory items 
likewise have a band of error (standard error) surrounding the average. Thus, although 
the expected score on a 5-point Likert scale for a given point on an attribute might be 
3.l, scores at that poim probably range from L to 5. 
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FIGURE 2-8 Effects of making an Item more difficult (Item a) or more discriminating (Item b) relative to a 
reference item. 

DETERMINISTIC MODELS FOR SCALING PEOPLE 

Deterministic models are so called. because they assume that there is no error and so 
the trace line is a step function as in Fig. 2~7a (or Fig. 2~la). The most common fonn 
assumes that the probability of response alpha to a dichotomous item at each level of 
the attribute is 0 up to a point (probability of response beta is 1.0), i.e., the threshold. 
Beyond this point the probability of response alpha is 1.0. Its discrimination is there
fore infinite at the threshold. Figure 2~9 contains a family of such items. Each item has 
a perfect biserial correlation (an estimated correlation between a dichotomous measure 
and a continuous measure, assuming that both nnderlyi.ng measures are continuous and 
nonnally distributed, see Chapter 4) with the attribute. Consequently each item per
fectly discriminates at a particular point of the aEtribute. This is perhaps a very appeal
ing model because it is exactly what one expects to obtain from measurements of 
length. Thus. one expects to obtain a trace lines like those in Fig. 2-9 for the following 
items: 

(a) Are you above 6 feet 6 Inches in height? 
(b) Are you above 6 feet 3 inches in height? 
(e) Ate you above 6 feet in height? . 
(d) Are you above 5 feet 9 Inches in height? 
(e) Are you above 5 feet 6 Inches in height? 

Vas No 
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FIGURE 2-9 A family of trace lines that discriminate perlactly at different points and thereby form a monotonic 
deterministic model (Guttman) scale. Items a to d are progressively easier. 

The Guttman Scale 

Assume "yes" is response alpba. Any person who answered yes to question (a) 
would answer yes to the others. Any person who answered no to (a) but answered y~ 
to (b) would also answer yes to questions (c) through (e). Five people with different 
patterns of responses would produce a triangular pattern of data like that in Table 2-5. 
An X symbolizes a yes answer (response alpha). 

Although a trace line usually requires at least some statistical estimation, one can look 
at data to see if they provide a triangular pattern like that in Table 2-5 (making. how
ever, a subtle logical assumption as discussed below). Some items do produce a pat
tern of data like that in Table 2-5. perhaps the following; 

(a) The U.S. Congress Is the savior of all Americans. 
(b) The U.S. Congress Is America's best hope for peace. 
(c) The U.S. Congress Is a constructive force In the 

American political system. 
(d) We should continue our present system of government. 

inclUding Congress. 

Yes No 

Anyone who answers yes to (a) will probably answer yes to the other items; anyone 
who answers no to (a) but answers yes to (b) will probably answer yes to the other 
items; etc. Items that produce a pattern of responses like those in Table 2-6 form a 
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TRIANGULAR PATTERN OF RESPONSES 
FITTING A GUTTMAN SCALE 

Parson 

Item 2 3 4 5 

a X 
b X X 
c X X X 
d X X X X 
e X X X X X 

"Guttman scale." Guttman scales are developed by administering items to a group and 
then attempting to arrange the responses so that they form the required triangular pat
tern (see Torgerson, 1958). The data will fonn a "solid staircase" of alpha responses, 
and the height of each step will be proportional to the number of people at each level 
of the attribute. The term "scalogram analysis" describes methods of developing 
Guttmf!,n scales. 

Unfortunately, it is very unlikely that the initial set of items will produce a triangu
lar pattern. It is therefore necessary to (1) discard some items and (2) find the best pos
sible ordering among the remaining items. The reproducibility of score patterns is of 
primary concern regarding the latter issue. If a triangular pattern is obtained, knowing 
the number of alpha responses allows one to reproduce all of an individual's respons
es. The percentage of people whose patterns are thus reproduced is a basic statistic in 
scalogram analysis. 

Guttman scales could conceivably be developed for any type of dichotomous item 
such as a spelling test. A triangular pattern of data will be obtained (X denoting a cor
rect spelling) if the items have trace lines like those in Fig. 2-10. If person A has a 
score of 35 and person B has a score of 34, person A would have to get the same 34 
items correct as person B plus the next most difficult item. Knowing how many items 
an individual passes defines which items are passed. 

Figure 2-10 describes a variant upon the Guttman scale which uses nonmonotone 
items instead of monotone items, Le., the, trace lines go up and then comes down. Our 
discllssion of Guttman scaling in the next paragraph applies to this variant. Subjects 
falling between two levels of the attribute respond with alpha, and subjects who either 
fall below the first level or above the second level respond with beta. Each person reo 
sponds with alpha to only one item. The following four items should fit this model: 

(a) Are you between 6 feet 3 Inches tall and 6 feel a inches? 
(b) Are you between 6 feet tall and 6 feet 3 Inches? 
(c) Are you between 5 feet 9 Inches tall and 6 feet? 
(d) Are you between 5 feet 6 inches tall and 5 feel 9 inches? 

Yes No 
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FIGURE 2-10 A family of trace lines that meet the requirements of a non monotonic, deterministic scaling model. 
Items a to c are progressively easier. 

Evaluation of the Guttman Scale 

The Guttman scale concept has great intuitive appeal. but it is highly unrealistic. First, as 
rare as step functions are in psychophysics. where there is great control over the stimuli, 
anything approaching a step function outside that context is even rarer. No item corre
lates perfectly with any attribute. Although there is no way to obtain the trace line 
directly, some good approximations are available. Trnee lines obtained with virtually 
all items have a much flatter slope than is consistent with the Guttman model. regardless 
of whether classical or modem methods are used to estimate them. Individual items 
rarely correlate higher than .60 with total scores. That is why it is unreasonable to 
assume a model that assumes perfect biserial correlations between items and an attribute. 

Second. having a triangular pattern of data does not guarantee that items have step
function trace lines like those in Fig. 2-11. Items whose thresholds are far enough 
apart in difficulty will provide a triangular pattern even if their trace lines are fairly 
fiat. This may be illustrated with the following four items: 

a Solve for x: xl + 2.-, + 9 = 16. 
b What does the word "{ievere" mean? 
c How much is 10 x 38? 
d When do you use an umbrella? (given orally). 

We have not performed the experiment but suspect that the above four items proba
bly would form an excellent Guttman scale if they were administered to subjects rang
ing in age from 4 to 16. Anyone who got the first item correct probably could get the 
others correct. Anyone who failed the first item but got the second correct would prob
ably get the other two correct, etc. This would produce the required triangular pattern 
of data even though they probably measure different attributes ("factors. II in the sense 
of Chapters 11 through 13), They apparently fit the unidimenslonal scale model 
because they are administered to an extremely diverse population. Consequently, it 
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does not follow that having a triangular pattern of data is sufficient to establish a unidi
mensional scale. Because triangular data patterns can be obtained any time items vary 
greatly in difficulty, Guttman scales seldom have more than eight items. To take an ex
treme case, three items that are, respectively, passed by 10, 50, and 90 percent of the 
subjects will probably produce a triangular pattern regardless of their content. Scales 
which have eight or fewer items can make only gross discriminations among people. 

A third criticism of the original Guttman scale was that it provided only an ordinal 
scale. However, recent methods of statistical estimation considered in Chapter 10 
allow e to be estimated on an interval scale. 

A fourth criticism of the Guttman scale is that it is usually more appropriate to 
think of items as rubber yardsticks applied by investigators with limited vision ra!:her 
!:han as well-defined and well-understood procedures. To complete the analogy, one 
should think of items as rubber yardsticks that are poor copies of a real yardstick so 
that some yardsticks may have a zero point at 4 inches. Any single yardstick (item) 
discriminates poorly. However, the methods discussed in subsequent sections, such as 
simply adding items evoking response alpha, allow one to combine these various rub
ber measurements to obtain an approximate linear relationship with "better" yardsticks 
and thus obtain an interval scale. 

In summary. we suggest the detemrlnistic model underlying the Guttman scale is not 
very applicable to psychological measurement because (1) almost no items fit the 
model, (2) a triangular pattern is a necessary but not sufficient condition for the fit of the 
model, (3) the triangular pattern can be (and usually is) an artifact of using a small num
ber of items that vary greatly in difficulty, (4) the model originally provided only an or
dinal scale (a problem since overcome), and (5) there are berter ways to develop mea
surement models [Cliff (1983a) presents a well-reasoned defense of Guttman scaling; it 
is also important to distinguish between Cliff's work in which the Guttman model is ap
plied to a dichotomized composite score and the present discussion. in which individual 
items are presumed to tit a Guttman scale]. However, impractical models are often very 
imponant to the development of more useful models. This is certainly the case with the 
Guttman scale-the item response theories of Chapter 10 replaced the assumption of a 
step function with a more realistic ogive of the form presented in Fig. 2-7 b. The 
Guttman scale, while unreasonable in itself, is a basic link to modern test theory. 

PROBABILISTIC MODELS FOR SCALING PEOPLE 

Trace lines that are not step functions like Fig. 2-7 a describe some probabilistic mod
els. There are numerous types of probabilistic models, depending on what fonn the 
trace line is assumed to have. 

Nonmonotone Models 

Nonmonotone probabilistic models are analogous to nonmonotone detenninistic mod
els as discussed above. Trace lines that change slope from positive to negq.tive, or vice 
versa, at some point are nonmonotone. The only nonmonotone model that has been 
used assumes trace lines that are in the shape of nonnal distributions, as depicted in 
Fig. 2-11 for three items. 
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FIGURE 2-11 Nonmonotone, normal trace lines for three items that might be used on a Thurstone scale of 
attitudes. 

The trace lines need not be exactly normal, and their standard deviations need not 
be equal. This model has been used only to develop a few attitude scales, Since Thur
stone developed the scaling procedure, it is referred to as a 'Thurstone scale of atti
tudes." However, this model has little to do with and should not be confused with 
Thurstone's previously discussed law of comparative judgment. Items at three points 
on a Thurstone scale of attitudes are as follows: 

(a) I believe that the church is the greatest institution 
in America today. 

(b) I enjoy a fine ritual service with good music when 
I go to church. 

(c) The paternal and benevolent attitude of the 
church is quite distasteful to me. 

Agree Disagree 

A Thurstone scale of attitudes begins with a large pool of attitudinal statements 
rated by tOo or more raters. Each statement is rated on an scale consisting of about L 1 
Likert-type steps, perhaps ranging from "strongly favorabLe" with respect to the at
tribute to "strongly unfavorable." Note that the raters do not state how they feel about 
the item; they evaluate the item itself, so that both a conservative and a liberal rater 
might rate a given item as "moderately favorabLe" with respect to a liberal position. 
Two standards are used to select a set of 10 to 20 items from the initial pool: (1) The 
ratings of items should have small standard deviations over raters (Le., the raters 
should agree among themselves where the items fall on the scale); and (2) means for 
different items should vary considerably (Le., items should reflect a wide range of 
the attribute). A subject's score is the average score of the items he or she endorses. 
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For example, if a subject agrees with items that have scale scores of 3.0, 3.1, and 3.2 
and disagrees with all of the remaining items, that subject is assigned a score of 3.1. 
Another approach is to assign the scale score of the highest item on the scale with 
which the person agrees. The consistency of judgments can be inferred from the stan
dard deviation of the endorsed items scale scores. 

The Thurstone scale of attitudes model states that each item should evoke response 
alpha (agreement in this case) in only one 1imited region of the attribute (9). Assum
ing that the trace line has an approximately normal distribution recognizes that items 
may be endorsed by people with a range of attitudes and. conversely, that people with 
a given attitude endorse items near and not necessarily at their preferred position. If 
only people who fall 'at 3.1 on the scale were to endorse an item judged to be 3.1, the 
scale would have to have an infinite number of items to capture the one that epito
mizes the subject's attitude. 

The major fault of the Thurstone scale of attitudes and, for that matter. any other 
nonmonotone model. is that good nonmonotone items are very difficult to construct 
This is especially true for abilities items and, more generally, judgments. The problem 
is somewhat less severe with sentiments-a person who likes chocolate ice cream may 
not want it at every possible occasion. However, the model also has logical difficulties 
with attitudinal statements and sentiments in general. Items fitting this model tend to 
be "double-barreled" in saying one good thing and one bad thing. This can be seen in 
the three attitude statements given earlier. Item (b) asks subjects to agree simultane
ously with two hidden statements: 

(bl) I sometimes go to church. 
(b2) I probably would not go to church if it were not for the fine ritual services 

and good music. 

Likewise, item (c) is "triple-barreled" because a subject must agree that the church 
is paternal, benevolent, and distasteful to agree with it. The three modifiers collective
ly imply a moderately negative attitude toward the church. One constructs such items 
only by building two or more statements into what is ostensibly one statement. People 
who are not skilled at constructing questionnaires often unintentionally construct such 
ambiguous statements. Some subjects respond to one of the hidden statements, some 
subjects to another. This is ordinarily not useful in defining a relevant trait. One might 
as well construct statements like the following: The church is a wonderful, horrible in
stitution. 

Another important criticism of nonmonotone probability models is that it is very 
difficult to think of suitable items to define the ends of the scale. This is illustrated 
with item (a) in the previous e)(ample. Who could have a very positive attitude toward 
the church yet disagree with the statement, "I believe the church is the greatest institu
tion in America today"? Such items will be monotone, continuing to increase in proba
bility of endorsement as the level of the attribute increases. 

In summary, nonmonotone probability models at best have limited applicability 
to the measurement of attitudes. One is probably better off restating the items in a 
monotone form and using an appropriate model for such items. We now turn to such 
models. 
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Monotone Models with Specified Distribution Forms 

Some monotone trace line models assume that the trace lines fit a particular statistical 
function. In particular, those that form the basis of modem psychometrics assume 
ogives like Fig. 2-7b. Another distinguishing characteristic of most of these mod~[s is 
that the pattern of responses defines the scale score rather than simply the number an
swered in the alpha direction, e.g., correctly. The ideas that are basic to these models 
have been available for a long time, but computers and recent developments in numer
ical estimation have spurred their recent growth. 

Ogival trace lines are always more discriminating in their steeply ascending middle 
part than at the extremes. The steeper that section of the trace line, the higher the item
total correlation and other discrimination statistics. If it were a step function, the item 
would correlate perfectly with the attribute and form part of a Guttman scale. As items 
correlate less and less with the attribute and therefore become less discriminating, the 
ogival S shape flattens toward the horizontal. 

Ogival models are appealing for two reasons. First. they make good intuitive sense. 
One can easily think of a critical interval of uncertainty as in psychophysics (see Fig. 
2-2b) where subjects respond in both directions. This interval of uncertainty is more 
realistic than the perfect discrimination in a Guttman scale. Moving further away from 
that zone in either direction markedly reduces the uncertainty. Persons below that zone 
will choose response beta almost exclusively, and persons above it will choose re
sponse alpha almost exclusively. Thus, people of low ability will find a particular item 
too difficult, and people of high ability wUl find the same item too easy. 

Another reason for the appeal of this model is that it has useful mathematical prop
erties. For example, the sum of a series of ogives is also an ogive of predictable loca
tion and slope. The scale score is usually obtained from the probabilities of individual 
responses. This may require a complex algorithm. but it is a linear function of the at
tribute under certain assumptions. In contrast, scores derived from item sums typically 
are not linearly related to the attribute (Lord, 1980, also see Chapter 10), even though 
this nonlinearity is rarely a major problem. Another useful deduction is that the most 
discriminating items at any point on the attribute are tbose whose sum is as steep as 
possible at that point. This permits some interesting deductions about discriminating at 
a point, item difficulties, and correlations of items with total scores. It is also possible 
to deduce the amount of measurement error (unreliability) at different points on the at
tribute. 

Some models make additional assumptions involving correlations among the items 
or the distribution of the underlying attribute. These assumptions provide a variety of 
interesting deductions that are useful when the assumptions hold. In particular, one can 
deduce the score that individuals would make on a test that they have not taken from 
the score that they made on one that they ac[ually had taken even if the two tests were 
unequally difficult. These models have been a major, if not the major, focus of psycho
metric research (see Hulin, Drasgow, & Parsons, 1983; Lord, 1952a; 1974, 1980; Lord 
& Novick, 1968; Thissen, & Steinberg, 1988; Thissen, Steinberg. & Gerrard. 1986; 
Wainer & Braun, 1988). At the same time, item response approaches have not sup
planted the conventional approach of summing item scores when SUbjects answer all 
test items on a test that is administered Once. 
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Monotone Models with Unspecified Distribution Forms 

We finaHy arrive at the model that underlies most scaling-the linear, summative or 
centroid model. The model makes three major assumptions: 

1 Each item has a monotonic trace line as in Fig. 2-7c,' the form of this monotonic 
trace line can even vary over items. 

2 The sum of the trace lines for a particular set of items (the trace line for total 
test scores) is approximately linear. That is. even if items do not all have tbe same 
type of monotonic trace line, departures from linearity average out when items are 
combined. 

3 The items as a whole measure only the attribute in question. This is the same as 
saying that the items have only one factor in common, a point to be discussed in detail 
in later chapters. It implies that the total score summarizes all the important informa
tion about the attribute being measured. 

Figure 2-12 contains a family of such trace lines, and Fig. 2-13 presents the sum of 
these trace lines. the trace line of expected scores on a four-item test. 

The model is called "linear" because the score is derived from a linear combination 
which is a sum of item responses. Even though the underlying mathematics of the lin
ear model is not as elegant as that of modem psychometric models. it is not devoid of 
such properties given its use of the algebra of linear combinations. This sum does not 
require each item to have equal weight. The term "centroid" means average-the total 
score divided by the number of items gives the centroid or average. This is equivalent 
to weighting each of the K items used to generate the score by 11K. Thus, a person's 
score on a classroom examination would probably be presented as the equally weight
ed sum. but performance on a series of reaction time trials might presented as a 
mean-the choice is a matter of convenience. 

FIGURE 2-12 A family of four items with monotone trace lines that can be used in a linear model. 
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FIGURE 2-13 Expected scores on a four-item lest-the sum of trace lines in Fig. 2-12. 

We will nonnally assume that each item is given equal weight, called an equally 
weighted or unweighted model, but occasionally, weighting items differentially is ap
propriate. The effects of weighting are often triyjal. especially when there are many 
items. and we will later argue against differentially weighting in most scale applica
tions. The major features of the linear model apply to both weighted and unweighted 
versions. They also apply to multicategory or continuous items as well as to dichoto
mously scored items. Two slight drawbacks are that there is no fonnal rationale, in the 
representational sense, for a unit of measurement, and that the relation between total 
score and e may be nonlinear. However. as we have stressed. strong relations exist be
tween linear scales and those developed from more complex models. and item sums 
ordinarily are monotonically related to e despite the nonlinearity. 

We have come a long way around in this chapter to the conclusion that the most 
sensible way to measure psychological attributes of people is to do the obvious-sum 
item scores. The essence and beautiful point of the model is that it does Clot take indi
vidual items very seriously. It recognizes that any individual item has considerable 
specificity and measurement error. It does not make stringent assumptions about the 
form of the trace line. The only assumption made is that each item has some form of 
monotonic trace line. The model is fairly robust with respect to even that point in the 
sense that it is not highly sensitive to violations of this assumption. Even a few items 
with slight nonmonotonicities will not seriously affect the adequacy with which the at
tribute is measured. Items may have a noticeable faLse positive rate in that they may be 
answered correctly by subjects of the lowest imaginable ability (e.g .• through guess
Ing) and a faLse negative rate of being answered incorrectly oy able subjects (e.g., 
through carelessness). 

Much of the remainder of the book. is based on the linear model, which makes sense 
and works well in practice. We will be discussing some newer models. However. there 
presently is no serious challenge to the linear model for most scaling of people and 
lower animals with respect to psychological attributes in the vast majority of applica
tions. 
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Constructing a scale begins with a plan, usually leading to a matrix representation of 
the data with subjects as rows and stimuli as columns. Two important considerations 
are whether stimuli or subjects (objects) are to be scaled and the types of judgments 
to be made by the subjects. Scaling models are typically more critical in scaling stim
uli. The different kinds of judgments in turn can be traced back to psychophysics, the 
study of the relation between physically defined dimensions and their associated re
sponses. There are three main questions in psychophysics: (a) How does one obtain 
the absolute threshold or point at which a stimulus is perceived 50 percent of the 
time? (b) How does one obtain the difference threshold (difference limen) or just
noticeable difference (JND)? (c) What is the overall relation between variation in a 
physical dimension and associated responses (psychophysical scaling). In particular, 
although the absolute threshold was thought of as an all-or-nothing effect (an event 
was either below threshold and not perceived or above threshold and perceived), 
nearly all data suggest that the function is continuous, usually in the form of an ogi ve 
(S curve). 

There are two broad traditions in psychophysics. Fechner's indirect (discriminant) 
approach stresses ordinal judgments, particularly paired-comparison methods, and re
quires stimuli be confusable; it leads to a logarithmic relationship between physical 
magnitudes and associated sensations and can be used with a wide variety of subjects. 
Stevens' direct approach requires subjects to report intervals or ratios of perceived 
magnitudes as required. Its major methods are ratio production, ratio estimation, mag~ 
nitude estimation, bisection, and cross-modal matching. [t leads to a power function 
relating physical magnitude and sensation, although there is no necessary incompati
bility between the two laws. Both lead to methods generally important in psychomet
rics. The Fullerton~Cattelllaw states that equally often noted differences are equal un
less always or never noted is a basic link between Fechnerian psychophysics and 
psychometric theory. It led to Thurstone's law of comparative judgment. In turn, Thur
stone scaling is closely related to signal detection theory which stresses the separation 
of bias in responding from accuracy of discrimination. 

The concept of an item trace Hne (item characteristic curve) which relates the prob
ability of a given response (response alpha) to the magnitude of an underlying attribute 
is extremely important. The Guttman scale was an early formal model for scaling peo
ple. It assumes that the item trace line is a step function. However. the similarity of the 
trace line to the psychometric function was noted. which suggests that the Guttman 
scale may be unrealistic. There are newer models, considered in Chapter 10, which 
make more realistic assumptions. 

The simplest model for scaling people simply counts the number of response:s in 
the alpha direction, perhaps weighting certain items over others. The only thing it re
quires of the item trace line is that it be monotonic_ The chapter concluded by noting 
the utility ot' this linear (surnmative, centroid) model. 
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CHAPTER 3 
VALIDITY 

CHAPTER OVERVIEW 

The term "validity" denotes the scientific utility of a measuring instrument, broadly 
statable in terms of how well it measures what it purports to measure. Unfortunately. 
the term has considerable "surplus meaning"; some take it to mean all things that are 
good about a measuring instrument rather than to specify how well the instrument luis 
met the standards by which it is judged. We begin with a few of the cardinal consider
ations in all validation research. We have already stressed the importance of scientific 
generalization in psychometrics; this will be made explicit throughout the chapter. 

Validity has been given three major meanings: (1) construct validity-measuring 
psychological attributes, (2) predictive validity-establishing a statistical relationship 
with a particular criterion, and (3) content validity-sampling from a pool of required 
content. Examples of measures intended to have these three types of validity are a 
measure of anxiety, a test for admitting students to graduate school, and a test for mea
suring spelling ability of fifth-grade students. 

Since all forms of validity involve scientific generalization and the measurement of 
attributes is common to all validation, some have llfgueq.that there really is only one 
form of validity, construct validity. Apt as that point is, we will show how these three 
types of Validity also involve somewhat different aspects cif scientific generalization 
and discuss the unique aspects of each below. In particular. we will need to consider 
how the need for homogeneity of tests varies across situations. 

This chapter is relatively brief, but do not confuse its brevity with lack of impor
tance. Indeed, this is the most important chapter in this book. No amount of mathemat
ical elegance or related use of sophisticated measurement procedures can substitute for 
validity in the senses described above. 

83 
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GENERAL CONSIDERATIONS 

Some instruments are rather easily validated, e.g., the yardstick as a measure of length. 
It takes very little research to determine that yurdstick measurements (I) fit axiomatic 
concepts of length und (2) relate to alternative definitions of length, e.g., tape mea
sures, and (3) also relate lawfully to other vuriubles, e.g., height and weight are corre
lated in the general population. If all measures met these standards so perfectly, valida
tion would be simple, but such is not the case. Every area of psychology cun provide 
numerous examples of what turned out to be mismeasurement; apparently good intu
itive approaches to measurement have proven invalid by the standards and methods of 
investigation to be discussed. 

Validation always requires empirical investigations, with the nature of the measure 
and form of validity dictating the needed form of evidence. For ex.ample, construct and 
predictive validity usually stress correlations among various measures, but content va
lidity is largely based upon opinions of various users. To state the principle in reverse: 
There is no way to prove the validity of an ins[rument purely by appeal to authority, 
deduction from a psychological theory, or mathematical proof. 

Moreover. validity usually is a matter of degree rather than an aU-or-none property, 
and validation is an unending process. Whereas measures of length and of some other 
simple physical attributes may have proven their merits so well that no one seriously 
considers changing to other measures, most psychological measures need. to be con
stantly evaluated and reevaluated to see if they are behaving as they should. Newevi
dence may suggest modifications of an existing measure or the development of an al
ternative approach. 

Strictly speaking, one validates the LIse to which a measuring insrrument is put 
rather than the instrument itself. Tests are often valid for one purpose but not another. 
For example, a test used to select first-year college students may in fact be highly valid 
for that purpose but totally invalid for use in graduate school admissions. Although a 
measure may be valid for several purposes, as intelligence tests often are, the validity 
of each use must be documented empirically (but see the section on validity general
izo.tion below). Some measures, unfortunately, have no documentable valid use. 

Measures are often validated independently of their development and well after de
velopment is complete. There is nothing wrong in doing this. However, we strongly 
recommend that anyone who develops a measuring instrument think about how its va
lidity could be established at the outset and design at least a preliminary validation 
study for use in the developmenc stage. Both authors have seen numerous individuals 
formulate what they consider a clever measure yet have no idea of how to validate it. 
The "woods are filled" with such measures, and it is difficult to see how they have 
made any contribution. 

CONSTRUCT VALIDITY 

AU basic sciences, including psychology, are concerned with establishing functional 
relations among important variableS. Of course, variables must be measured before 
their interrelations can be studied. For such statements of relationship to have any 
meaning, each measure must validly measure what it is purports to measure. Some 
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variables that have proven important in vatious areas of psychology are the percepti
bility of briefly flashed words, the time required for various decisions, intelligence, 
and anx:iety. [n particular, suppose that an investigator wants to see if a particu lar ap
proach to psychotherapy reduces patients' anxiety. Ignore, for simplicity, the eventuaL 
importance of comparing the patients to an untreated (control) group in order to focus 
on the problem of defining anxiety-until the measure is defined, one cannot know if 
it has changed. 

An experimenter could simply ask patients to rate their anxiety on a scale. We have 
already noted in Chapter 1 how a single measure does not provide any structure [Q 

evaluate, and in Chapter 2 how the response, a sentiment, may be subject to various 
distortions. There is a third problem related to both of these. The investigator is not in
terested in measuring or modifying the rating as a specific behavior. If that were the 
case, a simple inducement ("I'll give you five dollars to rate yourself calm") or, what 
is cheaper, a threat, could probably produce the desired results. The investigator is in
terested in studying the abstract and latent process of anxiety that leads to the racing 
and hopes that the rating measures that process, which it may not-the subject may act 
simply to please Or displease the investigator. 

To the extent that a variable is abstract and latent rather than concrete and observ
able (such as the rating itselt), it is called a "construct." Such a variable is literally 
something that scientists "construct" (put together from their own imaginations) and 
which does not exist as an observable dimension of behavior. A construct reflects a hy
pothesis (often incompletely formed) that a variety of behaviors will correlate with 
one another in studies of individual differences andlor will be similarly affected by e:<
perimental manipulations. Nearly all theories concern statements about constructs 
rather than about specific, observable variables because constructs are more general 
than specific behaviors by definition. 

Scientists cannot do without constructs. Their theories are populated with them, and 
they find it all but impossible to discuss their work without using them even in infor
mal conversations. In general, science's two major concerns are (l) developing mea
sures of individual constructs and (2) finding functional relations between measures of 
different constructs. Corresponding to these two concerns is the notion that any theory 
has two equally important components-the measurement component that dictates 
what constructs are to be measured and the structural component that describes 
the properties of the resulting measures in terms of how constructs interrelate. For 
example. a proposed new measure of schizophrenic deficit may dictate use of a self
descriptive measure and state [hat schizophrenics should get higher scores than 
normals. 

Construct validation is an obvious issue in scientific generalization. The goal of 
studying constructs is to employ one or more measures whose results generalize co a 
broader class of measures that legitimately employ the same name, e.g., "anxiety." 
However. these logical issues are complex and need to be considered from comple
mentary points of view. Fortunately, this makes it relatively easy to discuss predictive 
validity and content validity. 

Constructs vary widely in the extent to which the domain of related observable 
variables is (1) large or small and (2) specifically or loosely defined. Whea the 
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construct is response latency (speed of response), the domain of related variables is 
relati vely small and anyone of the few observable variables in the domain will sut"fice 
to measure the construct. There are relatively few alternative mechods of measuring re~ 
action time, and their results tend to be closely related. For example, overall reaction 
time depends in part upon how much waming subjects are given that a trial wU\ start, 
but differences among conditions tend not to be affected greatly by changes in wam~ 
ing condition. Any fonn of warning condition can therefore be spoken of as measuring 
reaction time without doing much injustice to the construct of latency. At a higher 
level of complexity, anxiety should be reflected in self.reports and clinical observa~ 
tion. Unfortunately, these two types of measures often intercorrelate poorly. This leads 
to the need for postulating two different types of anxiety. In contrast, self~reports and 
clinical observations of depression tend to correlate more highly, allowing greater 
unity. 

Domain size and specificity are intimately related; the larger the domain of observ
abIes related to a construct, the more difficult it is to specify the variables that belong 
in the domain. The domain of related observables for many constructs is fuzzy, and 
scientists are often unsure of the full meanings of their own constructs. Typically, they 
hold firm beliefs about the more prominent observables related to a construct but can 
only speculate how far the construct extends. All would agree that a construct of intel
ligence should include reasoning ability but disagree as to whether perceptual and 
memory abilities should be considered part of the construct. 

Because constructs concern domains of observables, a better measure of any can· 
struct is obtained by combining the results from a number of measures than by taking 
anyone of them individually. However. this work is often tedious enough with one 
measure, let alone a handful. It is sometimes asking too much to expect a scientist to 
employ mote than a few measures in a given investigation. Thus, any particular mea· 
Sure can be chought of as having construct validity to the extent that results obtained 
from it would remain the same if other measures in the domain were used. Similarly, 
combining several observables provides greater construct validity and scientific gener· 
aHzability in the domain as a whole relative to a single measure. 

The logical status of psychological constructs used to define individual differences 
and ex.perimental measures is the same. Thus, even though the construct of intelli· 
gence is discussed more frequently within studies of indi vidual differences. and the 
construct of a threshold is discussed more frequently in experimental studies, the prob
lems of construct validity are essentially the same for both. 

If the measurement of constructs is vital to scientific activity, how are such mea· 
sures developed and validated? This is not a simple question, and there are legitimate 
disagreements about the correct answer. We will first present the most widely accepted 
point of view, logically analyze this view, and then conclude that the different points 
of view are complementary rather than contradictory. 

The most prevalent point of view is as follows: There are three major aspects of 
construct validation: (1) specifying the domain of observables related to the construct; 
(2) determining the extent to which observables tend to measure the same thing, sever
al different things, or many different things from empirical research and statisti· 
cal analyses; and (3) performing subsequenc individual differences studies andlor 
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experiment'! to determine the extent to which supposed measures of the construct are 
consistent with "best guesses" about the construct. 

Aspect 3 consists of determining whether a supposed measure of a construct corre
lates in expected ways with measures of other constructs and/or is affected in expected 
ways by appropriate e)(perimental manipulations. Investigators rarely plan these steps 
completely. There are advantages to undertaking the steps in the order given and, espe
cially. to having some idea in advance about what hypotheses to test. However. psy
chologists often develop a particular measure of a construct and then leap directly to 
aspect 3 by relating the presumed measure to measures of other constructs, e.g., corre
lating a particular measure of anxiety with a particular measure of shyness, Only later 
is the measure correlated with similar measures. Alternatively, investigators may de
velop a measure. Skipping aspects 1 and 2, they will move directly (0 aspect 3 and try 

to find interesting relations between thei.r measures and measures of other constructs. 
Still other times, deductions are made from theories that provide new tests of a con
struct which were not available when the measure was originally developed. 

Often, a particular construct becomes popular, and different researchers attempt to 
devise their own measures. As the number of proposed measures of the construct 
grows, suspicion grows that they might not all measure the same thing. One or more 
investigators seek to outline the domain of observables related to the construct (aspect 
1). All or part of the outline is subjected to investigation to determine the e;{tent to 
which these alternative measures are or are not equivalent (aspect 2). The impact of 
theorizing in aspect I and the research results from aspect 2 tend to influence which 
particular variables are studied (aspect 3). 

Most psychologists work as individuals, doing what they please, rather than as a 
part of some overall plan of attack on a problem. Consequently there is seldom a orga
nized, concentrated effort to develop valid measures of constructs. Instead of tightly 
defining the initial domain of obsel"lables for the construct (aspect t), the nature of the 
domain is usually suggested by numerous attempts to develop particular measures of 
the construct. Subsequently, some investigators attempt an explicit outline of the do
main of content. Instead of a planned, frontal attack on the empirical investigations in 
aspects 2 and 3, evidence usually accrues from diverse studies in which the available 
evidence accumulates and is evaluated. 

Hopefully, this complex process produces a construct that (1) is wen deEined 
through a variety of observables, (2) is well represented by alternative measures, and 
(3) relates strongly to other constructs of interest. We will now consider some of the 
methods required to reach these goals. 

Domain of Observables 

Scientists seldom outline the domain of observables before assuming that anyone ob
sel"lable relates to a construct. They typically investigate a single observable and ten
tatively assume that it relates to the construct. For example, shyness is currently a pop
ular topic, and many investigators use Cheek and Buss' (1981) scale to define shyness. 

Scientists should not be criticized for provisionally assuming that particular observ
abIes relate to a vaguely understood construct. Each scientist can perform only a 
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relatively S1nall number of major studies in a lifetime. This leaves insufficient time to 
do all that is required to specify the domain of a construct, develop measures of the 
construct, and relate these measures to other variables of interest. However, the collec_ 
tive efforts of different scientists interested in a particular construct like shyness make 
it fruitful to attempt to specify the domain of related variables. 

No precise method can be stated to outline the domain of variables for a construct 
properly. The outline essentially constitutes a theory regarding how variables relate to 
one another. Although theories themselves should be objectively testable, the theori~; 
ing process is necessarily innritive. Outlining a construct essentially consists of stating 
what one means by the use of particular words such as "anxiety," "memory," and "in
telligence." Early attempts to outline a domain are usually limited to a definition in 
which the word denoting the construct is related to less abstract words. Binet and 
Simon's (1905) attempt to define "intelligence" is one ex-ample: "The tendency to take 
and maintain a definite direction; the capacity to make adaptations for the pUrpose of 
attaining a desired end, and the power of auto-criticism." Brave as such attempts are, 
they do little to specify the domain in question when they employ words that are far 
removed from specific observable variables. 

Whether or not a well·specified domain for a construct actually leads co adequate 
measurement of the construct is an empirical issue. However, there is no way to know 
how to test the adequacy with which a construct is measured without a well-specified 
domain. In other words, aspect 1 (outlining the domain) is important in telling you 
what to do in aspect i (investigating relations among different proposed measures of a 
construct). 

Relations among Observables 

The adequacy of a domain's outline is tested by determining how well the measures of 
observables "go together" (intercorrelate) empirically. The first step in individual dif
ferences research is to obtain a sample of scores for individuals on some of the mea
sures. The various measures are then intercorrelated. The resulting intercorrelations 
describe the extent to which all the measures relate to the same thing. This is essential
ly the problem of factor analysis, which is discussed briefly later in this chapter and in 
detail in Chapters 11 through 13. 

Investigating construct validity in experiments uses much the same logic as in 
studies of individual differences. One investigates the ex-tent co which treatment ef
fects are similar for measures that are presumably similar. Figure 3-1 depicts the hy
pothetical effects of five levels of noise-induced stress (the independent variable) Ot 

four presumed measures of fear. Fear measures a and b are affected in much the 
same way by the experimental treatments, as both are monotonically related to stress. 
Fear measure c is also monotonically related to stress up to level 4 but falls oft 
sharply at level S. Consequently, it measures something different from a and b. Feat 
measure d is, if anything, inversely related to stress, so that it cannot measure the 
same thing as a, b, and c. To determine the extent to which these and other me~...;ures 
of fear go together more fully, it is desirable to study the effects of a different stres
sor such as electric shock. 
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Meusure b 
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FIGURE 3-1 Effects of five levels of stress on four dependent measures. 

The test of how well different experimental measures go together is the extent to 
which their functional relationships are similar when they are affected by different 
treatment variables. The form of relationship with any particular treatment variable is 
immaterial as long as these relationships are similar. Thus. two supposed measures of 
a construct could both increase monotonically with one treatment variable, curvilinear-
1y with a second treatment variable, and not vary at all with a third treatment variable. 
The key is that both measures are affected in the same way. 

If two measures were affected in exactly the same way by all possible experimental 
treatments, it would be immaterial which one was used in a particular study and one 
could speak of them as measuring the same thing. This would be the case even if there 
were slight differences in the exact form of functional relationship, e.g .• if one mea
sure varied linearly with a treatment variable and another varied ex.ponentially. An ap
propriate monotonic transformation could eliminate the disparity in form of function. 
This transformation usually is not needed when correlational measures are used be
cause it has little effect. In sum. the degree to which two measures are affected simi
larly by a variety of ex.perimental treatments defines their similarity. When a variety of 
measures behave similarly over a variety of experimental treatments, it becomes 
meaningful to speak.of them as measuring a construct. The measures that most consis
tently behave as the majority of measures do have the most construct validity. 

Methods of investigating construct validity both in individual differences studies 
and in controlled ex.periments involve correlations in the broad sense of the tenn. Ac
tual correlations are computed among measures of individual differences. and a com
parison of two curves is a correlational process even if the Pearson correlation coeffi
cient is not used specifically. Regardless of whether correlations are computed over 
individual differences or over levels of treatment effects. such correlations provide ev
idence about the structure of a domain of observables relating to a construct. 
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The results of investigations like those described above lead to one of three conclu
sions. If all the proposed measures correlate highly with one another, it can be con
cluded that they all measure much the same thing. [f the measures tend to split up into 
clusters such that the members of a cluster cOITelate highly with one another and cor
relate much less with the members of other clusters, they measure a number of differ
ent things. Spielberger, Gorsuch, and Lushene (1970) noted that responses to self-re
ports of long-tenn anxiety (trait anxiety) tend to go together but are at least partially 
separable from self-reports about present anxiety (state anxiety). Note that the two 
constructs need not be completely independent to be separable into two meaningful 
measures. A third possibility is that the correlations among the measures all are near 
zero, so that they measure different things and there is no meaningful construct. Un
fortunately, the evidence is seldom clear-cut regarding the appropriate conclusion, 
leaving room for dispute. 

Evidence of rhe kind described above should affect both subsequent efforts to spec
ify the domain of observables for a construct and theories relating the construct to 
other constructs. If all relevant measures of a construct intercorrelate highly, investiga
tors should keep working with the specified domain of observables and encourage 
continued theory development. If more than one thing is apparently being measured, 
the old construct should be replaced by two or more new ones, and theories that as
sume only one construct should be modified to reflect this multiplicity. If none of the 
variables correlates substantiallY with any of the others, the scientist has an unhappy 
state of affairs. Of course, it is possible that one of the measures is higbly related to the 
construct and the others are irrelevant, but it is much more likely that none of them re
late well to the construct. The investigator can postulate an entirely new domain of ab
servables for the construct, perhaps by abandoning questionnaire measures for physio
logical measures. The alternative is to abandon the construct altogether. 

Relations among Constructs 

The previous section considered means of studying construct validity in tenns of the 
"internal consistency" of a construct's assumed measures in a domain, Le., whether 
they supply the same information by intercorrelating highly over subjects or over ex.
perimental treatments. To the ex.tent that the elements of such a domain show this con
sistency, some construct may be employed to account for the interrelationships, but it 
is by no means certain that the construct name which motivated the research is appro
priate. In other words, internal consistency is necessary but not sufficient for construct 
validity. A discussion of how one can, if ever, obtain sufficient evidence that a domain 
of observables relates to a construct requires an analysis of the deepest innards of sci
entific explanation. 

We will begin by assuming that it is possible to find immutable proof that a particu
lar set of variables measures a particular construct and see what forms of evidence are 
required. That assumption will then be challenged. leading to a different perspective 
on interpreti~g evidence about construct validity. If the assumption of immutable 
"proof' were accepted, sufficient evidence for construct validity would simply be that 
the supposed measure(s} of the construct behave as expected. 
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Suppose a particular measure is thought to relate to the construct of anxiety. Com
mon sense suggests many expected findings. Higher anxiety scores should be found 
for (1) patients diagnosed with anxiety reactions versus normals, (2) subjects in an ex
periment who are threatened with a failure experience vets us control subjects, and (3) 
graduate students undergoing their final oral examination for the Ph.D. versus the 
same students after passing the examination. Similarly, intelligence measures should 
correlate at least moderately with measures of academic accomplishment. All con
structs have expected correlations with other variables andlor expected experimental 
effects. 

Any immutable proof of the extent to which a measure defines a construct would 
have to come from determining how well the measure fit lawfully into a network of 
expected relationships. This pattern of results is often called a "nomological network" 
(Cronbach & Meehl, 1955). Tests of internal consistency of observables come first and 
require many studies. The degree of construct validity reflects the extent to which the 
measures met the theoretical expectations. 

One could argue that there is a logical fallacy in claiming evidence such as that dis
cussed previously as proof ·of construct validity. To determine construct validity, a. 
measure must fit a theory abou~ the construct; but to use this evidence, one must as
sume the theory is true. The circularity of this logic is illustrated by the following four 
hypotheses: 

1 Constructs A and B correlate positively. 
2 X is a measure of construct A. 
3 Y is a measure of construct B. 
4 X and Y correlate positively. 

To be more specific, assume that A is anxiety. B is stress, X is a questionnaire 
thought to measure anxiety, and Y is an experimental manipulation thought to induce 
stress. Even though the four hypotheses are not independent, it should be obvious that 
one experiment cannot test them all simultaneously. Only hypothesis 4, that X corre
lates positively with Y can be tested directly; it is necessary to infer the truth or falsi
ty of the other hypotheses from this test. Note how many possible outcomes there are. 
Hypothesis 1 may be correct, but even if hypothesis 4 is correct, it would not prove 
the truth of either or both hypotheses 2 and 3. Obviously X and Y could correlate 
positively, not because they relate to constructs A and B, respectively, but rather be
cause they relate to some other construct. As another possibility, hypothesis 2 could 
be correct, but if hypothesis 3 is incorrect, there would be no necessity for X to corre
late with Y. 

It is apparent that the above paradigm for determining construct validity is invalid 
from an inductive standpoint. In the illustrative experiment, the experimenter hoped to 
obtain some evidence for hypothesis 2 (X is a measure of anxiety). All that can be 
validly tested by the experiment is whether hypothesis 4 is correct (whether X corre
lates with V). 

Someone wanting to defend the above paradigm could point out that the situation is 
not nearly as bleak as it has been painted. What is done in practice is to assume that 
two of the hypotheses 1 through 3 are correct. An empirical test of hypothesis 4 then 
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allows a valid inference about the remaining hypothesis. Thus, one would assume that 
(I) hypothesis I is con'ect (stress relates to anxiety,) und (2) hypothesis 3 is correct 
(the threat of painful electric shock is a stressor.) If these assumptions are correct, the 
actual correlation between X and Y permits a valid inference regarding the truth of hy
pothesis 2 (X is a measure anxiety). 

One could further argue thltt making such assumptions in the modified paradigm 
above i.s not really so dangerous. The danger can be lessened by restricting investiga
tions of construct validity to those situations in which some of the hypotheses are 
clearly true. The evidence for stlch truth could be based on either other experiments in
volving the variables (e.g., prior use of electric shock as a stressor) or on an appeal to 
common sense. Thus, in construct validation, one relates variables in situations where 
the assumptions are very safe. Nearly everyone agrees thac stress should increase anxi
ety and that the threat of painful electric shock is a stressor. Such assumptions are 
made even safer by correlating two supposed measures of constructs where the do
main of one has previously been both well defined and highly restricted. Thus, if a 
proposed measure of anxiety is correlated with reaction time, it is rather safe to as
sume that the reaction time validly represents the construct of response latency. 

In the limiting case, construct validity concerns a hypothesized relationship be
tween a supposed measure of a construct and a particular observable variable. Thus, 
the specific measures of academic accomplishment that one might hypothesize are cor
related with tests of intelligence include grades in school, teachers' ratings of intelli
gence, and level of professional accomplishment. These academic variables are con
structs only in that slight variations are possible in the measurement of each (e.g., 
which teachers do the rating and how the ratings are conducted), and these variations 
may have little effect on the resulting correlations with intelligence measures. This re
duces the number of hypotheses in the above paradigm from four to three because the 
hypothesis "Y is related to 8" becomes the assumption "Y is B." If the assumption A 
relates to B (e.g., intelligence relates to progress in school) is very safe, an empirical 
cOlTelation of X with Y provides a safe basis of inference regarding the construct va
lidity of A as a measure of X. According to this point of view, construct validity stud
ies are safe and should be undertaken only when (I) the domain of the "other" con
struct is well defined and (2) the assumption of a relationship between the two 
constructs is inarguable. 

Campbell and Fiske's Contribution to Construct Validation 

Campbell and Fiske (1959) published a key article on construct validation. They 
viewed reliability and validity as points along a continuum rather than as sharply dis
tinguished ideas since each involves degrees of agreement between measures. Their 
introduction makes four key points: 

1 Validation is typically convergent because it is concerned with demonstrating that 
two independent methods of inferring an attribute lead to similar ends. This often in
volves correlating a new measure with an exisring measure, but it may also involve 
correlating two existing measures. 



CHAPTER 3: VALIDITY 93 

2 In order to justify novel measures of attlibutes, a meaSllre should have divergent 
validity in the sense of measuring something different from existing methods. Mea
sures of different attributes should therefore not correlate to an extremely high degree. 

3 A measure is jointly defined by a method and attribute-related content. Two mea
sures may differ in method, content, or both. 

4 At least two attributes, each measured by at Least two methods, are required to ex
amine discriminant validity. Table 3- L contains a matrix of correlations among mea
sures that results from meeting these minimal requirements. In the ex.ample, the two 
attributes (traits) are anxiety and depression, and the two methods are self-report, as on 
an Ml'IlPI scale, and observation, as a clinical rating. These data fonn a multitrait
multimethod matrix. 

Although they did not introduce the concept in their article, divergent validity de
scribes the ability of a measure to produce relevant group differences. For example, 
people diagnosed as depressed should score higher on a measure of depression than 
the population at large. 

There are four types of correlations in a multitrait-multimethod matrix. "Reliability 
coefficients" describe the extent to which a measure is internally consistent in the 
sense that its components all measure the same thing (see Chapter 6) and appear along 
the diagonal. A "heterotrnit-monomethod correlation" denotes the correlation between 
two measures that share a common method but assess different attributes. These have 
been shortened to "method correlation" in Table 3-1. Conversely, a "monotrait
heceromethod correlation" ("trait correlation" for short) denotes a correlation between 
two measures of the same trait using different methods. Finall),'. a "heterotrait
heteromethod correlation" (neither) is a correlation between different attributes using 
different methods. One normally expects the reliabilicies to have the highest values, al
though it is mathematically possible for this not to be the case. At the other extreme, 
heterotrait-heteromethod correlations should be the lowest since they differ both in 
what is measured and how it is measured. However, these correlations need not to be 
zero because neither the methods nor the traits need to be independent. There may be 
shared method variance among alternative approaches. For example. a clinical evalua
tion of depression by a clinical psychologist shares the method of observation with 
anxiety ratings made by nonprofessional staff. 

TABLE 3-1 MULTITRAIT-MULTIMETHOD MATRIX FOR TWO TRAITS (ANXIETY AND DEPRESSION) 
MEASURED UNDER TWO METHODS (SELF-REPORT AND OBSERVATION) 

Self-Report Observation 

Method Trait Anxiety Depression Anxiety Depression 

Self-report Anxiety Reliability Method Trait Neither 
Self-report Depression Method Reliability Neither Trait 
Observation Anxiety Trait Neither Reliability Method 
Observation Depression Neither Trait Method Reliability 
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Generally. construct validation demands thut trait correlations be high to reflect 
convergent validity, and that method correlations be relatively low to reflect discrimi
nam validity. Neither is particularly easy to achieve. Methods, especially those based 
upon self-report, are often highly correlated because of method variance. Results are 
often highly attribute specific. For example, it is not uncommon for self-descriptive. 
clinical, and physiological evaluations of anxiety to be poorly related. Shared method 
variance with other traits may make the concept difficult to measure (Martin, 1961; 
Lang, 1969). On the other hand, magnitudes of depression as inferred by different 
methods seem more highly related (Rush, 1987). 

Recent trends in confinnatory factor analysis, as discussed in Chapter l3 (see 
Bentler, 1986; Bernstein, L988; Breckler, 1990; Byrne, 1990; Gorsuch, 1983; Hayduk, 
1987; Loehlin, 1987) have attracted a new generation of investigators to multitrait. 
multimethod matrices. Hammond, Hamm, and Grassia (1986) represent another use of 
these matrices in studying the coherence or clarity with which raters define their 
concepts. 

PREDICTIVE VALlDITY 

"Predictive validity" concerns using an instrument to estimate some criterion behavior 
that is external to the measuring instrument itself. Some refer to predictive validity as 
"criterion-related validity," which defines the processes involved well. However, this 
use conflicts with other hyphenated terms involving the word "criterion" that are en· 
countered in special problems of testing. 

Developing a test for college admission illustrates a predictive validity problem. 
The test ultimately chosen is useful only insofar as it estimates academic performance, 
perhaps defined as ovenlll grade-point average. After the criterion is obtained, the va
lidity of prediction is straightforward to determine, as it primarily consists of correlat
ing scores on the predictor with scores on the criterion. The size of the correlation di· 
rectly indicates the predictive vaJiclity. 

The Temporal Relation Between Predictor and Criterion 

Used generically. "predictive validity" refers to functional relations between a pre
dictor and criterion events occurring before, during, and after the predictor is applied. 
Thus a test administered to adults could be used to "predict" childhood events (usually 
in the form of contemporary reports of what happened then). A test intended to "pre. 
diet" brain damage is, of course, not intended to forecast who will become brain
damaged in the future but rather to determine who is brain damaged at the time the test 
is administered. A test used to predict academic success properly involves forecasting. 
Others have distinguished predictive validity at those three points in time, respectively, 
as "postdiction," "concurrent validity," and "prediction." 

Using different terms, however, implies that the logic and procedures of validation 
are different, which is not true. rn each case a predictor measure is related to a criteri
on measure. After the data are available, it does not matter when they were obtained. 
The nature of the problem dictates when the two sets of measurements are obtained. 
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Thus to forecast success in college. it is necessary to administer the predictor instru
ment before students go to college; and to obtain the criterion of success in college. it 
is necessary to wait. 

Although the temporal relation between the predictor and criterion makes no logi
cal or procedural difference, the results may not be interpretable in the same way. For 
example, consider administering a personality test to a group of veteran salespeople. 
These individuals typically know how well they have performed compared to their 
peers since their income often reflects their sales and their sales manager may have 
told them (especially, if they were performing poorly.) An ineffective salesperson may 
be painfully aware of his or her low salary. The personality test may reveal depression. 
anxiety. and other symptoms. However. these need not be the calise of the disparity in 
sales; they may be the result. These traits may not have been present when the individ
ual was hired, and the results were of greatest interest to the company. A psychologist 
has an ethical obligation to reveal this interpretive ambiguity to the company. 

Similarly, predictive validity typically decreases as time elapses between the mea
surements of the predictor and the criterion. Assuming that the predictor is obtained 
first, anything that happens to influence the criterion after the predictor scores are ob
tained must reduce the predictive validity, and the longer the interval, the more oppor
tunities there are for such events to occur. Using the same example of predicting how 
well salespeople will perform, consider a salesperson who performed well and in ac
cord with the predictor for a time but had to cease work because of illness. 

In a statistical sense, predictive validity is determined by, and only by, the degree of 
correspondence between predictor(s) and criterion. If the correlation is high, no other 
standards are necessary. Thus if it were found that accuracy in horseshoe pitching cor
related highly with success in college. horseshoe pitching would be a valid measure 
for predicting success in college. 

Nonetheless, sound theory and common sense are useful in selecting predictor in
struments-it is in fact unlikely that horseshoe pitching does predict success in col
lege. Moreover, a rationale for using a particular test for employment and admissions 
is becoming increasingly important: Courts are increasingly demanding some logical 
connection between predictor and criterion (I.e., construct validity) because of the 
often raised issue of cultural bias (see the section titled The Criterion Problem). The 
role of theory in guiding prediction is consistent with the view that all validity is con
struct validity, but one should not miss the point that predictive validity is tied to a rel
atively specific criterion, unlike construct validity. No amount of apparently sound the
ory can substitute for lack of a correlation between predictor and criterion. Similarly, if 
only one test can be used in selection, the test with the highest correlation with the cri
terion would be the most valid in that situation. 

There clearly are additional considerations that determine the usefulness of an actu
al test in particular applied situations. There are applications in which a test is useful 
in forecasting perfonnance even if its correlation with the criterion is modest. Such 
usefulness depends on the size of the available pool of individuals, the proportion of 
people selected, the difficulty of the performance situation. and other matters. The 
overall strategy for employing predictor tests is discussed by Cronbach and Gleser 
(1965), Ghiselli (1966), Guion (1965), Hills (1971), and Horst (1966). 
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Early conceptions of validity were phrUfied ex.clusively in predictive terms, which is 
now regarded as a considerable oversimplification. Predictive validity is primarily at 
issue when rests are employed to make decisions about people. If the statistical results 
(usually correlations) lead to wise decisions, the tests have predictive validity. l'his is 
especially true when emphasis is empirical (a high predictor-criterion correlation) 
rather than theoretical (understanding the processes that underlie the correlation). Al
though predictive validity has an obvious relation to personnel selection, content vali
dation has been dominant in this area for the past 20 years. Regardless, the importance 
of thinking in terms of general constructs rather than specific criteria needs be under
scored. 

Predictive validity is especially important in making academic decisions. Many 
schools still employ the concept of "readiness," and a test of readiness to enter school 
is valid only to the extent that it predicts how well children actually perform in the first 
grade. The same is rrue for graduate admissions testing-tests have predictive validity 
only to the extent that they serve prediction functions. 

Although there is a clear difference between predictor instruments and the criteria 
they are meant to predict, the two are often confused. Perhaps the most widely dis
cussed ex.ample is the extent to which universities describe the quality of their pro
grams in terms of the entrance scores (SATs, OREs, etc.) obtained by their students 
rather than what happens to the students once they get there. 

The Criterion Problem 

Whereas it is easy to talk about correlating a predictor test with its criterion, obtaining 
a good criterion may actually be more difficult than obtaining a good predictor. Many 
times, either no criterion is available or the criteria that are available suffer from vari
ous faults. This issue has been considered in detail by Cronbach (1971), Ghiselli 
(1966), and Hills (1971). 

Predictive validation accepts the criterion as a gillen, unlike construct validation. 
The second author has been involved for many years in the evaluation of applicants to 
law enforcement and security guard positions. This often involves, by law, screening 
for emotional stability which, we suggest, can be done, albeit imperfectly, with various 
measuring instruments in a manner acceptable by construct validity standards. Howev
er, employers often ask for more-to pick the "best potential officers." The natural re
sponse is, "Fine, but how can I know who is the best officer?" Many psychologists 
have attempted (for the most part, unsuccessfully) to go beyond maladjustment screen
ing (ensuring adequate intelligence is another relevant consideration), but their failures 
and the often reSUlting lost legal battles have turned many against more appropriate 
uses of psychological tests. 

Perhaps the most intriguing comment the second author heard about the problem of 
identifying good offi~ers was from a government official who said, "Well, I know the 
officers who are and aren't good, but my partner doesn't." Had the partner been asked, 
it is not unlikely she would have said exactly the same thing; it is more likely that she 
had a different idea, so that the two sets of ratings generaced by their conceptions 
might even have been negativelY correlated. As will be noted at several points in this 
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book, if you haven't heard it before, it is impossible to have predictive validity with u 
mndom (totally unreliable) criterion. Obviously, the two individuals had differenc 
ideas about what was desired. lf their ideas were sufficiently different it would be im
possible for a predictive instrument to correlate positively with both. 

What is known as the "criterion problem"-deciding what to measure-is a core 
problem associated with many predictive validity situations and can easily raise a 
dilemma. A natural way to define who is the best officer is to use supervisory ratings. 
However, such ratings are often highly contaminated with personal biases (Hunter, 
Schmidt, & Hunter, 1979). Supervisors often react to incidental aspeCts of the ratees 
such as their race or gender. These biases need not be negative. Indeed, "bending over 
backward to be fair" attenuates validity just as much as a negative bias. Both attenuate 
correlations between the predictor and the criterion (unless the predictor incorporates 
the same biases). The second author had a related experience involving a situation in 
which police officers were evaluated for their performance by their superior officers 
using personality measures obtained at time of initial hiring. The results apparently 
indicated that the more maladjusted officers received better evaluations from their su
pervisors. In fact, further research using a variety of other measures indicated that 
the supervisors were actually rating the officers' subservience. This part of the 
research fell outside the predictive validity paradigm. although it was clearly relevant 
to construct validation. Hunter and Schmidt (1976) provide a superb discussion 
of the problems inherent in the term "bias" which will be considered in Chapters 9 
and 10. 

Industrial and organizational (IJO) psychologists are not the only people who 
should be concerned about test bias; ratings are not the only measures subject to bias, 
and bias is not the only problem one encounters in predictive validity. An example of a 
different kind of problem may arise when one is teaching a learnable skill, such as a 
technical vocabulary. At the extreme, tile teaching may be so effective that everyone 
masters the material to a high degree, which was the intent of the instruction. The re
sult is that there is no variance in the criterion to be predicted, and so the predictive 
validity must be undefined. Fortunately, content validation is appropriate since one can 
show that the items comprising the test are appropriate to the task demands. 

Other Problems in Prediction 

Another reason why a test that has construct (or. as will be discussed, content) validity 
may not have predictive validity is that something may occur to eliminate or minimize 
relevant differences on the predictor or criterion, the frequently encountered phenome
non of "range restriction. tI For example, the SAT is often criticized for relating poorly 
to college grades (Nairn & Nader, 1980). and the ORE and similar tests are likewise 
criticized for relating poorly to grades in graduate and professional schools. However, 
the process of selecting students typically makes them fairly homogeneous in cogni
tive ability, which is what these tests generally measure. Everyone will be smart at 
competitive schools which use these as selection devices, so differences in other vari
ables, such as motivation and departmental grading standards will dominate prediction 
of grades. 
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Even when a rest i~ not used ex.plicitly for selection. other criteria, such as inter
views, which tap general ability may be used. and these surrogates may induce simUar 
range restriction. Moreover, variation in cognitive ability among students at even rela
tively unselective schools is smaller than in the general population (even when the av
erage level of cognitive ability is not especially high because ot' the limited number of 
students at the high, as well as the low, end of the scale). Range restriction is not limit
ed to purely academic criteria. Job applicants are ofren selected by means of a cogni
tive ability measure and then considered for retention andlor promotion some time 
after initial (probationary) hiring. The initial test may measure a highly relevant 
attribute, but test SCores may be unrelated to whether or not those initially selected are 
retained andlor promoted since initial selection may eliminate relevant variance in the 
attribute. Measures that are appropriate for initial selection may therefore be useless 
for subsequent decisions about promotion or retention. Decisions about retention and 
promotion should be made on the basis of what has happened during the training or 
educational process, not on what was used foe initial selection. Presumably, the initial 
screen ensured sufficient ability; orner attributes such as motivation dominated later. 

Dawes (1971) noted some interesting consequences of range restriction On One 
variable when other relevant predictors are not considered. Suppose that cognitive 
ability and motivation actually contribute equally to success at a task like completing 
graduate school, but, as is common, selection is based upon cognitive ability alone 
since motivation is difficult to measure. Those selected will clearly vary more in moti
vation than in cognitive ability, and achievement will likewise depend more upon mo
tivation than upoA ability. 

An even more interesting point can be illustrated by assuming that cognitive ability 
and motivation are uncorrelated in the original group. An institution may not be able 
to obtain many high ability-high motivation applicants. Eliminating these studems 
leaves a negative correlation between ability and motivation in the remaining students. 
Even if cognitive ability and motivation are related, their relation will be more strong
ly negative in this remaining pool than in the general pool. Since the most cognitively 
able are selected from tbis pool, those selected will also tend to be relatively unmoti
vated. The practical consequence is that one should not be too stringent in selecting 
along one dimension when others are relevant and when one may not be able to get 
those who are best in the general sense to accept. The cognitive abilities measure may 
still possess construct validity, bue its use at the expense of other considerations can be 
counterproducti ve, 

Part of the problem in selecting a criterion is that any criterion is influenced to a 
certain degree by random error and is therefore only panially reliable. Psychometric 
mechods discussed in this book are able to handle this problem fairly well, sometimes 
leading to improved measurement of the very criteria they were intended to measure. 
The more serious problem is that the criteria may be systematically influenced by fac
tors that may undercut the decision making process. We have noted how gender and 
ethnic bias (for, as well as against, as noted above) may playa negative role. In addi
tion, an educational psychologist may wish to predict academic success. An obvious 
criterion is the grade point average. In some situations, typically professional schools, 
students take a common curriculum and so their grades are based upon a common set 
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of instructors. Individual instructors have idiosyncrasies and biases, of course, which 
may pose problems. However. everyone knows that students often take courses be
cause of the grade they expect to earn and that departmental standards vary consid
erably. 

[he "Composite Criterion" 

Validity Coefficients 

Another variation on the criterion problem is that many times the measure available to 
you as a criterion is a composite of two separable attributes. For example, assembly 
line workers can vary in the speed of their work, but they can also vary in the accura
cy. Their gross output mayor may not be of interest. Some correction for the number 
of defective items is needed to provide a net output measure. In this case, there may be 
a simple economic answer if the cost of a defective item aod the value of an accept
able item can be measured. Assuming this can be done, a predictor which is sensitive 
to both attributes, to approximately the same extent that they are reflected in the crite
rion, will provide superior predictive validity compared to one that is a "pure" mea
sure. Note that predictive validity minimally assumes the purity of the predictor, incor
porating concerns about illegal bias, and is concerned only that it work in the 
appropriate context. This contrasts with the construct validity paradigm which stresses 
pure measures of attributes. 

AU these issues indicate that investigators can rarely have faith in their criterion mea
sures, regardless of the area in which they work. Yet, to use predictive validity in con
trast to construct validity is to assume that the criterion is appropriate. In a very real 
sense, the concept of predictive validity is limited in its applicability; construct validi
ty allows one to evaluate the adequacy of the nominal criterion at the same time the 
nominal predictor is also evaluated. Consequently, predictive validity represents a very 
direct, simple, but Limited issue in scientific generalization that concerns the extent to 
which one can generalize from scores on one variable to scores on another variable. 
The correlation between the predictor test and the criterion variable, commonly termed 
the "validity coefficient," specifies the degree of validity of that generalization. 

The validity of individual predictor instruments and combinations of predictor in
struments is determined by bivariate and multivariate correlational methods discussed 
in several later chapters. The simplest type of validity coefficient arises when an indi
vidual predictor test is correlated with an individual criterion in a particular circum
stance, e.g., the Scholastic Aptitude Test is correlated with grade point avemges of stu
dents in school X and year Y. 

Correlations based upon a single predictor, 'save for some settings highly dominated 
by intelligence (general cognitive ability), rarely exceed .3 to .4 (a figure that is also 
typical of predicting academic success). People are far too complex to pennit a highly 
accurate estimate of their proficiency in most performance-related situations from 
any practicable collection of test materials. Equally complex are the perturbations af
fecting criterion measures, e.g., the immense complexity of all the variables involved 
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in detemlining the average grades of college gtudents or the total amollnts of an insur
ance agent':; sales. These immense complexities make it remarkable that predictor 
tests correlate as highly as they do. For example, scholastic aptitude tests are no less 
predictive of college grades than are meteorologists' IO-day advance predictions of the 
weather. 

The proper way to interpret a validity coefficient is in terms of the extent to which 
it indicates a possible improvement in the average quality of persons that would be ob
tained by employing the instrument in question. Tests that have only modest correla
tions with their criteria (e.g., correlations of .30 and .40) can improve the average per
formance of personnel markedly under optimal circumstances, e.g., many applicants 
for relatively few positions. Of course, many mistakes will be made in prediction, but 
on the average persons who score high on the test will perform considerably better 
than persons who score low on the test. 

As a simple example, suppose that a test used to select sales agents correlates .30 
with their volume of sales. The scatter plot of this may show that the average sales of 
the highest scoring applicants is 10 percent greater than the average sales. Given 
enough applicants, the company could increase gross sales by LO percent, which might 
make the difference between going into bankruptcy and becoming very profitable. In a 
similar way, tests that have only modest correlations with their criteria can often make 
highly important improvements in the average performance of workers that benefit 
their clients as well. 

Validity Generalization 

Treatments of validity a generation ago properly stressed the importance of treating 
validation as a continuing process. However, they also tended to view validity in ex
tremely narrow terms. If company X found that a test predicted success in a similar 
company Y, it would naturally be inclined to adopt that same test. However, perhaps 
company X was too small to allow its personnel selection methods to be evaluated. 
Some argued that the evidence gained from company Y is irrelevant; one would have 
to conduct a separate validity study in company X. A more recent view is that validity 
evidence generalizes across similar situations (Schmidt & Hunter, L977). Of course, 
normal considerations of predictive logic apply. Differences between the two compa
nies in such matters as the variance among their applicants, type of clientele served, 
etc., reduce the degree of generalization. 

There is a second component of Schmidc and Hunter'S position. Many early TID 
psychologists adopted a "loclc-and-key" approach to personnel selection and c1assifica
tion-certain patterns of abilities were better suited for some jobs than others. In con
trast, Hunter and Schmidt argue that overall cognitive ability is generally (but not to
tally) a sufficient predictor. We will not review the pros (Hunter & Hunter, 1984; 
Hunter & Schmidt, 1981; Schmidt, Hunter, & Pearlman, 1981; Schmidt, Pearlman, 
Humer, & Hirsh, 1985) and cons (Sackett, Zedeck, & FogJi, 1988; Prediger, 1989) of 
this issue. However, note that the statistical issue of whether to use differential weights 
or equal weights is one of the most general questions there is in psychometric theory 
and statistics. In general. evidence for the advantages of differencial weighting tend to 
be slight unless samples are extremely large. 
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One major reason why some recent trends have tended to favor at least partial va
lidity generalization is that many early contrary examples turned out to be statistical 
artifacts of various types. One common problem is range restriction that differentially 
operates in one situation relative to another. For example, if company X tends to re
cruit applicants who vary more widely in relevant skills than company Y, validity co
efficiems will also tend to be higher in company X. Our previous example involving 
the SAT at schools that vary in selectivity illustrates this point; paraUel examples exist 
in industry among companies that vary in the ratio of applicants to people hired. When 
apparent differences in validity affect groups defined by gender or ethnicity, the term 
"differential validity" is used as part of the more general issue of test bias. Chapters 9 
and 10 consider these issues which are understandably quite politically sensitive. 
Chapter 5 will consider a procedure called moderated multiple regression that is ap
parently less sensitive to differences in variance than comparing correlation magni
tudes. 

"Meta-analysis" (Hedges & Olkin, 1985; Hunter, Schmidt, & Jackson, 1982) involves 
aggregating results across studies in order to obtain a more powerful and stable esti
mate of effect magnitudes. For example, the mean difference associated with a given 
experimental effect may be too small in each of a series of incliv~dual studies to be sig
nificant, but it may be significant when the results are pooled, reflecting the increased 
sample size. Examples of meta-analyses appear in nearly every issue of the Psycholog
ical Bulletin. Meta-analysis is extremely useful in aggregating well-done studies ham
pered by small sample.size and in averaging out spurious effects that operate in both 
directions on a difference. Consequently, it can be a useful tool to integrate the litera
ture. However, a significant effect in a meta-analysis may arise because of a spurious 
influence (confound), just as in a single study. Meta-analysis is no substitute for care
ful evaluation of individual studies' procedures and results, and it was never intended 
as a "meat grinder" to average out results of studies that vary in their quality of execu
tion. Careful evaluation of individual studies may suggest why the effect of interest 
occurred in certain studies and not in others. 

CONTENT VALIDITY 

Validity sometimes depends greatly on the adequacy with which a specified domain of 
content is sampled. A prime example is a final examination in an introductory psy
chology course. Obviously, predictive validity is not relevant because the test is de
signed to measure academic performance directly and not to predict something else. 
The test must stand by itself as an adequate measure of what it is supposed to measure. 
In essence, the test is the criterion of performance. 

One might argue for a construct validation approach. Even if course examinations 
were to be validated in terms of some external criterion, what behaviors would be ade
quate? One might see whether students take another course in that field. However, a 
student might deserve an A in the course by any standard but never take another 
course in that area because it was simply an elective. Of course, one would expect the 
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test to correlate with some other variables, und the size of such correlations provides 
some hints about the test's adequacy. 

For example, one would expect to find a substantial correlation between final exam
ination scores in introductory psychology and abnormal psychology among students 
who took both courses. A correlation of zero would make one suspect that something 
was wrong with one or both of the examinations or with one or both courses. Howev
er, such correlations offer only hi.nts about the validity of the examinations, with verifi
cation resting on the adequacy with which content had been sampled. The lack: of Cor
relation might well reflect range restriction caused by tne inability of students wbo 
performed poorly in the introductory course to take the more advanced course-any
one reading this book knows how their desires to take more advanced courses were in
fluenced by earlier course grades. These difficulties suggest an alternative approach to 
evaluating the examination-content validity reflecting how well the course material 
was sampled. 

Many other measures require content validation. These include course examina
tions in all types of training programs and at all levels of training. AU commerci.ally 
distributed achievement tests require content validity, as in a comprehensive measure 
of school progress. Although measures used in personnel selection are not absolutely 
required to have content validity, their general acceptance is enhanced when they do. 
For example, both employers and employees react more positively to tests that appear 
related to job demands. 

One should ensure content validity (adequacy of sampling the material on whi.ch 
people are tested) in terms of a well-formulated plan and procedure of test construc
tion before the actual test is developed rather than evaluate this after construcqon. One 
example is to construct a spelling test for fourth-grade students by randomly sampLing 
words occurring in readers used at that level. The plan is to sample randomly from a 
specified domain of content, and potential users should agree that the procedure en
sures a reasonably representative collection of words. 

In addition, a sensible procedure is required to transfonn the words into a test. One 
possibility is multiple choice-each correctly spelled word is grouped with three mis
spellings. Alternatively, the teacher may read the word aloud and require the student to 
write the correct spelling. A variety of factors such as class size would dictate the 
choice, and there would be a variety of other decisions, such as the specific instruc
tions to be used. The validity of the measure is judged by the character of the plan and 
the skill with which the plan has been carried out. If most potential users of the test 
agree that the plan was sound and well carried out, the test has a hi.gh degree of coo
tent validity. Further infonnation on content validation may be found in Nunnally 
(t972) and Thorndike (1971). 

The spelling test illustrates the two major standards for ensuring content validity: 
(1) a representative collection of items and (2) "sensible" methods of test constrUction. 
Of course, most times these standards are not so easily judged. It is often logically im
possible or infeasible to actually sample content. For ex.ample, how should one ade
quately sample items on a geography test, as neither the sampling unit nor the domai~is 
well defined'? One could sample sentences from textbooks and tum them into true-false 
items, but such a test is obviously inadequate. Rather, one must formulate a collection of 
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items that broadly represents the course. To ensure tnat the items actually represent the 
course, a syllabus (blueprint) of relevant questions and problems is needed. Judging 
the quality of the outline in such cases is an important part of the assessment. 

A simple random sampling of content is usually unrealistic for a second reason: 
The selection of content usually involves questions of values. Thus, there may be good 
reason to stress spelling performance on nouns rather than on adjectives and verbs, or 
quantitative concepts rather than numerical computations in an arithmetic test. This is 
true of nearly all measures based on content validity: Values determine the relative 
stress on different content areas. Of course, where values are important, there will be 
differences in values among people and therefore about the proper content coverage of 
particular tests. The values underlying a measure and its construction should be made 
explicit, e.g., in test manuals (see Krathwohl and Payne, 1971). 

Deciding what is a sensible method of test construction further complicates content 
validation. This is not much of a problem with spelling tests, because it is relatively 
easy to construct a satisfactory test. Indeed, a domain of content (see Chapter 6 for a 
more complete discussion of this crucial construct) can be well defined by supplying 
the list of words to be used in testing. The test itself could then be generated by a ran
dom process, although this is not necessary. Other areas often require much more skill. 
Wesman (1971) discusses the construction of test items. Problems often arise in con
tent validation because it primarily rests on appeals to reason about the adequacy with 
which important content has been sampled and cast into test items. However, there are 
ways to analyze test data that provide important circumstantial evidence (see Hen
ryssen, 1971; Cronbach, 1971; Hambleton, 1980; Rovinelli & Hambleton, 1977). 

One expects at least a moderate level of internal consistency among the test items; 
i.e., the items should tend to measure something in common (see Chapter 8). This is 
not an infallible guide, however, because it is reasonable with some subject matter to 
include materials that tap somewhat different abilities Gust as is appropriate in some 
predictive situations). For example, skill at numerical computation and ability to quan
tify are not identical, but a good argument could be made for mixing these two types 
of conteot when measuring overall progress in arithmetic. 

Another type of circumstantial evidence for content validity is that learning normal
ly causes posues! scores to increase over pretest scores. The improvement on individ
ual items is some evidence for their validity. There are, however, numerous flaws in 
this reasoning. Any trivial item like spelling the teacher's name may show marked im
provement. Conversely, some very important items may improve little on the posttest 
because of inadequate texts, unskilled teachers, or lazy students. 

Another type of evidence for content validity is obtained from correlating scores on 
different tests purporting to measure much the same thing, e.g., two different commer
cial tests claiming to measure !\chievement in reading. It is comforting to find them 
highly correlated, but this does not-guarantee content validity. Both tests may measure 
the same wrong things. 

In spite of efforts to settle every psychological measurement issue by a flight into 
statistics, content validity is mainly settled in other ways. Although helpful hints are 
obtained from analyses of statistical findings, content validity primarily rests upon an 
appeal [0 the propriety of content and the way that it is presented. 
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Content validity also relates to a rather direct issue in scientific generalization-the 
extent to which one can generalize from a particular collection of items to all possible 
items in a broader domain of items. This type of scientific generalization is obviously 
at issue in developing an achievement teSt for spelling. The intention is to obtain a 
sample of words that is representative of those in the learning environment of students 
at a particular grade level. Although the item collections are usually formulated rather 
than statisticaUy sampled in resting spelling ability and other types of achievement 
(e.g., knowledge of law enforcement practices for a civil service examination for pro
moting police officers), the intention is still to obtain as representative a collection of 
item material and relevant content as possible. Similarly, the testing method should 
produce results very similar to those of alternative approaches. A representative sam· 
pting of content and testing method permits the maximum generalizabilicy of results. 

EXPLICATION OF CONSTRUCTS 

Our earlier discussion of construct validation is probably well accepted by most thea· 
lists. although perhaps 'SOme related procedures were specified in more detail than is 
typically the case. We hope we have provided a workable set of standards for the mea
surement of psychological constructs. There is, however. a more defensible logic the 
reader may wish to use in thinking about the measurement of psychological constructs. 
Rather than refer to this logic a& construct validation, it is more correct to refer to it as 
construct explication-the process of making an abstract word explicit in terms of ob
servable variables. 

A potential problem with our earlier logic in determining construct validity is that it 
might permit an unwary individual to aSSLlme that a construct has objective reality be
yond that used to measure the construct. Thus we speak of anxiety as though it were a 
"real" variable to be discovered empirically. Treating a term as if it denotes a real enti· 
ty or process is called "reification" and has caused many problems in science. 

Evidence is often used to support or refute arguments about whether or not a con· 
struct has been measured. One hears psychologists say, ''This is not really a measure 
of anx.iety" Or "Scale X provides a good measure of anx.iety." Inherent in this and 
other statements used in discussing the measurement of constructs is the implicit as
sumption that constructs have objective reality, i.e., exist beyond the measures pro
posed to describe them. It is more defensible to make no claims for the objective reali
ty of a construct name such as "anxiety" and simply use the construct name as a 
convenient label for a particular set of observable variables. The name is "valid" only to 
the extent that it accurately describes the kinds of observables being studied to others. 

A more airtight set of standards for construct validity starts with the definition of a 
sec of measures concerning observables. Thus set A might consist of measures of ob
servables Xl. X2• X3, etc., and set B might consist of observables Y" Y2. Y3• etc. 'The 
X's might be different measures of anxiety and the .r's different measures of retention. 
Construct validation (the term will be modified later) then consists of fonning a net
work of statements relating the different measures in set A. and then in set B. The two 
sets are then related to one another and perhaps to other sets. The resulting conclusions 
are, of course, probabilistic ("best guesses" given the data). 
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There are many ways to do this, depending on what types of empirical studies have 
been and will be undertaken and the types of statements that make the most theoretical 
sense. The most straightforward example is where individual dift'erences on the differ
ent measures within a set are correlated with one another. Thus XI may correlate .50 
with Xl and .45 with X3 , and X2 may correlates .55 with XJ' One could define confi
dence intervals for scores on the three measures knowing these correlations. If, for e){
ample, a person has a score of 20 on measure X" one could determine the probability 
that the person will score between 40 and 60 on X::!. Although one seldom needs to de
rive such confidence intervals e){plicitly, correlations among the measures detennine 
their properties. 

The correlations among the individual observables then make it possible to infer 
correlations among different combinations of variables using methods described in 
Chapter 5. Thus, one can deduce the correlation between the sum of one set of three 
measures in the set and another three measures in the set. More importantly, one can 
deduce the correlation between any particular measure in the set and the sum of all 
measures in the set. 

Additional studies provide more information about how variables in a particular set 
intercorrelate. The totality of such information forms the internal structure of these el
ements (observables). As noted above, this structure may indicate that all the variables 
tend to measure (1) a single construct, which supports retaining the set as originally 
defined (2) two or more things, which dictates dividing the original set A into several 
sets A I. A2 ... , or (3) nothing in common (possess no strucrure), because aU correla
tions are very low. In case 3 it is illogical to speak of the variables as constituting a set. 
and the investigator should focus on other sets of variables. Factor analysis is invalu
able for studying such internal structures. 

Statements may also be made about variables in different sets. Thus. assume that a 
particular variable XI in A is correlated with a particular variable Y, in set B. Depend
ing on the size of the correlation, it might tben be possible to infer (probabilisticaUy) 
unknown correlations involving other variables in the two sets. For example, if XI and 
X1. are known to correlate highly and if Y1and Y2 are known to correlate highly. a high 
correlation between X, and Y1 leads one to e){pect a higb correlation between Xl and Y::!. 

Similarly, if the sum of the variables in A correlates highly with the sum of the vari
ables in B. it is possible to estimate the correlation between any particular variable 
from A and B or the correlation between any two combinations of variables from A 
and B. Thus, in addition to the two internal structures within sets A and B taken sepa
rately, there is a cross structure between variables in the two sets. If the internal struc
ture of any set is well defined, a scientist may explore cross strllctures of that set with 
other sets. The simplest case is to correlate- the average score over the variables in one 
set with the average score over variables in the other set. Such cross structures provide 
scientific progress: Theories may be tested and/or interesting discoveries made. 

The measurement and validation of constructs ultimately consists of nothing more 
than determining internal structures and cross structures, usually in the. context of 
some broader theory that suggests variables, constructs, and their relations. However, 
laypeople and scientists alike are disquieted by looking at things this way. The system 
requires more meaning. Scientists are not content to say only that particular variables 
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relate to one another; they want to make broader statement.'!. As was mentioned previ
ously, words denoting comitructs are eS5entiul tor the scientist to think about problems, 
fonnulate theories, and communicate the results of experiments. This need for names 
pushes the scientist. and the layperson even more, into assuming that some real vari
able identifying the construct will be discovered some day. For example. some psy
chologists talk as though some "real" counterpart to the word "anx.iety" eventually 
will be "found." The problem is not one of searching for a needle in a haystack, bur of 
assuming that the needle exists in the first place. 

The words that scientists use to denote constructs (e.g., "anxiety" and "intelli
gence") have no real counterparts in the world of observables; they are oniy heuristic 
devices for exploring observables. Whereas. for example, the scientist might find it 
more comfortable to speak of anxiety than of set A. only set A and its relations objec
tively exist, research results relate only set A, and, in the final analysis, only relations 
within members of set A and between set A and members of other sets can be unques
tionably documented. 

Although words relating to constructs are undeniably helpful to the scientist, they 
also can cause real trouble. Such words only designate collections of observables. 
Thus the word "fear" is a symbol for many possible forms of behavior. The difficulty 
is that the individual scientist is not sure of all the observables that relate to such a 
word, and scientists frequently disagree about which observables are related to the set. 
A word's denotations can be no more exact than the extent to which (I) all possible re
lated observables are specified and (2) all who use the word agree on the specification. 
Dictionary definitions of words concerning constructs help very little; they serve only 
to relate one unspecified term to other unspecified terms. 

Considering the inexactness of denotations of words defining constructs. it is im
possible to prove that any collection of observables measures a construct. It is much 
like an expedition Starting out to photograph a rare bird, an "awrk." The scientists may 
agree that the awrk has red wings, a curved bill, and only two toes, but everything else 
about the awrk may be either unknown or in dispute. How, then, would the expedition 
ever know for sure whether it has found an awrk since other birds may have these 
same three properties? The analogy really is not farfetched; the same inconsistency is 
apparent in efforts [0 "find" meaSUl·es of some constructs such as "rigidity." 

Although one can never prove that any set of measurement methods precisely fits a 
construct name in a strict sense, there are forms of verification that satisfy the major 
requisite properties. The scientist starts with a word like "anxiety" and hypothesizes a 
set of related observables from it. The internal structure of those observables can be 
verified by previously noted methods. If some combination of the members of tlris set 
of variables relates strongly to some combination of the members of another set as 
predicted from the theory, the first set has explanatory power. If it is useful to call 
these two steps "construct validation," no harm is done, but one should understand 
what is being tested and how the related evidence is gathered. 

It would be good if words denoting constructs were altered as evidence is obtained 
about relevant sets of observables, but this is unfommately not done as frequently as it 
should be. Ideally, one could envision a process whereby gradual refinements of a set 
of observables are matched by gradual refinements of the words used to denote the set. 
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Thus. relatively inexact terms like "anxiety" and "intelligence" would be successively 
replaced by terms that are more denotatively exact fOt· a set of observables, and the set 
itself would be continually refined as its internal structure and CrOss structure became 
better articulated (specific. empirically grounded tenns like "state" and "trait anxiety" 
are a start in this direction). It is doubtful. though, that any terms in common parlance 
will ever suffice to serve this purpose. Unfortunately. research tends to produce new 
terms and to retain old ones. 

Although it may be useful to think of measuring a construct or testing a theory 
about that construct, these ideas are best viewed as "useful fictions." A construct is 
only a word. and although the word may suggest explorations of the internal struc
ture of an interesting set of variables, there is no way to prove that any combination 
of these variables actually "measures" the word. Theories consist of collections of 
words (statements about natural events), and though such theories may suggest inter
esting investigations of cross structures among sets of observables, the evidence ob
tained describes the utility of the theory and not its truth. Call it the measurement 
and validation of constructs if you like, but science can only provide (1) words de
noting constructs, (2) sets of variables presumably related to these constrUcts, (3) ev
idence about the internal structures of such sets, (4) words concerning relations 
among constructs (theories), (5) cross structures among different sets of observables 
implied by these words, and (6) evidence regarding such cross structures. It can pro
vide nothing more. 

ChangIng SubstantIve Theories versus Changing Measurement Theories 

The development of any instrument must be guided by a theory even if that theory is 
relatively informal, and we have stressed that a theory consists of a measurement and a 
structural component that, respectively, deal with the definitions of constructs and their 
interrelations. A favorable outcome of any given study effectively supports both as
pects of the theory since it is consistent with the premises that the observables defining 
the construct have been properly chosen and that the relation to other variables is also 
as it should be. However, even in this situation the support may be illusory: The rela
tions that are observed may arise for a different reason than that postulated. For exam
ple, a badly designed study may produce higher scores among schizophrenics than 
normals because of a failure to motivate schizophrenics; another study properly moti
vating them may find no difference. 

Theories are always incomplete in failing to predict all relevant relations. VutUally 
every measure that became popular led to new unanticipated theories. This is the 
"heuristic" value of a theory. Such new discoveries lead to expansions of the original 
theory to take the new discoveries into account. 

The obvious problem is what to do when the results of using measures are inconsis
tent with the theory. The theory may predict a relationship that is not found, the ab
sence of a relationship when one exists, or a relationship in the wrong direction. The 
measure, the theory, or both need to be modified jf one is to continue this direction 
of research. There are no guidelines for making an appropriate choice. The investiga
[or may take consolation in the fact that stich negative results sometimes are a real 
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contribution. A great many theories grow out of the everyday experience of the re
searcher and are quite likely to be shared with other investigators. Formalizing a theo~ 
ry is one of the best ways to reveal flawed or overly narrow conceptions. 

A final possibility is to abandon the area of research. What to do here has the same 
uncertainty as the issue of what to revise. Sometimes progress could not be made be
cause of technological limitations that were later overcome. Applications of now-pop
ular techniques based upon complex numerical analysis developed in the days before 
computers is one important example. Science has numerous recorded instances of in
dividuals who clearly devoted too much of their career to the wrong problem, but it 
also contains other instances of people who prematurely stopped short. 

A Commonsense Point of View 

We have tried to make you properly uneasy if you believed that science could ever es
tablish the "ultimate reality" of a construct. We will now come back down to earth and 
take a commonsense pOint of view. Although there is nothing wrong with our previous 
analysis of constructs, one could rightly argue that our concerns about construct va1idi~ 
ty really baH down to something rather homespun, namely, the qUality of the circum
stantial evidence of a new measurement method's utility. New measurement methods 
and newly defined variables, like most new things, should not be trusted until they 
have been thoroughly tested. If a measuring instrument produces interesting findings 
over the course of numerous investigations and fits the construct name applied to it, in
vestigators should be encouraged to continue using the instrument and to use the con
struct name in referring to it. On the other hand, if the resulting evidence is dismal, as 
it often is, scientists should be discouraged from wasting their time on the instrument 
and wonder if it really fits the name of the attribute employed to describe it. If it is not 
possible to find sets of variables that relate to the construct, the construct 
itself should be questioned. Essentially this is what construct validity is about from the 
behavioral scientist's perspective. 

OTHER ISSUES CONCERNING VALIDITY 

Relations among the Three Types of Validity 

Whereas the three types of validity were discussed separately in order to emphasize 
their differences. they actually tend to complement one another in practice (Amastasi, 
1986). There are obvious ways in which construct validity supports predictive validity 
and coment validity. It was mentioned that instruments which are essentially intended 
to measure constructs sometimes are often used as specific predictors, e.g., measures 
of cognitive ability. Although the measurement functions of an intelligence test often 
involve construct validity, as in basic research on inheritance, these tests are also use
ful in predicting academic Dr occupational success. The extent to which such tests 
serve prediction functions enhances the overall construct validity of the instrument. 
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Content validity also supports construct validity: The same procedures required to 
ensure content validity are intimately related to defining the domuin of observables in 
construct validity. 

Whereas content validity mainly depends on a rational appeal to the care with 
which a domain of content has been sampled, both predictive validity and construct 
validity provide important auxiliary information of a more empirical nature. Although 
achievement tests and other instruments that rely mainly on content validity are not 
specifically constructed to correlate with other variables, they often prove to be excel
lent predictors of specific criteria, such as success in higher education. 

Although predictive validity may be described directly in terms of a correlation be
tween a measure and a relevant criterion, one often must rely heavily on both content 
validity and construct validity to support the measure's application, particularly in per
sonnel selection or placement. If a predictor test also has content Validity in the sense 
of following from a well-outlined domain of content, sampling that domain well and 
testing sensibly provide additional circumstantial evidence for the usefulness of the 
predictor test beyond the sheer correlation with the criterion. However, as noted 
above, factors such as range restriction may limit the predictive validity of a measure 
in a specific application. 

Construct validity is especially helpful with predictor tests. The fact that a predictor 
test is known to correlate well with other measures of a construct that is also known to 
affect the criterion variable is important circumstantial evidence about the predictor's 
usefulness. Even though a test that is used specifically for a prediction function should 
be validated as such, there are many cases where the only recourse is to rely on con
tent validity and construct validity. A test must sometimes be selected before there is 
an opportunity to demonstrate its predictive validity. For example, the criterion mea
sure might not be available for years after it is necessary to use the predictor instru
ment. fn other cases, either there is no sensible criterion available or the available ones 
may be obviously biased and/or unreliable. Such instances force one to fall back on 
content and construCt validity. In still other cases, the predictive validity study may be 
ethically dubious. For example, one should not arm individuals with known histories 
of severe emotional maladjustment as police officers to evaluate the use of an emo
tional maladjustment screen. Analog experiments, 'which contribute construct validity, 
would of course be encouraged. 

Other authors have used different names to describe the three types of validity dis
cussed in this chapter. Predictive validity has been referred to as "empirical validity," 
"S"tatistical validity," and more frequently "criterion-related validity"; content validity 
has been referred to as "intrinsic validity," "circular validity," "relevance," and "repre
sentativeness"; and construct validity has been spoken of as "trait Validity" and "facto
rial validity." 

One frequently sees the term "face validity." Although its definition is somewhat 
vague, it may best be unders[Qod as reflecting the extent to which the test taker or 
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someone else (usually someone who is not trained to look for fonnal evidence of 
validity) feels the instrument measures what it is imended to measure. For example, 
consider an item like "Sometimes [ feel like people don't fully understand me" on a 
self-consciousness measure. This item might be valid in any of the above senses; e.g., 
it might correlate with like items and the total test score might correlate with clinical 
judgments. However. it might also fail to correlate because everyone feels misunder
stood at times. The point is that it looks like it measures self-consciousness and there
fore has face validity in that sense. Pace validity has often been criticized as a concept 
by psychometricians, and properly so, when it is used as a substitute for any of the 
forms of evidence cited above. However. this is perhaps too simplistic. 

It is easy to confuse face validity with content validity. Face validity concerns judg
ments about items after an instrument is constructed. As discussed previously, content 
validity is more properly ensured by the plan of content and item construction before it 
is constructed. Thus. face validity can be considered as one limited aspect of content 
validity, concerning an inspection of the final product to make sure that nothing went 
wrong in transforming plans into a completed instrument. 

The predictive validity of an instrument depends almost entirely on how well the 
instrument correlates with the criterion it is intended to predict. Consequently, face va
lidity has no direct .relevance. Many instruments look as though they should correlate 
wen with a erilerion but do not, and many other instruments bear no obvious relation
ship to a criterion but do correlate well with the criterion. It is often desirable that the 
instrument not bear an obvious relation to what is being tested in order to avoid dis
torting the behavior of those tested. Face validity is, however, sometimes important to 
prediction in suggesting which instruments might correlate well with their criteria. 
Thus, even though the correlations tell the full story, one should not select predictors at 
random. Before prediction research is done, there must be some hope that a particular 
instrument will work. Such hope is fostered when the instrument looks as if it should 
predict the criterion. 

Also, tests usually are more predictive of a criterion if their item content is phrased 
in the language and the terms of the objects actually encountered in the particular type 
of performance, other considerations being equal. For example, reading comprehen
sion examinations for police officers frequently phrase questions in terms of law en
forcement situations. Face validity therefore plays a important indirect role in the con
struction and use of predictor instruments. 

Face validity thus often plays an important public relations role in applied settings. 
For e;<ample, although the MMPI has been found useful in assessi.ng psychogenic in
volvement in patients suffering from chronic pain, many patients refuse to take the test 
because of the 'implication that they may be "crazy." Some recent success at obtaining 
greater cooperation has been found with tests that focus more specifically on pain
related symptoms, e.g., Melzack (l975). Less logical is the reluctance of some admin
istrators in applied settings like industry to use predi.ctor instruments which lack face 
validity. Conceivably, a good predictor of a particular criterion might consist of prefer
ences among drawings of differently shaped and differently colored butterflies, but it 
may be difficult to convince administrators that the test actually selects employees 
wen. 
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The Place of Factor Analysis 

For those who are not already familiar with factor analysis, it essentiaHy consists of 
methods for finding clusters of related variables. Each such cluster. or factor, consists 
of a group of variables whose members correlate more highly among themselves than 
they do with variables outside the cluster. Each factor is thought of as a unitary at
tribute which is measured to greater or lesser degree by particular instruments depend
ing on their correlation wi.th the factor. Such correlations are sometimes spoken of as 
the "factorial validity" of measures, but it is better to speak of such correlations as the 
"factorial composition" of measures because the word "validity" is somewhat mislead
ing. Methods of factor analysis and their use in the development of measures will be 
discussed in Chapters 11 through 13 and at other points in the book, but it is helpful to 
place some related issues in perspective since factor analysis is intimately involved in 
validation. 

The factorial composition of measures plays a part in all three types of validity dis
cussed in this chapter. Factor analysis is important in selecting instruments to be tried 
as predictors. Instead of constructing a new test for each applied problem as it arises, 
one should select a predi.ctor instrument from a "storehouse" of available instruments. 
Factor analysis can construct such storehouses with known factorial composition. It is 
much easier to formulate hypotheses about the predictive power possible from particu
lar factors than to fonnulate hypotheses about the predictive power of instruments de
veloped on an ad hoc basis. We argue in Chapter 8 that devel~ping measures ad hoc in 
applied prediction is not only highly wasteful of energy but also leads to illogical test 
construction. 

Factor analysis provides helpful evidence about measures that are intended to have 
content validity. For example, suppose a factor analysis is conducted of a battery of 
achievement tests and that a presumed mathematics test correlates highly with a verbal 
comprehension factor. This implies that the phrasing of the items was unduly difficult. 
Rewording the items may eliminate this problem. 

Factor analysis is at the heart of the measurement of psychological constructs. As 
noted previously. explicating constructs mainly consists of determining (1) the internal 
statistical structure of a set of variables said to measure a construct and (2) the cross 
structures between the different measures of one construct and those of other con
structs. Factor analysis is used directly in addressing both these issues. To take the 
simplest case, if all the elements of set A correlate highly with one another and all the 
elements of set B correlate highly with one another. the members of each set then have 
high correlations with the factor defined by their respective sets. This is evidence that 
the two sets, corresponding to two supposed constructs, have a "strong" internal struc
ture. The cross structure of the two sets of measures would be supported, in addition, if 
the two factors correlate substantially. Methods known as confirmatory factor analysis 
(see Chapter 13) are especially useful when the relations among the measures follow 
from a reasonably well-defined theory. 

Factor analysis plays an important part in all three types of validity, but it plays a 
somewhat different part in each. Factor analysis mainly is important to predictive va
lidity in suggesting predictors that will work well in practice. Factor analysis is impor
tant to content validity in suggesting how to revise instruments. Factor analysis pro-
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vides some of the tools needed to define internal structures and cross structures for sets 
of variables in construct validity. 

Despite its brevity, this chapter is the most central to the book because no measure is 
useful in the long run without evidence for its validity, which deals with how well it 
measures what it purpOrtS to measure in the context in which it is to be applied. The 
term "validity" has three major meanings: {I) construct validity deals with the mea
surement of psychological attributes, as in developing a measure of anxiety; (2) pre
dictive validity deals with establishing a statistical relationship with a particular crite
rion, as in developing admissions tests; and (3) content validity deals with sampling 
from a poo~ of required content as in a spelling test. Because all three have much in 
cornmon, many stress the unity of the validation process. However, there are some im
portant differences among the three strategies. 

Construct validation requires a substantive theory to define the construct to be mea
sured as well as a measurement theory to provide the measure itself. Constructs are in
herently abstract and best viewed as explanatory tools invented by scientists rather 
than realities to be discovered. Three aspects of the process of construct validation are 
(l) specifying the domain of relevant variables, (2) determining the ex.tent to which 
observables measure the same or different things. and (3) doing relevant research to 
determine if the properties of the measure are consistent with the substantive theory. 
These three aspects are ideally conducted in the indicated order, but a variety of con
siderations often make this impractical. Measures that presumably define a given con
struct should all intercorrelate highly, i.e., be convergent (Campbell & Fiske, 1959) in 
providing similar functional relationships to other relevant variables that are consistent 
with the substantive theory. A novel measure should also have divergent validity in the 
sense of measuring something different from existing methods. It is also important to 
separate the method variance that reflects the way constructs are measured from the 
content variance reflecting the similarity of what is measured as both contribute to 
observed correlations. A.ttempts to achieve this separation may involve a multitrait
multimethod matrix. 

Predictive validity in one narrow sense can be evaluated simply in terms of how 
well the measure relates to its designated criterion, but considerations such as test bias 
that may jointly affect predictor and criterion also need to be considered. The temporal 
relation between the predictor and the criterion is also important. For example, if the 
predictor is actually obtained after the criterion has occurred (postdiction), spurious in
fluences may affect the relationship. Similarly, the longer the interval between obtain
ing the predictor and a subsequent criterion (prediction). the more opportunities there 
are for spurious influences to affect the outcome. Prediction is often impaired because 
the criterion is ill-defined or is a composite of multiple attributes. Moreover, range re
striction also attenuates correlations with criteria (validity coefficients) in a vanety of 
ways. Another important consideration is that tests with low-validity coefficients may 
still substantially improve prediction of such variables as work productivity. Validity 
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generalization deals with the extent to which a measure found valid in one setting 
proves valid in related settings. 

Content validation is the least empirical of the three approaches and depends in 
large measure on the extent to which authorities agree 00 how well test material was 
sampled. 

The explication of constructs was then considered. The internal structure of a set of 
measures is defined by their interrelations. This structure may suggest that a set of 
measures describe a single construct, describe multiple constructs, or have no useful 
structure. These measures are then related to determine their cross structure with other 
variables. A difficult issue arises when the internal or cross structures are not as ex
pected-one must decide whether to change the substantive or measurement theory. 

Relations among these three forms of validity were then considered. One considera
tion that is sometimes important is historically termed "face validity" or the extent to 
which a test appears valid. Face validity differs from content validity because it is as
sessed (usually informally) after constructing the measuring instrument; content valid
ity follows from a test plan developed before items are generated. Face validity is not 
evidence for or against the utility of a measure, but it may be valuable in gaining ac
ceptance of the test by users and test takers. Finally, the importance of factor analysis 
in evaluating the structure of measures was noted. 
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CHAPTER OVERVIEW 

CHAPTER 4 
ELEMENTS OF 

STATISTICAL DESCRIPTION 
AND ESTIMATION 

A great many measures, such as tests in the ordinary sense, involve forming scales 
from items. Scale scores are basically continuous measures, whereas items are inher~ 
eotly categorical (discrete). We therefore begin the chapter with a consideration of the 
distinction between the two types of data, noting that the standard mathematical defini~ 
tions of "continuous" and "discrete" are not necessarily the most useful empirically. 
For our purposes, any measure which can assume 11 or more levels can be regarded as 
continuous, and any measure which can assume only 10 or fewer levels can be regard~ 
ed as discrete. 

The next main section is primarily devoted to the Pearson product-moment correla~ 
tion (rJ and some related concepts such as variance and covariance. Much of this is an 
extension of concepts taught in basic statistics. The r describes the linear relation be
tween two variables, and a universal measure of relationship, eta (1]), that does not as
sume linearity is introduced. 

The Pearson correlation and the neltt topic. linear regression, are distinct concepts. 
as r describes the joint relation between twO measures, whereas regression involves 
predicting one measure from another. However. r plays an important role in regres
sion, as it is the slope of the regression line in predicting one standardized score from 
another using least-squares estimation. In tum, linear regression is also closely related 
to structural equations in which observable variables are treated as joint functions of 
unobservable (latent) variables. 

Least squll1'es is a popular method of statistical estimation. but it is only one 
of many. The chapter concludes with a consideration of some alternatives. in particu
lar. maximum likelihood. If you thoroughly understand the elements of statistical 
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CHAPTER 4: ELEMENTS OF STATISTICAL DESCRIPTION AND ESTIMATION 115 

description discussed in this chapter, particularly the variance of measurements and 
covariance among different measures, yOll will have little dif6culty in understanding 
the theory of measurement error, measurement of reliability, test construction, and 
multivariate analysis. Although you may already have been introduced to some of 
these topics, reminders migbt prove helpful. Also, we will make Un effort in this chap
ter to relate relevant issues to more complex topics discussed throughout the remain
der of the book and to introduce some important recent developments. 

CONTINUOUS VERSUS DISCRETE (CATEGORICAL) VARIABLES 

Mathematically, a "continuous" variable or constant is one that may assume a value 
intermediate between any two other values. The system of real numbers is continuous 
because at least one number (actually an infinity of numbers) is intermediace between 
any two other numbers. For example, 1.01121 (or 1.01123) is intermediate between 
1.0112 and 1.0113. In contrast, data are discrete or categorical when this is not the 
case. Integers are discrete (categorical) because there is no integer between 103 and 
104, for example. 

This definition is not useful in the physical world because the limitations of mea
surement make any data. categorical: The resolution of any measwing instrument. be it 
the physicist's or the psychologist's, is finite. Improvements in techniques often in
crease the precision and therefore the number of categories, but the number remains fi
nite and therefore inherently discrete even though the resulting number of categories 
may be very large. 

The fact that all real measurement is discrete limits the utility of this mathematical 
distinction, but it can be extremely valuable with a slight modification. Much measure
ment, most obviously ordinary tests scored using the linear model of Chapter 2, con
sists of aggregating item responses to obtain a total (composite) score. The individual 
items on this test have two important properties: (1) The data tbey provide fall into an 
extremely small number of ordered categories (quite often as few as two, such as right 
'versus wrong) and (2) they are quite "noisy" in the sense described in Chapter 2, i.e .• 
in the sense of being influenced by a large number of factors. In contrast. the total 
score provides a much larger number of categories and, as will be noted in Chapters 
6 through 10, a much more reliable outcome. We concentrate on property 1 in this 
section. 

We will somewhat arbitrarily treat a variable as continuous if it provides 11 or more 
levels, even though it is not continuous in the mathematical sense. Consequently we 
will normally think of item responses as discrete and total scores as continuous. The 
number 11 is not "magical," but experience has indicated that little information is lost 
relative to a greater number of categories. Moreover, the law of diminishing rerurns 
applies, and so using even 7 or 9 categories does little harm if the convenience' of re
porting data as a single digit is important to the application. In many cases, correla
tional analysis must be performed with fewer levels of measurement (as low as 2 in 
some problems), in which case important information is lost. 

One factor that determines how much information is lost by restricting the num
ber of categories is how well subjects can discriminate between levels of the 
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~timuli: The easier it i~ to tel! stimuli from one another, the more benefit there is to 
increasing the number of categories. In the limiting case in which the stimuli are 
not perceptibly different, even a divifiion into two categories will bt: meaningless 
(Garner, 1960). 

Many analyses assume that data are continuous. This is implicit in those th,\t as
slime that error is normally distributed since One cannot have normally distributed 
error without continuity. [ndeed, continuity rather than normality is usually the more 
important. Most analyses are robust with respect to some underlying assumptions in 
the sense that even moderately substantial violations can leave the essential results Un
affected. This is not {he case when One neglects the distinction between discrete and 
continuous (in the present, nonmathematical sense) and, for example, treats item re
sponses as if they were scale scores. This is especiaUy true for analyses that involve 
correlations. The reasons for this will be discussed below. 

One might say that scientific issues are posed only to the extent that objects or people 
vary with respect to particular attributes. The speed of light in a vacuum is a constant, 
and so there is no room to investigate differences in the speed of light in a vacuum. 
Likewise, the question "1 feel awkward speaking to strangers" would not be useful on 
a questionnaire if everyone endorsed it. Constants found in nature often prove useful 
in equations specifying relations among attributes that do vary, but there is otherwise 
nothing to investigate about a constant per se. 

Variation is as necessary to the effects of experimental manipulations as it is to the 
study of individual differences. For example, if the amount of stress is varied and sub
jects then respond to an anxiety questionnaire, the results are of interest only to the ex.
tent that mean anxiety measures differ among groups. [n general, variance among peo
ple in an attribute is of interest to studies of individual differences, whereas variance 
among group meanS is of interest to experiments. This makes the considerations in
volved in the two situations somewhat different. Cronbacn (1957) offers a cogent dis
cussion of the consequences of this distinction. Scientists look for attributes that vary 
considerably, develop measures of these attributes, and attempt to "explain" such 
sources of variation with theories and experimentation. 

The purpose of a scientific theory is to explain as much variation of interrelated vari
ables ac; possible. That is, a theory should have a high level of generalizability in its ex
planatory power. Variance is explained by studying how measures of different attributes 
jointly vary (covary). The scientist hopel:i to find a relatively small number of basic vari
ables thac explain the variation in many other variables. The variance of one variable is 
explained by another to the extent that the variables covary or correlate. Thus, if perfor
mance in school correlates highly with measures of intelligence, social background, mo
tivation, and others, performance in school is ex.plained by these other variables. To the 
extent that familiarity affects ratings of how attractive stimuli are, familiarity explains 
judgments of attracti veness. At the same time that we fOCllS upon the explanation of 
variance, we restate the old adage, "Correlation is not causation." It is perhaps easier to 
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lose sight of this point when some of the complex procedures described in this book are 
used than in the simpler examples yOll may have been given in earlier books. 

Although there are many possible measures of variation, or dispersion, Eq. 4-1 has 
proven by far the most fruitful: 

where cr ;:: variance of a measure X 
:c = deviation scores on X = X - X 
N = number of measurements 

(4-1) 

Each:c value is the deviation score for a particular person, obtained by subtracting 
the mean of a set of scores from each of the raw scores. Since the grand mean of raw 
scores (x) is usually of little interest, raw scores can usually be converted to deviation 
scores. The variance is the average squared deviation score. Squared deviations are 
used because they readily lend themselves to algebraic manipulations. A measure of 
variation cannot be developed from the deviations themselves because their sum is al
ways zero by definition. It is possible to develop measures of variation from the ab
solute deviations (disregarding signs), but such absolute deviations are very awkward 
to work with mathematically. Squared deviations allow use of a very wide variety of 
least-squares and other statistics that have wide applicability. You may never compute 
deviation scores or a variance using Eq. 4-1, but both will be referred to extensively in 
subsequent discussioq. 

Although the variance is easy to work-with mathematically, its square root (the stan· 
dard deviation, 0') is more useful in description. The standard deviation is expressed in 
the same units as the measure involved. Thus, a standard deviation, say of 5, on a 40-
item test facilitates visualization of the subjects' variability. It is somewhat more diffi
cult to visualize the variance, 25 in this ex.ample. The variance is more useful in statisti
cal theory, but the standard deviation is more useful in "making sense" out of data. Since 
one is directly convertible to the other, choice is a matter of convenience. 

We will symbolize the standard deviation by the Greek letter 0' rather than the ordi
nary (Latin) s and likewise use 0'2 to denote the variance. Greek letters are typically 
employed to denote the standard deviation of the population as a whole, and ordinary 
letters are used to denote a sample estimate of 0'. It is also common to employ N - 1 
(the degrees of freedom) rather than N in the denominator to estimate the sample stan
dard deviation, usually symbolized s. However, this makes little difference in large 
samples, and there is a theoretical justification discussed below for using N when one 
is interested in a maximum likelihood estimate. 

The grand mean of raw scores is usually unimportant, as, in addition, are the ab
solute sizes of deviations about the mean since both typically reflect arbitrary units 
of scaling. The key data are the relative sizes of deviations about the mean. The ab
solute sizes of deviations are artifacts of measurement, as when heights are ex
pressed in inches or meters. Such artifacts of the unit of measurement are eliminated 
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by dividing each deviation score by the standard deviation to produce a standard 
score. Thus, if someone has a deviation score of+20 (20 points above the mean) and 
the standard deviation of scores in the group is 10, that individual has a standard score 
(z) of 2 = 20/10. Similarly, someone with a deviation score of -10 on that measure has a 
standard score of -I, Le., -10/10 = 1. 

Standard scores are very easy to interpret-each specifies how many standard de
viations an individual is above or below the mean. If a distribution of scores is ap
prox:imately normal, standard scores can be easily interpreted in terms of the percent_ 
age of individuals above and below particular points on the score continuum. Since 
standard scores have such useful descriptive properties. it is important to think in 
terms of standard scores in discussing various methods of mathematical analysis. As 
will be discussed later. the correlation between any two measures is ex.actly the same 
whether the analysis started with raw scores. deviation scores, or standard SCores. 
Similarly, the results of a particular analysis of variance are the same whether the 
analysis employed raw scores, deviation scores about the grand mean, or standard 
scores about the grand mean. A ratio of variance (F) is invariant with respect to any 
linear transformation, Eq. 4-2 

)(=bX+a 

where X' = set of transformed scores 
b = any constant multiplier of X 

a = any constant added to bX 

(4-2) 

The special case of a dichotomous variable that can have only two values (I versus 
0, pass versus fail, etc.) is important. If p is the proportion of persons who pass the 
item and q == 1 - P is the proportion of persons who fail the item, the variance is then 

(J2= pq 

=p(l - p) 

(4-3a) 
(4-3 b) 

All dichotomous distributions can be scored as 1 or 0 whether they represent quan
titative or qualitative dichotomies. Thus, persons with IQs at or above average or fe
males could be scored 1, and those below average or males could be scored O. Ex.peri
mentation with Eq. 4-3a will indicate that d- reaches a maximum value (.25) when p 
and q are .5 and decreases as p and q deviate from that point. Since q = 1 - p. the vari
ance is entirely determined by the size of either of the two values. Thus, two items 
have the same variance if 80 percent of the individuals pass one item and 20 percent of 
the individuals pass the other item. 

Some people find it odd to think of a dichotomous distribution as having variance. 
Not only is it mathematicaUy sound to speak of the variance of a dichotomous item, 
but a moment's reflection will also show that it makes intuitive sense. Variance is un
certainty. A test with a large variance produces more uncertainty about any person's 
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score than a test with a small variance. Similarly, the nearer p is to .5, the more uncer
tainty there is about an outcome. The closer p is to l.0, the more certain you are that 
any given outcome is positive; and the closer p is to .0, the more certain you are that 
any outcome is negative. 

Transformations of Distributions 

The basic formula for the variance (Eq. 4-1) employs deviation scores (x). Because the 
variance is computed about the mean, the value of the mean itself is irrelevant to a2 

and a. Thus r:f2 is not changed if any arbitrary constant is added to or subtracted from 
every score in a distribution. That constant changes the mean but has no effect on a2 

regardless of the original mean. 
If a series of scores (X) are multiplied by a constant (b), ~ is multiplied by the 

square of the constant, and a.~ is multiplied by the constant 

'> I.(bX)l 
abx-=......;N~-

Ib1.t'Z 
=--

N 

=--
N 

where a; = variance of the original scores, x 
b = constant multiplier applied to the scores 

at = variance of the transformed scores, bx. 

(4-4) 

It is frequently useful to transfonn a distribution of scores to another having a par
ticular mean and standard deviation. Suppose the mean of a set of obtained scores is 40 
and the standard deviation is 5. One might wish to transform the original distribution 
to one having a mean of 50 and a standard deviation of 10 to compare scores on the 
test with scores on another test or to make them more interpretable. The principles 
stated lead to Eq. 4-5: 

(4-5) 

where X" = original scores 
X, = transformed Scores 

Xg, X, = respective means of X" and X, 
aD' at::: respective standard deviations of xo and X, 
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In the foregoing ex:ample, an original score of 40 becomes a transfolmed score of 
50, and an original score of 25 becomes a transformed score of 20. Because the trans
formation is linear, the shape of the score distdbution does not change. 

CORRELATION AND COVARIANCE AS CONCEPTS 

Correlational analysis is so basic to psychometric theory and data analysis in general 
that a thorough understanding of its basic principles is essential to understanding the 
more advanced topics in this book. There are different indices of correlation, but they 
all have one thing in common: They describe the degree of relationship between two 
variables. 

Although it is fine to hope for the day when variabfes or combinations of vari
ables will correlate pertectly, such a day is a long way off. The temperature of an 
enclosed gas lawfully relates to the average molecular motion but only in a statisti
cal sense. SimilarlY, the most that psychologists can hope for is a probabilistic cor
respondence among variables. Experience has taught that the degree of correspon
dence will not be high.. For example, it is unreasonable to expect a very high 
relationship between predictors of academic success and coUege grades even though 
there is a relationship. Similarly, subjects within groups of an experiment usually 
show considerable dispersion on the dependent variable, and distributions of differ· 
ent treatment groups usually overlap considerably even though there may be mean 
differences. Correlational analysis is useful in specifying the form and degree of 
imperfect relationships among variables and constructs. 

The choice of a measure of correlation between two variables depends upon 
which mathematical operations are assumed permissible on the scoreS (assumptions 
about scale properties). It will be recalled from Chapter 1 that numbers may be ap· 
plied to nominal, ordinal, interval, or ratio scales. Since ratio scales are rarely en
countered, we will not deal with that situation. Conversely, we will deal with nomi
nal scales in Chapter 15. This reduces the problem to interval and ordinal scales. 
We will stress methods of correlational analysis applicable to interval scales but 
note a measure appropriate to ordinal measures. 

THE PEARSON PRODUCT-MOMENT CORRELATION . 

The "Pearson product-moment" (PM) correlation of two continuous distributions, 
commonly symbolized as " specifies the magnitude of linear relationship between two 
variables. It is sometimes important to identify which variables are correlated, in 
which case we will use subscripts. For example, if l-Y, X, and Yare three variables, TWX 

denotes the correlation between Wand X, 'wr denotes the correlation between Wand Y. 
etc. Most cases involve only two variables, and so we will simply use the symbol r. It 
is simplest to assume that these scores have been standardized, which makes the 
means and standard deviations of the raw scores irrelevant. The scores of nine persons 
on two tests, zxand ZY, are shown for illustration: 
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Person zl( Zy ZXZy 

a 1.55 1.18 1.83 
b 1.16 1.77 2.05 
c .n .59 .45 
d .39 -1.18 -.46 
e .00 .59 .00 
f -.39 -.59 .23 
9 -.n -.59 .45 
h -1.16 -.59 .68 

-1.55 -1.18 1.83 
Sum (I) 0.00 0.00 7.06 

The magnitude of r (rXy) is simply the average of these cross products, which is 
computed as follows: 

r= ~ZXZy 
N 

= 7.06 
9 

=.78 

(4-6) 

Equa[ion 4-6 assumes both variables have been standardized. Numerous formulas 
for r are much simpler than Eq. 4-6 for those rare occasions when calculation must De 
done by hand. V.u1:ually every introductory text in statistics presents these formulas, 
and so we will not. Others reveal useful properties of r. One is presented below in our 
discussion of the covariance. You may find it useful to use Eq. 4-6 on a small data 
sample and compute r by hand once if you have never done so. A scatter diagram of 
the above pairs of scores is shown in Fig. 4-1. The concept of line of best fit, as identi
fied in Fig. 4-1a, is discussed below. 

The Meaning of the Pearson Product-Moment Correlation 

The Pearson product-moment correlation is used so frequently that the word "correla
tion" itself implies r unless some other measure is stated explicitly. The reasons for its 
name are as follows. First, it was developed by Karl Pearson. Second, moments of a 
distribution playa very important role in statistical theory. The rth moment about any 
constant (c), is defined as 

1 
-I.(X-ct 
N 

(4-7) 

Thus. take each value (X), subtract it from the constant (c), raise the difference to a 
power (r), and average the results over the number of observations (N). The mean 
(strictly speaking. the arithmetic mean) is the first moment about the origin (r = 1 and 
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FIGURE 4-1 A scatter plot of two sets of standard 
scores. Zx and zy. (8) A regression line 
and (b) how deviations are measured in 
predicting Yand X ( y. Xl. In predicting X 
from Y (X·Y). and In a structural relation in 
which it Is assumed that X and Y are both 
funtlons of an unobservable (latent) vari
able and have equal error variance. 
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c = 0); the variance is the second moment about the mean (r = 2 and c =;r or J..I.), and 
various fonnulas for skewness and kurtosis. used in describing distribution shape, are 
respectively derived from the third and fourth moments (r = 3 and 4). Not all impor
tant statistical concepts are moments. e.g., the median and the mode. Equation 4-6 de
fined r as the average of the Zx-zr values, both of which are deviations about a mean 
raised to the first power and therefore the product-moment. We will retum to a consid
eration of the general concept of moment below. 

The r is extremely useful. Its sign and size denote the direction and degree of rela
tionship between two variables. It is easy to show why r cannot be greater than 1.00. 
If each person had the same standard score on X and Y, r would equal the variance 
of a standard score, which is 1.00 as ~x2!y becomes Izxz" = Izi. The maximum nega
tive cotrelation is when the standard scores of each person are numerically equal but 
opposite in sign. The average of cross products is - 1.00. 
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The advantages of r are that it (I) pennits the variance of each of the two measures 
to be partitioned into meaningful components, (2) may also be used to predict one 
variable from one other variable (linear regression), (3) is the foundation for predicting 
one variable from several other variables (multiple regression), and (4) serves as a 
foundation. for many complex methods of correlational analysis, such as multiple cor
relation, partial correlation, and factor analysis. Points Land 2 are considered in this 
chapter. Point 3 is considered in the next chapter, and point 4 is considered both in the 
next chapter and in Chapters II through 13. 

Computer Applications 

Computer packages of any sophistication allow you to compute the correlations 
among each of a set of variables. They typically also provide univariate statistics 
(means, standard deviations. etc.). The major complications you are likely to run into 
are (1) limitations on the number of variables you can intercorrelate in one procedure. 
(2) problems posed by missing data, and (3) the choice you must make among several 
options that generate correlations. The first problem can be handled by correlating se
lected groups of variables. For example, in SAS, you can use the keywords VAR and 
WITH to delimit the variable~ you are correlating. Suppose you have 40 variables 
named Xl to X40. This will pose no problem on a mainframe computer but it might 
ex.ceed a personal computer's limits. That is, you might run out of memory if you tried 
to invoke the command PROe CORR;VAR XI-X40; or the equivalent in some other 
language. In that case, the commands PROe eORR;VAR XI-X20; PROe 
eORR;VAR XI-X20; WITH X21-X40; and PROe CORR;VAR X21-X40; might 
achieve the desired end. 

Missing data pose more of a conceptual problem. There are three general approach
es: pairwise deletion, listwise deletion, and estimation of the missing values from the 
remaining data. In pairwise deletion, a missing observation for a given variable affects 
oOly the specific correlations involving that given variable. In other words, if one sub
ject does not answer question 1 but answers questions 2 and 3, the correlation between 
variables 1 and 2 and 1 and 3 are based upon one fewer observation than would be [he 
case if the subject had answered question 1. but the correlation between variables 2 
and 3 is unaffected. In listwise deletion. the entire case (variables 1, 2. and 3) is elimi
nated from the analysis. 

Pairwise deletion obviously causes fewer data to be lost and may be preferable to 
listwise deletion when there are but a few, random omissions. However, if there is a 
pattern to the omissions, say substantially more males than females refuse to answer a 
given question, correlations between different variables would be more influenced by 
differences in the subject composition in pairwise deletion. Estimation has become far 
more common because it can be implemented with relative ease in computer packages. 
Winer. Brown. and Nuchels (1991, pp. 479-481) describe unweighted means estima
tion in the ANOYA. The results obtained from any of these three general approaches 
should be interpreted with extreme caution when the proportion of missing observa
tions is large, as no method will likely be satisfactory. 
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The covariance (0",\'1') is defined as the average Cross product of two sets of deviation 
scores: 

where:c = deviation scores on one measure 
y = corresponding deviation scores on another measure 

~ ! = raw scores on the two measures 
X, Y = means on the two measures 

N = number of pairs (usually persons) 
CTXy:::: covariance 

(4-8) 

Consequently, CT.<y is the average cross product of unstandardized deviation scores 
and therefore also a product of moments. The CT.ey does not have as many useful prop
erties as r: For example, (T.ey is not restricted to the range of -1.00 to + 1.00. Its magni
tude is not directly interpretable unless more is known about the standard deviations of 
the variables. [n other words, the magnitude of r is not affected by the units of mea
surement, but the magnitude of (J'.\-y is. A correlation between weight and height does 
not depend upon whether weight is ex.pressed in grams, kilograms, or pounds. How
ever, the covariance changes along with the standard deviation (Eq. 4-4) as these units 
change. The covariance is, however. important to the development of many complex 
statistics. This is illustrated by the following formula for r: 

(4-9) 

The correlation between two measures is therefore the covariance of two measures 
divided by the product of their respective standard deviations: r is a standardized co
variance. Phrasing r in this way is very helpful in understanding more complex forms 
of correlational analysis. Combinations of variables are placed in Eq. 4-91nstead of in
dividual variables at numerolls places in the pages ahead. 

It is useful to transform Eq. 4-9 as follows: 

(4-10) 

This shows that the covariance equals r times the product of the two standard devi
ations. 

Other Measures of Linear Relation 

Many other measures of linear correlation have been developed (see Guilford & 
Fruchter, 1978.) None has achieved the prominence of r because none fits as neatly 
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into the mathematics of general psychometric theory. The closest to an exception is 
Kendall's (1948) tau. a measure of rank-order correlation, but even this measure has 
not been used extensively in recent years. Psychometricians argue as to how rigorous 
the criterion for equality of intervals should be before statistics that assume equal in
tervals, such as r. are used. We again note how experience has generally shown that 
these criteria need not be extremely rigorous when data are essentially continuous, but 
the issue should not be ignored in toto. 

Three Special Cases 

ESTIMATES OF r 

Many textbooks discuss three special cases of r. the phi coefficient (41), point-biserial 
r (rpb), and rho (p). The CO coefficient is applicable when both variables are dichoto
mous. One important application is to correlate pairs of dichotomously scored items. 
The rpb is used when one variable is dichotomous and the other is continuous. A spe
cific application of importance is to correlate a dichotomous test item with the total 
score on the test. Finally, p is used when the data are in the form of ranks and is 
therefore applied to ordinal data. 

Using r in place of these special formulas makes absolutely no difference to the re
sults: The formulas for all three are simply short cuts useful in hand calculation when 
the data are in a certain form, e.g., dichotomies. The concepts, however. are useful, as 
we will consider a different class of correlations in the ne:<t section that estimates what 
the correlations between observed categorical or rank-or~red variables would be if 
they actually were continuous and normally distributed, e.g., if we knew a subject's 
true skill instead of pass versus fail. Similarly, if one had access to continuous data 
which were then dichotomized, the correlation obtained from the original continuous 
data would be considerably higher than the ell or rpb obtained after dichotomization as 
a result of loss of information even though both correlations would be Pearson PM 
correlations. The reduction in r is less tme with p (especially when there are few tied 
ranks) because the ordinal information in the ranks contains most of the information 
about the relationship. 

There is a very useful relationship between 41 (and therefore r obtained from two 
dichotomous variables) and the Pearson chi-square statistic (X2): 

x2 = N(J)2 

l = Nr (for dichotomous variables) 

(4-1Ia) 

(4-11 b) 

The null hypothesis that r (<ll) is zero can be tested by referring the obtained value 
of X2 to a table of chi-square with 1 degree of freedom (dj). 

Although they are not PM coefficients in themselves and therefore not equivalent to r 
in the sense that <tI, rpb, and p are, coefficients have been developed to estimate r. 
These assume that the u~derlying data are continuous and nonnally distributed instead 
of categorical. The two most familiar estimates are the "biserial correlation" (rbis), 
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where one observable is dichotomous and the other is continuous. and the "tetrachoric 
correlation" ('11K)' where both observables are dichotomous. They are special cases of 
more general measures, polyserial and polychoric correlations. respectively. The fbi! 

and 'leC apply only to dichotomous variables; polyserial and polychoric correlations 
apply to variables divided into any number of categories. We will first describe 'bls and 
rIOt and then consider their utility. 

The formula for rbls is 

(4-12) 

where ;(~ = mean score on a continuous variable for a group that is successful on a di~ 
chotomous variable 

Xu = mean score on a continuous variable for a group that is unsuccessful on a 
dichotomous variable 

(j = overall standard deviation of the continuous variable 
p = proportion of individuals in the successful group on dichotomous variable 
q = proportion of individuals in the unsuccessful group on dichotomous 

variable = 1 - P 
z = ordinate of normal curve corresponding to p 

The rbis is used to estimate the PM correlation that would be obtained from two 
continuous distributions if the dichotomous variable were normally distributed. For 
ex.ample. one may use rbis with data from individuals scored on a pass-fail basis on a 
criterion with the intent of later refining the criterion. 

If you have afready obtained rpb (r) and wish to compute rbis from the same data. as 
with correlations between scores on items and total t!!st scores. the relation is given by 

v; 
rbis=r-

l; 
(4-13) 

Tetrachoric Correlation (rt.J and Related Estimates 

The tetrachoric correlation coefficient (rreJ takes the logic of rbis one step further to es
timate the PM correlation between two continuous. nonnaJly distributed variables 
from dichotomies. One use of rlat is with continuous variables that have artificially 
been "cut" at the median. Another use of r~t is with two variables that are inherently 
dichotomous at the time of the analysis but which may later be gathered in more con
tinuous form. e.g., to later use actual income rather than rich versus poor. 
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A polyserial correlation is the generalization of 'biR when one of the variables is 
continuous and the other is categorical, but one wishes to estimate what the correlation 
would be if both variables were continuous and normally distributed. Whereas 'bis ap
plies only to a dichotomy, polyserial correlations may be estimated when the categori
cal variable is a trichotomy (high, medium, and low), a four-way classification, etc. 
Likewise, a polychoric correlation is the estimate of what r would be if each of two 
categorical variables were in fact continuous and normally distributed. 

Computing 'tat, polychoric r, and polyserial , is ex.tremely complex, although com
puter programs are now widely available, e.g., Muthen's (1988) USCOMP and a For
tran program by Martinson and Hamdan (1975) in the public domain. Be sure to incor
porate Beardwood's (1977) modification if you use the latter. 

PEARSON r VERSUS ESTIMATES OF PEARSON r 

Many circumstances dictate correlating either a categorical variable with a continuous 
variable or two categorical variables. The following are some considerations relevant 
to a choice between, (cIl and rpb for dichotomous variables) and polyserial or poly
choric correlation (rbis and rtet for dichotomous variables). The polyserial and/or poly
choric estimates will always be somewhat higher than the values of , and, in that 
sense, properly indicate structure that would be missed using r alone, especially if one 
were not aware of the effects of categorization (as noted above, there are somewhat 
fewer problems when data are rank-ordered without ties). At the same time, these esti
mates mayor may not be accurate. In general, we suggest caution about using any es
timate of r. They are presented here because they have many knowledgeable advocates 
when used under appropriate circumstances, and they also illustrate the importance of 
recognizing the problems in dealing with categorical data such as item responses. 

1 Become familiar with the properties of these estimates. Take some representative 
continuous data, categorize it, and obtain r and estimates of r from the original and 
categorized data, which is simple to do on a computer. You will naturally find that cat
egorization reduces r. Equally important is how well the estimates actually regenerate 
the original correlation. The first author once compared rand rbis using variables that 
had been dichotomized at the median. The ,before dichotomization was .52, but rbis 
was .71! Misestimation is even more likely when the cut is far from the median and 
when rtet is used, and it is possible to obtain absolute values in excess of 1.0. 

2 Consider whether it is reasonable to ass£lme the latent variable is continLlO£IS in 
the first place. It is often reasonable to view a discrete variable as a reflection of an un
derlying continuous variable, especially in self-description. For example, answering 
yes or no to the question "I get very many headaches" may fruitfully be viewed as cat
egorizing the perceived frequency of headaches. On the other hand, people are either 
alive or dead, registered Democrats or not, Catholics or not. Estimates of the "magni
tude of death" do not seem fruitful. 

3 Use estimates only with very large sample sizes. Even when their assumptions 
are met, the sampling error of these estimates is vastly greater than , (Kendall & Stu
art, 1967). This is more true of rtet and polychoric estimates than of 'bls and polyserial 
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estimates because the former require more numerical e:;;timation. One should be ex· 
tremely cautious in applying them to samples of less than several hundred. Many pro
ponents of these estimates work with huge data bases such as obtained by the Educa
tional Testing Service, and their critics tend to work with smaller data bases. It is not 
unusual to compound the felonies of insufficient sample size and artificial di
chotomization (outside of pilot studies not meant for consumption by others) by using 
these measures. 

4 Don't categorize. Countless studies in personality, educational, and social psy
chological research, as well as in other areas, have begun with continuous measures 
which are then categorized. An investigator might therefore compare the frequency of 
initiating conversations among subjects classified as above or below the median in so
cial anxiety. We cannot stress sufficiently that a great deal of meaningful information 
is lost since a person who scores one point above the median is treated the same way 
as the person who obtains the highest score. As Cohen (1983; also see Cohen, 1990; 
Cohen & Cohen, 1983; Humphreys & Fleishman, L974) notes, this is approximately 
the same as randomly discarding a third of the cases; when both variables are di
chotomized, it is equivalent to discarding roughly 60 percent of the cases. Relation
ships that could well be meaningful may well be lost through insufficient power to re
ject the null hypothesis. Of course, many variables are naturally categorical, and so 
there is nothing you can do when these are of interest. Sometimes, of course, your data 
are in that form, and so there may be nothing you can do about the situation. 

S Recognize the potentially misleading consequences of both approaches. There 
are generally problems present using categorical variables in analyses that assume 
continuity, a topic we will consider at Length in Chapter 13. Our comments criticizing 
the use of estimates of r need to be balanced by criticisms of those who treat categori
cal data as if it were continuous. To repeat, r obtained from categorical data systemati
cally underestimates relations that would exist were finer measurement possible. At 
the same time, point 1 in this section has to be kept in mind. It is easy to reify esti
mates of r as if they were r itself. Opinions are mixed on the results. Whatever the 
case, be highly cautious about reporting that Tbi5 is .7 when r for the categorical data is 
. L (a hypothetical but not unrealistic example). 

Polychoric and polyserial correlations play an important role in developing mathe
matical models relating to measurement theory. However, their use in determining the 
correlation between real variables should be quite carefully limited. The previous edi· 
tion of this book stressed avoiding rbi., and r,~t in multivariate applications. That con
clusion still generally holds despite the availability of better computational algorithms. 

Some Related Issues in Categorization 

Categorization provides additional problems if more than one independent variable is 
categorized. Say that the above investigator decides to add a second independent vari
able, a measure of social presence, to the social anxiety measure. Four groups might 
be formed representing subjects below the median on both measures, above the medi
an on social anxiety Qut below the median on social presence, below the median on so-
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cial anxiety but above the median on social presence, and above the median on both 
measures. Quotas are set to produce equal numbers of subjects in the four groups. The 
experimenter then conducts a two-way ANOYA. Unfortunately, the estimates of the 
effects are predicated upon the assumption that the variables are uncorrelated in the 
population and they are not. Consequendy, the results will be highly misleading. 

Investigators often categorize because they are more familiar with the ANOVA 
than with mUltiple regression in general, but artificially categorizing variables costs 
more than is gained in allowing use of a familiar tool. Experimental psychologists who 
conduct experiments with mUltiple independent variables also usually manipulate 
them independently so that the sample sizes for each combination of treatments is the 
same. This is legitimate with most experimental manipulations, as opposed to classifi
cation variables, and greatly simplifies interpretation compnred to nature's more usual 
case of correlated variables. However, the interpretational problems with correlated 
predictors are far from insurmountable. 

One relatively legitimate use of categorization is to facilitate the presentation of re
sults. For example, suppose an investigator studies ratings of the attractiveness of geo
metric designs as ajoint function of their complexity and the intelligence of the raters. 
The hypothesis is that there is an optimal level of preferred complexity for any given 
level of intelligence that is higher for more intelligent people. Assume that appropriate 
methods exist to measure intelligence, complexity, and perceived a·ttractiveness. 
Grouping subjects into several intelligence levels and presenting the functions relating 
complexity to perceived attractiveness within each group may be a good way to pre
sent the results. One might find that the lowest-scoring group's ratings decline with 
complexity, the highest scoring group's ratings increase with complexity, and interme
diate groups show nonmonotonic (inverted U-shaped) functions whose peaks increase 
with intelligence. However, corresponding formal tests are much. weak:er than methods 
treating intelligence scores as continuous, e.g., moderated multiple regression, consid
ered in the next chapter. You will therefore still probably find it best to perform your 
statistical analyses on the continuous data even if you graph the categorical data. Make 
what you have done clear to the reader, of course. 

ASSUMPTIONS UNDERLXING r 

Certain assumptions must be met in using r. 

1 The relationship between X and Y should be essentially monotonic and, prefer
ably linear. This means in practice that r describes a relationship poorly when the trend 
line increases and then decreases, or vice versa (is nonmonotonic). Monotonic nonlin
eantles (curves that do not affect the rank ordering) generally have small effects upon 
the magnitude of r (Parker, Casey, Ziriax, & Silberberg, 1988), but, as we shall see, 
these effects cannot be ignored. Methods of handling situations in which the relation is 
clearly nonmonotonic are considered in the next major section. 

2 The relationship must be homoscedastic so that the spread (errors of estimate) 
about the best-fitting straight line (discussed below) is approximately the same at all 
levels of X and Y. rather than heteroscedastic, where the spread. is much greater at cer-
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tain levels than others. Heteroscedasticity may arise in COiTelating an aptitude test with 
college grades because there may be more spread of grades among those with high ap
titude than with low aptitude. Some high scorers do as wei! as expected, but others do 
poorly for la~k of motivation. In contrast, low scorers may obtain unifonnly low 
grades because they lack the requisite ability, no matter how hard they try; ability is 
usually necessary but not sLtfficient foc good grades. 

3 Error affecting each of the variables must be normally distributed (not necessari. 
ly the variables themselves) if inferential tests are to be used. Even though this as
sumption is not necessary to simply describe the relation, extreme skewness can lead 
to other misleading results even in describing tbe relationship. As we note at many 
points, this implies the more important attribute that the data be continuous. 

There has been considerable controversy as to whether the these three characteris
tics should be considered "assumptions" in cotrelational analysis. They are important 
to statistical inference (tests of significance), as in deciding whether the population r is 
zero and to more complex tests. When these three characteristics are present, the rela
tionship is said to be "bivariate normal." 

To the extent any of the three assumptions is not met and bivariate normality is not 
present, probability statements about r will be inexact, but this is usually not a great 
problem. especially when the probability of obtaining the value of r by chance is clear· 
ly greater than .05 or very small. If one or more assumptions are apparently unmet. USe 
a higher level of significance than ordinary, e.g., .001 level. An example of a serious 
violation is to use r when the relation is clearly nonmonotonic. Computer programs 
readily output scatter plots like Fig. 4-1 which are useful to inspect. Most relationships 
are so "noisy" that it is un likely that you will see a nonmonotonicity, but if you do, use 
one of the methods designed for use in this case as provided below. 

Linearity. homoscedasticity, and normality are also impoltant in interpreting the re
sults. Thus, there is Clothing to prevent the use of r even if the shapes of the distributions 
are markedly different, the relationship is far from linear, and/or the spread varies along 
the line. Unless these assumptions are seriously violated, no real problem in interpreta
tion arises. For example, a moderate departure from linearity (say, the trend tends to 
"flatten out" at the high end of the independent variable because of a ceiling effect) will 
usually not affect r greatly. It might be mote appropriate to employ a nonlinear measure 
as discussed later, but the difference between the two is usually not large. 

It is wise, nonetheless, to compute the nonlinear measure since the effort required is 
minimal and extreme vi.olations, such as strong ceiling effects, can have major effects. 
Also, even though a skewness, nonlinearity, or heteroscedasticity may not affect r 
greatly, as compared to a nonlinear meac;ure, the existence of any of these may have 
practical andlor theoretical importance. 

FACTORS INFLUENCING r 

Restriction of Range 

The r2 may be expressed as the proportion of variance in Y (~) that is accounted for by 
its linear relation to X (true variance, ~), see Eq. 4-24c below). Likewise, cr~= O'~ + cr~., 
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where 0'; == the proportion of O'~ that is independent of the relation between Y and X 
(error variance). Consequently, r2 also equals I - O';/cr;. Homoscedasticity causes error 
variance (cr;) to be approximately the same in samples that have different total variances 
(cr;), and so the difference in Q'~ tends to be in true variance (0=;). Thus. as sampling 
broadens or narrows, error variance tends to remain constant, but true variance and 
therefore total variance change. The r is a function of these variances; increasing the 
variance of subjects sampled (err) increases r. and decreasing the variance decreases r. 

This effect of sampling is the same regardless of whether the X Or Y variance is al~ 
teredo If a change in sampling doubles the variance of K, the effect on the correlation 
would be the same as if a change in sampling doubled the variance of Y. The O'~ and 
crt will change appropriately in cr~ rather than 0{ On the other hand, r is not affected 
by artificial changes in the variance due simply to scaling. Scaling changes cause error 
and total variance change equallY (Eq. 4-4), and so r s not altered. 

We win frequently document the concern one should have with samplfng methods 
that limit the variance of X, Y. or both and thereby induce range restriction, as the term 
was introduced in Chapter 3. That chapter discllssed an aptitude test that was being 
validated for selecting college students. The test was administered to all applicants at a 
particular college. but only a small percentage of the appHcanrs were admitted. Later, 
aptitude test scores were correlated with grade point averages on those admitted. This 
restricts the range of scores on the aptitude test because its range, and therefore its 
variance. would have been much larger had every applicant been admitted. The validi
ty of the test in the restricted sample is spuriously low since it is actually to be used 
with all applicants. 

Although the ex.ample involves restriction in range and variance, it is no different 
for an inflation of range. If the measures are obtained from an sample whose range is 
much larger than the eventual target popUlation, the resulting r will be spuriously high. 
Any study requires that one consider what variance is appropriace to the investigation. 
which depends on the intended scientific statements (generalizations) to be made. If 
the results are to apply to people in general, the appropriate variance is obtained from 
an unbiased sample of the population in general. If the results are to apply to patients 
at state psychiatric hospitals, the appropriate variance is found in an unbiased sample 
of that group. 

If the target population's variances are known, they may be compared with the ob
tained variances. If the two sets of variances differ appreciably, estimates can be made 
of what the correlation would be if there were no restriction or elevation of range 
(Guilford & Fruchter, 1978). The formula is 

rb= ~~========== .... f , ., ." 
v 1 - r~ + r~ (Db eTJ 

where fa == correlation in the original group (group a) 
rb = correlation in the target group (group b) 
O'a = standard deviation in the original group 
ob = standard deviation in the target group 

(4-14) 
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Differences in the shapes of the two distributions restrict the size of the correlation. 
The most obvious example is that one cannoe obtain a perfect correlation between two 
variables unless they have exactly the same distribution form (normal or otherwise), as 
illustrated in Fig. 4-2. Note that the numbers along both axes are frequencies and not 
scale values, which are arbitrary. These frequencies show that variable X is quite nega~ 
tively skewed and variable Y is quite positively skewed even though the relation is 
positive. 

Try to depict a perfect positive correlation by pairing high scores on X and Y and 
low scores on X and r. leaving the univariate distributions as they are. This is clearly 
impossible. One cannot place the top eight people on X at the highest level of Y be~ 
cause only two people are at the highest value of Y. Six of the eight highest scorers on 
X would have to fall lower on Y. The relationship is also curvilinear, which is not un~ 
common when the distributions are of different shapes. Note that only the directions 
and not the amounts of skewness differ. and so one can obtain a perfect negative corre
lation. 

The restriction on the correlation depends on (1) how high the correlation would 
have been if the distributions had the same shape and (2) how different in shape the 
distributions are. However, differences in distribution shapes have an effect regardless 
of the original size of r. The extent of the reduction depends on the original size of r. 
Suppose. for ex.ample, two variables have the same distribution shape, are linearly re
lated, and r is 1.0. If the form of one distribution 1S artificially altered. r might fall to 
as low as .9 or .8. However. if the original value of r were a more likely .35, the reduc
tion might not even be noticeable. Although no formulas are available to forecast the 
reduction, experience indicates that changes in the shape of one distribution seldom 

FIGURE 4-2 A scatter plot of two differently shaped 
distributions. 2 •• 
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alter a correlation of .50 by more than .05. Thus, differences between two continuous 
variables in distribution shape usually do not affect r very much. Correlations as high 
as .70 are rare, and the average of all correlations between two distinct variables re
ported in the literature probably is less than 040. 

The relative insensitivity of differences in distribution shape on moderate-sized 
correlations assume a relatively large sample, e.g., at least 100. Values of r based upon 
small numbers of subjects, say, 30 or less. can be affected substantially by any 
changes in the scores, including transformations of X or Y, even though these may 
have little effect in larger samples. The effect on r can be quite unpredictable because 
it may capitalize upon sampling error. This is one of the many reasons we have 
stressed the need for large samples in this book. Even though differences in distribu
tion . shapes tend to have slight effects with continuous variables. the effect can be 
quite large with categorical variables, especially when they are dichotomous. Al
though it might seem odd. to speak of the "shape" of a dichotomous distribution, it is 
useful. All distributions can be thought of as containing a standard unit area. Imagine 
pulling and squeezing the area under this unit normal distribution to fonn differently 
shaped distributions. The total area available in a dichotomous distribution can be di
vided into two rectangles proportional to the percentages of scores in each part, and 
one can talk about the similarity in shape of a dichotomous distribution to another di
chotomous distribution or even to a continuous distribution. 

The r between two dichotomous variables (ell) is restricted by the e:<tent to which 
the percentage of persons who pass one variable differs from the percentage of per
sons who pass the other variable. Suppose that 70 percent pass and 30 percent fail 
item a and 50 percent pass and 50 percent fail item b. Table 4-1 illustrates the highest 
correlation possible in that case. It is quite evident that r cannot be 1.0: All who 
passed item a would also have had to pass item b, but this is not possible. Because 70 
percent passed a and only 50 percent passed b, 20 percent of those who passed a must 
have failed b even in this "best" case. 

A perfect positive correlation cannot be obtained between two dichotomous vari
ables unless they have the same p values, and differences in the respective p values 
place a ceiling on the maximum value of r. The celling On negative correlations re
flects the extent to which the p value on one item and the q value on the other item are 
similar. Thus if 30 percent pass one item and 70 percent pass another item, it is possi
ble for r to be -1.00 but not + 1.00. The reverse is true if 70 percent had failed the sec
ond item. 

TABLE 4-1 JOINT FREQUENCIES OF PASSING AND FAILING 
TWO ITEMS WITH DIFFERENT P VALUES 

Percentage 
of 
persons 

Item b 

Percentage of persons 
Item a 

Fall Pass Total 
Pass 0 50 50 
Fall 30 20 50 
Total 30 70 100 
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Figure 4-3 illustrates the degree to which r is restricted by differences in p values 
for the two variables. For example, if the p value of one item is .5 and the p value of 
the other item differs by as much as .3 (being either .2 or .8), r (cP) cannot exceed .50. 
This restriction on cP reflects the difference in p values for the two variables. A petfect 
correlation can arise when two variables both have p values of .90, as well as for two 
variables that both have p values of .50. 

The effects of differences in p values on the maximum value of cP holds for any 
two dichotomous variables; responses need not be scored as pass versus fail. For ex
ample, one could correlate male versus female gender with yes versus no responses to 
a question like "Should abortion remain legal?" If the gender distribution differs can. 
siderably from the yes versus no distribution, the size of CP will be restricted as indio 
cated in Fig. 4-3. 

Whereas it is possible for cP obtained from two dichotomous variables to equal 1.0, 
it is not possible for r obtained from a continuous variable and a dichotomous variable 
(rpb) to equal 1.0. A dichotomous variable and a continuous variable cannot have the 
same distribution shape even though two dichotomous variables can. Figure 4-4 illus
trates why there cannot be a petfect relationship between a dichotomous variable and a 
continuous variable. All scores for the dichotomous variable fall at two points. All 
scores at these two points must also fall exactly on two points on the other variable for 
r to equal 1.0. but this is impossible if the other variable is continuous. Consequently, 
scores for at least one of the two points on the dichotomous variable must span a range 
of different points on the 'continuous variable. 

FIGURE 4-3 The maximum possible value of tlJ as a function of the p vaule of one variable when the other has 
apof .5. 
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FIGURE 4-4 A scatter plot of values on a continuous vatlable when the other Is a dichotomous variable with a p 
value of .5. 

The maximum size of r pb between a dichotomous variable and a notmally distributed 
variable is about .80. which occurs when the dichototnous variable bas a p value of .50. 
The further p deviates from .50 in either direction. the lower the ceiling on r pb because 
the shape of a dichotomous distribution is most similar to a normal distribution when p 
is .sO. The shape of the dichotomous distribution becomes less and less like that of a 
normally distributed variable as p departs from .50. Figure 4-S describes the maximum 
value of r (rpb) between a dichotomous variable and a normally distributed variable as a 
function of the p value of the dichotomous variable. For example, when p is as high as' 
.90 or as low as .10. the maximum possible value of r is about .58. 

A UNIVERSAL MEASURE OF RELATIONSHIP 

We have thus far assumed that relations between variables are linear and used r to de
scribe the strength of thai: relationship. This approacb wodes fairly well in practice for 
most forms Of monotonic relationships. but it is entirely possible that relationships in 
particular studies will be nonmonotonic and therefore nonlinear. Linear methods arc 
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FIGURE 4-5 The maximum possible point-biserial correlation (rpb) between a normally distributed variable and 
dichotomous variables as a function of the p value of the dichotomous variable. 

used wherever possible because they lead to a variety of more complex methods such 
as factor analysis. 

We nave previously stated that r may be defined as 1 minus the ratio of error vari
ance (a;) in one variable to its total variance (O'~. assuming that variable is y), where 
the error variance is defined in tenns of deviations from the linear relation between it 
and another variable. The same logic provides a universal measure of relationship that 
can be used regardless of the form of the relationship. The universal measure is called 
eta (11) or the correlation ratio (Hays, 1988). The 1'\ is obtained by computing the vari
ance in Yabout any curve of relationship. This is error variance (cr!) as defined above, 
but the function need not be a straight line. Divide a! by the variance of the dependent 
variable, O'~, and subtract the ratio from 1.0 to obtain 11 2: 

., 
1"\'Z 1 

0'; 
(4-15a) = - 2" O'y 

? cr-
1"\2 _I 

(4-1Sb) = 
cr~ 

The O'~ is true variance and equals O'~ - cr; as in our previol1s discussion of r. How
ever, it does not assume a linear relation between X and Y (see Eq. 4-24b below). Tal<-
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FIGURE 4~ A hypothetical scatter plot of a 
nonlinear relatfonship between 
learning and anxiety scores. 
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ing the square root of Eq. 4-15 produces 1'\. The X may be used instead of Y and will 
produce the same value. The definition of cr! used in the numerator will change, but 
cr~ will be used in place of a}. Figure 4-6 illustrates the principle underlying 11 using a 
hypothetical relationship between anxiety scores and perronnance in a learning task. 
Since the relationship is distinctly nonmonotonic, r summarizes the trend poorly. One 
computes 11 from the best-fitting smooth curve. 

The correlation ratio (11) is a universal measure of relationship because it (1) ap
plies regardless of the form of the relationship, (2) can be used with either a predict
ed curve of relationship or a best-fitting curve obtained after the data are obtained, 
and (3) applies equaUy well to continuous or categorical independent variables. Point 
1 holds because a ratio of error variance to total variance is as meaningful with a 
complex curve as with a straight line. The predicted relationship may arise from a 
theory (point 2). For example, 'an ogive (the cumulative nonnal or logistic distribu
tion) might be used to predict growth. Curves of appropriate form eQuId be tried on 
the data, and 11 would indicate how well the curves explained scores on the depen
dent measure. Issues related to trend analysis, which involves curve fitting, are dis
cussed in Winer et al. (1991). Alternative curves can be used when no particular 
curve is predicted 0, if different theories predict different curves. The one with the 
largest 11 provides the best fit in the sense of the loss function used in fitting, such as 
least squares. However, Parker et al: (1988) and others show how it may not be easy 
to make a convincing choice between two models that predict similar functional rela
tionships. For example, a relationship that is logistic in reality will be fit almost as 
well by a cumulative nonnal distribution and to only a slightly poorer degree by 
other monotonic functions including a straight tine! For a related critique, see Birn
baum (1974). 

Many computer programs are available for curve fitting that provide 11. Polynomi
als are often used. Thus, one first obtains the best-fitting straight line and associated" 
(r in that case). Next, one obtains the best-fitting quadratic, the best-fitting cubic, etc., 
for higher-order equations. Both descriptive and inferential criteria can be used to 
decide at what level to stop, e.g., to see if a linear relationship is sufficient. 
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FIGURE 4-7 Distribution of. effects of four 
drugs on the rate of bar pressing 
in a Skinner box. 
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The T] can be applied when the independent variable is categl?ric~l rather than con
tinuous (point 3). This is illustrated in Fig. 4-7, which shows the effect of four differ
ent drugs on bar pressing in a Skinner bolt. As it is arbitrary which drug is denoted A 
and which is denoted 0, it is not meaningful to talk about the form of the relationship 
in this case. There is nothing wrong with reordering the drugs on the graph, which 
changes the visible form of relationship drastically. Ooe may obtain T] here just as 
when both variables are continuous. Sums of squares (Ll?) can be calculated about 
each group mean score on the dependent measure, pooled over groups, and divided by 
the total number of animals to estimate 0';. In tum, this can be divided by C1~ and sub
tracted from 1.0 to obtain TI. 

The logic of " is implicit in the ANOVA. Researchers often focus upon the 
ANOYA in terms of the F ratio it produces, Le., the ratio of the variance estimate from 
a systematic source (the various drugs in this case) to an appropriate error variance 
such as the pooled variance of scores within groups. Although F is basic to statistical 
inferences about group mean differences in the population, T] indicates how strong the 
relationship is, thus describing the independent variable's explanatory power. The sta
tistical significance of F depends on the number of subjects, but T] is independent of 
the number of subjects. The F may well be highly significant in a large sample, but a 
small value of T] may indicate that the independent variable eKpJains only a small por
tion of the variance in the dependent measure. As important as inferential statistics 
like F are, it also Is important to determine the strength of relationships using a mea
sure like 1'\. 

The correlation ratio (T]) is a link between the correlational statistics of psychomet
ric theory and the inferential statistics of the ANOYA employed with experimental 
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data. One use of11 was previously illustrated in the ANOVA of the foul' drugs depicted 
in Fig. 4-7. The concept of 11 can be ex.tended to complex. correlational problems and 
ANOVA designs. In ANOVA designs with more than one factor. separate values of 11 
can be obtained for each treatment factor. For example, one could vary the dosage of 
each drug in the experiment depicted in Fig. 4-7. There will be significance tests (F) 
for (1) overall differences among drugs, (2) overall differences among dosage levels. 
and (3) their interaction. Paralleling these are three correlation ratios. 

The squared correlation ratio (112) for any systematic source is obtained by dividing 
the sum of squares attributable to that source (which may be an interaction) by the 
total sum of squares. Some complexities arise, especially when one wishes to compare 
two different effectS that are each based upon different numbers of treatment levels. 
Winer et al. (1991) describe alternative indices. Comparing the complex statistics from 
correlational analysis employed in psychometric theory with the equally complex 
ANOYA F ratios derived from psychological experiments reveals that both reflect the 
same principle-the partitioning of variance. 

The r is a special case of 11. When both variables are continuous and the relation
ship is linear, 1'\ equals r. Magnitudes of 11 and r can be interpreted similarly. "How 
high is high?" is relative to the context of use for both measures, but if a value of r of 
.3 can be regarded as "important" in a given situation. so can a value of 11 = .3. The 
one slight diffe.rence is that '11 can never be negative since the concept of inverse has 
no meaning with a nonmonotonic relation. The difference between '112 (which will al
ways be the larger) and r2 is used to test for nonlinearity. The logic behind r is very 
general; likewise, 11 can be used to measure the degree of relationship regardless of 
whether (1) the investigation concerns individual differences or effects of experimen
tal treatments; (2) the relationship is linear or nonlinear; (3) the fOIm of the relation
ship is hypothesized ahead of time or derived from the data afterward; (4) the indepen
dent variable is measured on a ratio, interval. ordinal. or nominal scale; and (5) there 
are two or several variables involved in the analysis. 

PREDICTION, REGRESSION, AND STRUCTURAL EQUATIONS 

Predicting one variable from another is closely related to describing the correlation 
between them. Although the tWO concepts are distinct, we will show how r is a basic 
link between them. Two basic forms of prediction are (1) linear regression, in which 
an observable criterion (effect), Y. depends upon and is predicted from an observable 
predictor (cause), X. in a linear manner. and (2) structural equations, in which two 
observables, X and y, both depend upon a third, usually unobservable, variable 
which we denote t (we will later show that linear regression can also be viewed as a 
special type of structural equation). In a structural equation. neither X nor Y is a pre
dictor; both are viewed as effects of t. Many more complicated forms of prediction 
are possible, some of which will be considered in the next chapter and Chapter 13. 
For example, Y may be related to several predictors, Xl, X2 • ... , X,,, which is known 
as multiple regression. In rum, the ANOVA is a special case of multiple regression 
where the predictors are categorical. In addition. prediction may use relations other 
than a straight line. 
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The process of using linear regression to relute X to Y can be understood most simply 
by assuming that K and Yare in standardized (z-score) form. A straight line has only 
two parameters: its slope (b) and its intercept with the Z;y axis (a), and so the problem 
is to bese estimate scores on Zy from scores on Zx as follows: 

Zy=bZx+a (4-16) 

where 'Zy. is the score on Zy estimated from Zx. The quality of the estimates is gauged 
by various functions of the differences between the estimated scores for Zr (z j,) and the 
actual scores (.?:y). These differences are known as "residuals,'" symbolized Zy.x. The 
symbol .. Y·X' denotes that Y is being predicted from X rather than the other way 
around. 

(4-17a) 

This is the same as: 

Zy.x= Zy- (bzx+ a) (4-17b) 

The b and a can be obtained in various ways, depending on what specific function 
of the difference between Zy and Zyi5 to be minimized. Thus one could try to derive b 
and a so as to minimize the sum of absolute differences between Zy and z y (sum of ab
solute values of z y.x). Alternative fwlctions of this form, known as loss functions, 
could also be employed (see below). The particular loss function, which has proven 
most useful traditionally, is ordinary (unweighted) least squares: b and a are deter
mined [0 minimize the sum of squared differences between actual scores and estimated 
scores, L( l:y - Z y)2. and thereby to minimize the sum of squared residuals. I(7~ .x. Thus, 
least~squares estimation (we will drop the "ordinary" for now) minimizes the follow
ing expression given a proper choice of b and a: 

(4-18) 

Summation proceeds over individual observations. Whether or not the foregoing 
expression has a unique minimum and. if it does, how to determine b and a are simple 
problems in calculus. The solution indicates that a = 0 for standardized scores. Thus, 
the least-squares regression tine always goes through the origin when scores are stan
dardized, as indicated in Fig. 4-l. This simplifies the problem to finding a b that mini
mizes the ex.pression: 

The solution also teUs us that b is unique to any set of data; there 1s only one value 
of b that minimizes the loss function. This value of b is 



CHAPTER 4: ELEMENTS OF STATISTICAL DESCRIPTION AND ESTIMATION 141 

b = 1:<:xZ:r 
tV 

(4-20) 

Eq. 4-20 for b is identical to Eq. 4-6 for r. the slope of the line of best fit in predict
ing one standardized variable from another is their PM correlation (r). The probLems 
of correlation (magnitude of relationship) and regression (the slope and intercept of 
the line producing that relationship) are linked because r describes both the magnitude 
and the slope for standardized data. This is also true if X and Y have the same standard 
deviation even if they are not standardized. Once b (r) 1s obtained, the line of best fit 
can be drawn, as in Fig. 4-\. The best estimate of <:y (zj,) for any value of Zx is ob
tained by mUltiplying Zx by b. 

Even though b = r, an important distinction should be noted between r as a measure 
of correlation and b (r) as a measure of slope in regression. Correlations are symmetric 
(nondirectional) in that it makes no difference whether one thinks of correlating ~x 
with Zy or of correlating Zy with Zx. Regression, on the other hand is asymmetric (di
rectional) in that regressing Zy upon 7.x is conceptually different from its converse. The 
slope (b) in linear regression has same numerical value (r) whether one predicts Zy 
from Zx or vice versa. However, this is the exception and not the rule. It does not gen
erally hold with nonstandardized variables, for example. Regressing Zx upon Zy treats 
z:x as a predictor and Zy as a criterion. Linear regression assumes that prediction is im
perfect (Zy;z!: z y) because Zy contains error; <:x is assu!p.ed to be error-free, and the devi
ations in Fig. 4-1 are measured vertically. The converse is true when one regresses Zl' 

upon Zx. The squared deviations are measured horizontally (see the bottom panel of 
Fig. 4-1). Thus, two distinct regression lines are obtainable even though only one may 
be of interest. 

Regression Based upon Raw Scores 

We have focussed upon z scores because we could ignore the largely incidental prop
erties of the raw-score units. You may have already been exposed to the raw-score for
mulas for regression, but we will present them as Eqs. 4-21 since they are both simple 
to present and are instructive. 

cry 
by.x :=: - r 

crx 

ay.x = Y - by.xX 

(4-Z1a) 

(4-21 b) 

The by.x and ay.x, respectively, denote the slope and Y-intercept of the raw-score re
gression line in predicting Y from X. The ratio of the criterion's standard deviation to 

the predictor's standard deviation in Eq. 4-21a illustrates that one "shrinks" the predic
tor's variance and "expands" the criterion's variance when the predictor is more vari
able than the criterion, e.g., when SAT scores (which have a standard deviation of 100 
or more, depending on how the scores are used) are used to predict grade-point aver
age (which has a standard deviation of about .2). The reverse is true when the criterion 
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is more variable than the predictor. These differences in variance often si.mply rel'le(:t 
arbitrary differences in unit of scaling. 

Equation 4·21b is als£. i~ormative. The point that represents the joint mean of the 
predictor and criterion (X. 1'; or centroid, a term that will appear later this book) al
ways falls on the [jne of best fit in least-squares linear regression. 

Weights used in regression are generically called "regression weights." Regression 
weights applied to standardized variables are known as "beta (~) weights," and regres
sion weights applied to raw or deviation scores are known as lOb weights." Had we fOl
lowed this convention, the b of Eq. 4-20 would hav~ been ~. A more specific notation 
parallels the distinction between the sample mean (X) and the population mean (j.I.) in 
distinguishing sample estimates from popUlation parameters. The most common con
vention is to place a circumflex ("hat") over sample estimates, e.g., b and~. However, 
we will not do so in this boole for simplicity. 

The Standard Error of Estimate 

The r plays a vital role in describing error in prediction (errors in estimating ?;y from ~x 
through linear regression). The variance of the errors (0";) was discussed above, e.g., 
in Eq. 4-15. It is actually the variance of the residuals (Zy . .0 and could therefore also 
be symbolized as O"~.x. This variance may be derived as follows: 

Thus, 

and 

"f 2 0; ::: ~ 
N 

= 1. I(zy- ~;.)l 
N 

= ..!.. I(~y - n.xi 
N 
1., ., ., 

= - I(zy - 2n.xzy + n:x) 
N 

Lz~ .., LZXZy ., Lzk = -- - t..r-- + r---
N N N 

2 2 ., o c = 0" Y.x = 1- ,.-

0,= Oy.x= VI - r 

(4-22a) 

(4-22b) 
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estimate when the dependent variable is in z-score form. The quantities ,2 and 1 _ ,2 

are similarly known as the coefficient of determination and the coefficient of nondeter
mination. respectively. because? describes the proportion of variance in one variable 
that is determined by another. If both variables are expressed as raw SCores or devia
tion scores rather than as standard scores. Eqs. 4-22 become 

a;=a~(1- ?) (4-23 a) 

atl:::ar~ (4-23 b) 

The a~ is the variance of the criterion. Equation 4-23 is the general fonn of the 
standard error of estimate. If the dependent variable is standardized. a y "falls out" of 
the equation. leaving Eqs. 4-22. The variance and standard deviation of errors of esti
mate depend only on the correlation between the two variables (r) and the variance of 
the dependent variable (a~) in the raw-score form of Eqs. 4-23. 

Using linear regression and Eqs. 4-21 through 4-23, you can take a predictor. obtain 
a least-squares estimate of the criterion. and obtain a confidence interval on this esti
mate. This is most useful in applied work. Thus. it might be found that the probability 
is less than .05 that students obtaining grades below a certain score on an admissions 
test will complete college successfully based upon the conelation between the admis
sions test and academic perfo11llaDce. 

It is important to remember that there is an inverse relationship between the 
squared correlation (r2) and the variance of the errors of estimate (ab. The more 
points scatter about the best-fit line. the lower, is. In addition, the variance of errors of 
estimate (a~ allows many indices of relationship between variables to be developed. 
For elCample. Eq. 4-23a can be rewritten as 

(4-24a) 

(4-24 b) 

where a~ = variance in predicted scores and corresponds to a: (true variance) in 
Eq.4-15. 

Thus, the correlation is inversely related to the ratio of a; to a~. the ratio of error 
variance to total variance. When a; is as large as a~. the correlation is zero; when a; is 
very small relative to a~. the correlation is very high. Conversely, we will make fre
quent use of l' as the ratio of true variance to total (observed) variance. ai/a? = 
a;la~. It often makes sense to reverse the roles of X and Y, in which case a; becomes 
a~.y and cri becomes a~. If a~ and ai are different (e.g., one is obtained from a 20-
item test and the other is obtained from a lOO-item test), the standard errors will also 
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differ even though ,2 is the same. Changes in cr x as produced by different approaches 
to sampUng subjects affect r in the same way that changes in 0' y do. 

Partitioning of Variance 

We have noted that one of the important properties of, is that it pennits variance to 
be partitioned into meaningful components. We have already used the terms "coefficient 
of determination = r2" and "coefficient of nondetennination = 1 - ,2" to illustrate how 
the total variance of a standardized variable may be divided into mutually exclusive 
(nonoverlapping) and inclusive (adding to the total) parts. Again assume that Zx is used 
to estimate Zy. There are two variables, Zx and Zy, before the correlational analysis is un
dertaken. The analysis provides two additional variables: z y (estimates of Zy) and Z".x 
(residuals or errors in estimation obtained by subtracting Zy from Zy). The lIleans and 
variances of these four variables and the correlations among them are extremely impor
tant. Throughout the book, we will demonstrate thac many important principles rest on 
simple properties of these four sets of scores. Because of the importance of this section, 
we will provide derivations. something we ordinarily do not do because of space. 

It should be apparent that the means of all four variables above are zero. The means 
of l.x and ~y are zero by definition. Since Zy is obtained by multiplying Zx by a constant 
(b := r), the mean remains zero. Since Zy.x is obtained by subtracting estimated (Zy) 
from actual (Zy) scores. the mean of Zy.x is also zero because the mean of a difference 
equals the difference in the meanS. 

The variances of Zx and Zy are 1 by definition. Since Zy= rex and multiplying all the 
scores in a distribution by a constant multiplies the variance by the square of that con
stant (Eq. 4-4), the variance of the predicted values (Zy) fs r2, and we bave already 
shown how the variance in residuals (error variance = O'~.x= 0';) is 1-? 

Multiplying a variable by a constant does not change the correlation of that variable 
with any other variable. Consequently since Zr = nx and the correlation of Zx and Zr is 
r, the correlation of Zy and Zy likewise is r. The correlation of Zy.x with Zx is obtained 
using Eq. 4-9 as follows: 

1 tzx1.y.x 
r =-. 

t Xty·x N 0' Y.X 

The numerator is the covariance of Zx and Zy.x. The "missing" standard deviation in 
the denominator is for z.'(. which does not appear since it is 1.0. One needs only to ex
amine the numerator of the expression to prove that 'x and Zy.x have a correlation of 
zero since zero divided by any other number is still zero: 

=r-r 

=0 (4-26) 
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Since ~y = nx correlates 1.0 with !x, the above also proves that predicted scores (zY) 
and residuals (Zy.x) are uncorrelated. 

The correlation of obtained scores (Zy) with residuals (Zy.x) is obtained as follows: 

(liN) l:ZyZy.x 

Oy·x 
(4-27) 

This is another application of Eq. ~9. but Oy is missing from the denominator as it 
is 1.0. The denominator of the equation is the standard deviation of the errors of pre
diction. Previously the variance of the errors of prediction was shown to be 1 - r'2; 
consequently the denominator is the square roO[ of that quantity (the standard devia· 
tion). The numerator can be expanded as follows: 

1 1 - IZxzy·x = - l:Zy(Zy - nx) 
N N 

= 1. I(z} - rIzxzy) 
N 

_ 1 "t'.,.2 1."t' 
- - ~ .. y - - rk'lx'l.y 

N N 

=l_ r'l 

Placing numerator and denominator back in the original equation gives 

(4-28) 

Note that Y is correlated with the residuals, even though X is not. Assuming r> 0, 
people who obtain high scores on Y do so because of (1) high scores on X (talent), 
andlor (2) the effects of chance upon the criterion (luck) andlor (3) other systematic 
factors not reflected in the predictor. The residuals encompass (2) and (3). The con
verse holds for people who obtain low scores on Y. Table 4-2 summarizes the above 
relationships among means, variances, and correlations. You should derive these sim
ple principles on your own, then burn the results into your brain. These simple princi
ples are the foundation of all methods of multivariate analysis. The next chapter con· 
tains a numeric illustration. 

A number of important points should be understood from the foregoing discussion. 
The r summarizes the relationship between two variables and also defines a line of 
best fit between one standardized variable and another. For each score on one variable, 
.there is a corresponding predicted score on the other variable. Unless the correlation is 
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TABLE 4--2 MEANS, VARIANCES, STANDARD DEVIATIONS, AND CORRElATIONS 
AMONG SCORES INVOLVED IN CORRELATION AND UNEAR REGRESSION 

Score 

Measure Zx Zy Zy z'r'x 
Mean O. O. o. O. 
(12 1.0 1.0 rh 1-r~ 

rs 1.0 1.0 rxy V1-r~ 
rwith Zx 1.0 'ICY 1.0 O. 

rwith Zy fxy 1.0 'Xy Y1-dy 
rwith z; 1.0 fxy 1.0 O. 

perfect, predicted scores vary less than scores for the variable being predicted (ob
served scores). Error scores are uncorrelated with both predictor and predicted scores 
but are coaelated with criterion scores. 

Correlational analysis thus partitions the observed variance into two independent 
(uncorrelated or orthogonal) sources-one source that can be explained by another 
variable and a second source that cannot be explained by that other variable. The vari~ 
ance of the criterion variable (Zy), is partitioned into two additive components, and the 
sum of squared correlations with these two components is 1.00. This is why it is mean~ 
ingful to speak of the squared correlation as equaling a proportion of variance and wby 
it is meaningful to speak of correlational analysis as decomposing the variance of one 
variable into parts attributable to different sources. This logic is expanded in factor 
analysis; variables are partitioned into sources of variance that can and cannot be ac
counted for by combinations of other variables. If you are unclear about any points 
mentioned thus far, you should reread this material carefully. The complex methods of 
analysis required in psychometric theory grow from these simple statistical roots. 

Structural EquatIons 

Although linear regression is relatively simple to use and widely applicable, it some
times makes more sense to think of l:)( and Zy as joint consequences of a third. unob
servable variable, construct, attribute, or true score (t) than to think: of either Zx or Zy 

as a predictor (cause) and the other as a criterion (effect). Consider, for example, two 
different checklists of depression-related symptoms. These two measu~s probably 
correlate highly over subjects, but one does not cause the other; both are outcomes of t 
(depression in this case). Conversely, lack of perfect correlation is assumed to arise 
from unique errors (ex and ey) that are largely but not exclusively unreliability in the 
sense of Chapters 6 through 9 and which are also not directly observable. The result 
may be expressed as structural equations: 

~x= t+ ex 
Zy= t+ ey 

(4-29a) 

(4~29b) 
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We have assumed for simplicity that the two observable quantities, lx and ;::y, are 
standardized, and so they have means of 0 and variances of 1. The means of the three 
unobservable terms, t, ex, and ey, may also be defined as zero when there is only one 
group of subjects. and so the important terms are tbe relative variances of these unob
servables. Note that Eqs. 4-29 contain two known quantities, l:x and z y, and. three un
known quantities. t. ex, and ey. An assumption or constraint is necessary in order to 
obtain a unique solution. Three possible constraints are the following; (1) The variance 
of ex is zero, so Zx is error-free (z y can also be assumed error-free); (2) the variances 
of ex and ey are equal; and (3) the variances of ex and eyare proportional to their 
reliabilities. . 

Although we introduced them as separate cases, linear regression becomes a special 
case of structural modeling when ex or ey is assumed to have zero variance. This is 
what happens under constraint 1. The subtle distinction is that one thinks of the predic
tor as an observable in regression and as an unobservable in structural modeling. How
ever, they are perfectly correlated when one variable is assumed error-free, which ob
scures the distinctioo. Structural modeling can therefore be used to obtain a 
least-squares regression line. We have noted that the squared deviations are measured 
either vertically or horizontally in regression because the predictor is assumed to be 
error-free. Under different constraints, deviations are measured obliquely. In particu
lar, they are measured perpendicularly to the line of best fit when the variances of ex 
and ey are assumed equal under constraint 2, as illustrated in Fig. 4-1b. Isaac (1970) 
provides a useful discussion of this topic. 

In more complex situations, several constructs may be modeled, e.g., anxiety and 
depression; the correlation between their respective true scores may be estimated, and 
each construct may be defined through multiple indicators. Unfortunately. structural 
equation modeling requires much more complex computational algorithms than ordi
nary linear regression or even mUltiple regression considered in the next chapter. Spe
cialized programs which either "stand alone" or are optional extensions. of general
purpose programs are generally necessary to this end. Some of the mare commonly 
used are LISREL (J6reskog & S6rbom, 1989), EQS and SAS' PROC CALIS (Bentler. 
1985). MILS (Schoenberg, 1982), and LISCOMP (Mutben, 1988). LISREL was the 
first such computer program to achieve widespread use and 1s perhaps still the most 
cited. Using any of these programs is quite involved and goes beyond this textbook. 
but some features will be considered in subsequent chapters, particularly Chapter 13 
(confinnatory factor analysis) where we will present a numeric example. 

STATISTICAL ESTIMATION AND STATISTICAL DECISION THEORY 

The contemporary conception of statistics is the making of decisions based upon in
complete data and may be traced to Wald (e.g., Wald, 1950). These decisions may 
have important consequences. One situation that illustrates such varied consequences, 
testing a null hypothesis, is introduced in basic statistics. Rejecting a null hypothesis 
based upon sample data can be a correct decision or a type I error. and accepting that 
hypothesis may also be a correct decision or a type II error. The self-correcting nature 
of science usually limits the long-range harm of an error, but there may well be short-
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range negative consequences, such as wasted research errort. A clinical diagnosis 
clearly can have similar properties. ft too involves sumple clata (an individual's behav
iors). A correct decision may suggest a correct plan of therapy, and an incorrect deci
sion may expose the individual to the harm of wrong or no treatment. 

In statistics, a great many quantities are estimated (the mean, variance, correlation, 
regression line slope and intercept, etc.). An "estimator" is a decision rule that resulcs 
in a particular value or estimate that is a function of the datu (sample values-Xi or, 
generically, X). We wit! use the symbol e to denote any unknown parameter and eto 
denote a corresponding sample estimate. The data in tum are assumed to be functions 
of e as well as perhaps other quantities such as random erroJ'. Estimation involves 
considering the expected loss given the possible distributions of the data. Good esti
mation means that e and e are numerically close to one another, and the aforemen
tioned concept of a loss function defines how close the two terms are. UnfortunateLy, 
there is more than ooe definition of "close" and associated "loss function." The pur
pose of this section is to illustrate some alternatives. 

Ordinary least squares was defined specifically in the context of Iinetll' regression. 
Equation 4-30 describes its general form: 

1 ~ 
L(e, 9) = N ~ (XI - et (4-30) 

Letting e be the population mean ell) provides a sim(?le ellrunple. Many statistics 
books prove that the expecred value of I:(X, - 9)2/N is at a minimum when e = the 
sample mean (X). Consequently, X is the least-squares estimate of the popUlation 
mean. This least-squares loss function is usable in many situations such as multiple 
regression. 

Ordinary least squares is not the only possible way to estimate, even though it is 
very popular and usually relatively simple to apply. We will consider five alternatives 
to ordinary least squares that have reflected areas of recent advance (though the princi
ples they reflect have long been known): (1) generalized (weighted) least squares 
(Grizzle, Starmer, & Koch, L969), (2) maximum likelihood, (3) Bayesian methods, 
(4) the method of moments, and (5) equal weighting. Ma.ximum likelihood is the most 
important of these and will therefore be considered in [he most detail. Once these are 
discussed, we will then consider some properties of estimators that facilitate compar
ing them. Most approaches to estimation regar:g~the parameter e as an unknown con
stant. However, Bayesians are unusual in regarding e as an unknown variable deter
mined by chance from a random variable e whose distribution will be denoted h(e). 

3eneralized Least-Squares Estimation 

The generalized least-squares loss function is defined as 

(4-31) 

where Wi is a weight applied to the ith observation. Weighting emphasizes the more 
important data, e.g., those having the most in common with other data or the most reli-
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able, depending upon the circumstance. In contrast. ordinary least-squares regression 
weights each observation equallY. Draper and Smith (1981, pp. L08-(17) describe how 
generalized least squares may be used to handle some unusual regression problems. 
Various forms of robust analysis "trim" (eliminate) outlying observations, thereby giv
ing them a weight of O. 

Generalized least squares uses a matrix of variances and covariances of the vari
ables to obtain weights. but the various algorithms are beyond the scope of this te:<t. 
Some, but not all of these (and maximum likelihood) algorithms are open form (itera
tive). Certain highly specialized algorithms in factor analysis and categorical modeling 
currently provide only generalized least-squares estimates. Generalized least squares 
and maximum likelihood have become attractive because they allow inferential tests 
that are not possible with ordinary least squares. We will introduce the resulting strate
gy below but discuss it more fully in Chapters 10, 13. and 15. 

Maximum Likelihood Estimation 

The principle of maximum likelihood is fairly simple: Choose the parameter whose 
value is most probable given the daca and assumptions about the distribution(s) of X. 
Symbolically. choose S to maximize p(SIX), meaning "the probability of the parame
ter given the data." As a simple but highly artificial example, suppose that you are 
given a coin and told that it is either fair (the probability of a head is .5) or biased (the 
probability of a head is .6). You flip the coin three times and obtain a Iiead, a head. and 
a tail. Since the tosses are independent. the joint probability of these three outcomes is 
the product of the individual probabilities. Were the coin fair, the probability of two 
heads and one tail in that order = .53 == .125, since the probability of each head = the 
probability of the one tail = .5. Were the coin biased. the probability of the joint out
come = (.62)(.4) = .144, since the probability of the two heads is each.6 and the proba
bility of the one tail = .4. The outcome has a greater probability with the biased coin 
than with the fair coin, and so p = .6 is the maximum likelihood estimate (again as
suming that .6 and .5 are the only possible values). The ratio of the two probabilities 
(.144/.125 == 1.16) is known as the "likelihood ratio." Since this is close to 1.0 (equal 
probability), the evidence for bias is weak. 

Had you been simply asked to estimate the probability of a head, the maximum 
likelihood estimate would equal the observed probability (2/3 = .67) since pp(1 - p) 
can be shown to reach its maximum value when p is .67. This value is the same as the 
least-squares estimator of the sample mean (X). However, the maximum likelihood es
timator of the population variance involves dividing IXl by N instead of N - I, as was 
noted in the discussion of Eq. 4-1. 

Maximum Likelihood and the Testing of Hierarchical Models 

One important use of maximum likelihood estimation is to test a sequence of "hierar
chical models." defined as models in which hypotheses about the data become pro
gressively more specific (generalized least squares may be used to the same specific 
end). For example. assume that a sample of 100 intelligence (IQ) measures has been 
obtained from a particular group. Three possible models (hypotheses) assume that the 
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FREQUENCY DISTRIBUTION FOR FOUR DIFFERENT MODELS 

Model Model Model Model 
1 2 3 4 

/J;; free; p.: free; p.=100j ,LL= 100; 
Interval (1= free (1 .. 15 0"=15 (1= free 

z> .B6 17 17 37 37 
.B42: z> .26 20 20 25 25 
.262: z> -.26 24 24 17 17 

-.26 2: z> -.84 18 21 15 1 
-.B42:z 21 18 6 B 

In order to be clear, these examples are much simpler and the analysis is much 
cruder than the ones used in practice. They do not require open-fonn estimation since 
the sample mean and standard deviation can be obtained directly from the data. Real 
problems often require an iterative solution. Another characteristic of a real problem 
is that one must consider whether a unique solution is possible, i.e., the issue of 
identification. 

In order to visualize more complex problems, where nUmerous parameters may be 
estimated at the same time, simply consider iterative estimation of two parameters, 
such as the above mean and variance. Any two such values fall somewhere in a two
dimensional plane of outcomes. Start at any arbitrarily chosen point in this plane. 
Then, move in the direction of greatest parameter cbange in the plane as detennined 
from the probabilities of the parameters given the data. Each iteration moves closer to 
the maximum likelihood estimates. The process stops when two successive estimates 
differ by less than a designated amount. 

Bayesian Estimation 

Bayesian estimation treats an unknown parameter e as the outcome of a random vari
able (0). The prior distribution of e (its distribution in the absence of data) is denot
ed h(@). In a great many situations, all values of e may be viewed as equally proba
ble for lack of an alternative distribution, so that he€)~ is uniform. If this is the case 
and one other condition described below is met, Bayesian estimation reduces to ma.-a
mum likelihood estimation. However, Bayesian estimation may also reflect knowledge 
gained about a parameter from previous studies and the differential utility of outcomes 
by considering the rclati ve cost of estimating too high or too low. 

The probability of choosing a given value of e is the ratio of the product of (1) 
the prior probability of that value of e. h(e), and (2) the conditional probability of 
the data (the probability of the data given 8), denoted p(XJ@), to (3) the uncondi
tional (overall) probability of the data [P(X)], where X denotes the data. The latter is 
obtained by computing the probability of data for each possible value of €) and 
(in essence) averaging. Equation 4-34 defines the Bayesian estimate of the probabili-
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ty of (9 given the data,[p(®IX)J. Note that this conditional probability of the para
meter is the inverse of [p(@/X)]-one obtains the probability of the parameter given 
the data from the probability of the data given the parameter Ilnd other information. 
The maximum likelihood principle for a discrete distribution is as follows (the 
same ideas hold in a continuolls distribution but a more cumbersome notation is 
needed). 

(eIX) = p(Xle) h (@) 
p p(X) 

(4-34) 

The numerator of this expression, p(@/X)h(@), depends upon @, but the denomi
nator, p(X). does not [since p(X) is a constant, it is not really needed in most practical 
estimations]. Consequently, the ratio describes how choosing a particular value of e 
increases or decreases the probability of having obtained the data relative to an aver
age outcome. The usual value of e chosen is the value that maximizes p(e/X), the 
mode of the function. If this is the case and h(e) is unifonn, the result is the maxi
mum likelihood estimate. An alternative way to estimate e is to select the expected 
value of e or average of the function. the a posteriori conditional probability. 

The Method of Moments 

We previously obtained the rth moment about any constant c by taking deviations of 
scores about c. raising each deviation to the power r. and averaging over the number 
of observations. The mean was therefore describable as the first moment about the ori
[in (c = 0 and r = 1), and the variance as the second moment about the mean (c = I.L or 
X. and r=2). 

Parameters are often either moments or functions of moments. When this is the 
case, one technique is to estimate the parameter(s) in question by substituting sample 
moments for the corresponding population moments and solving the resulting equa
tions. This is the "method of moments." It is so straightforward that any difficulty 
you may have in understanding it may arise because you expect a more difficult con
cept. For example, the population slope for standardized variables in a regression 
line may be simply estimated from the sample value of r since the population value 
is the desired slope. The previous ectition of this book assumed that samples were 
large enough to allow sampling error to be ignored. This essentially implies the 
method of momems. 

Unfortunately, statistical research has often revealed flaws in the method of mo
ments. Bowen and Huang (1990) provide an excellent illustration. Previously, Kenny 
and La Yole (1985) had used the method of moments to estimate a particular correla
tion useful in analyzing data obtained from randomly formed groups of subjects (the 
precise nature of this correlation need not be of concern). Population values are appro
priately bounded by ±l. However, Bowen and Huang (1990) showed that estimates 
could easily fall out of bounds by large margins and developed a maximum likelihood 
algorithm to overcome this difficulty. 
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Equal Weighting (the "It Don't Make No Nevermind Principle") 

One very legitimate approach to estimating a series of parameters of the same type, 
such as regression weights or factor score weights (see Chapter 12) is to let all para
meters equal one another. When the variables aU have approximately equal variance. 
such as test items. it does not matter whether they are in raw or standardized form. 
However, if they differ considerabl.y in scale, as might be the case for perfectly arbi
trary reasons, the variables must first be standardized to prevent those with the largest 
variance from spuriously dominating the prediction. For example, if raw SAT scores 
(0" = 100) were simply added to high school grade point averages (0" ~ .2) to predict 
college grades, the greater variance of the SAT scores would detennine the result and 
make grade point averages essentially irrelevant. 

Equal w~ighting is especially appropriate for small samples where estimates usual
ly produce large sampling errOf. There is no sampling error associated with equal 
weights since the parameters are noc estimated but defined in advance. However. equal 
weighting introduces a second form of error because (probably) unequal population 
parameters are treated as equal. The relative magnjtudes of the two sources of error 
determine the better strategy. 

Kaiser (1970; Dawes, 1971; Dawes & Corrigan, 1974; Wainer, 1976) noted that 
equal weights are often just as effective in making predictions in a new sample as are 
optimal weights (least squares in his example). He used the term "it don't make no 
nevermmd" to describe the outcome. Evidence for this point goes at least as far back 
as Wilks (1938). In some cases, though, equal weights sometimes impair ones' ability 
to predict. Perloff and Persons (1988; also see Paunonen & Gardner, 1991) provide 
relevant illustrations. 

Evaluating the difference between equal and optimal weights is very easy to do on 
a computer. Correlate the equally weighted sum with the optimally weighted sum and, 
in a regression problem, the criterion, preferably in a new sample. The use of a new 
sample illustrates cross validation to minimize the role played by chance in determin
ing optimum weights. 

Using equal rather than optimal weights assumes that your research interest is in 
accuracy of prediction rather than in the weights themselves. This is particularly likely 
to be the case in applied problems. Many situations. however, dictate interest in the 
weights themselves, perhaps as measures of the relative importance of the various pre
dictors. Obviously, equal weights do not address the issue. 

Properties of Estimators 

Now that several approaches to define the best or optimal way to estimate a parameter 
have been mentioned, it is useful to note the four most desirable properties of an esti
mate: (1) It should be unbiased, (2) it should be efficient, (3) it should be consistent, 
and (4) it should be sufficient. Properties 1 and 2, bias and efficiency, are generally re
garded as more important than properties 3 and 4. consistency and sufficiency. 

1 Bias. The estimate is unbiased if its e.'tpected value or average of all possible 
estimates is the same as the population parameter, i.e., if it tends neither to be too high 
nor too low. 
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2 Efficiency. The estimate is efficient if values obtained from randomly different 
samples are similar (have small variance). 

3 Consistency. The estimate is consistent if it tends to fall closer and closer to the 
population parameter as sample size increases. 

4 Sufficiency. The estimate is sufficient if it utilizes all relevant sample information 
in estimating the parameter. 

The mean-square error in an estimate combines the notions of bias and efficiency. 
Efficiency is the variance of estimates about the mean estimate (mean value of 9), 
whereas mean-square error is the variance about the parameter (8) The mean-square 
error and the efficiency will be equal if the estimator is unbiased. An estimator is 
sometimes both unbiased and most efficient. It is called a minimum variance unbiased 
estimator in that case. 

It is not always possible to obtain sufficient estimators, but if they exist in a given 
situation. maximum likelihood estimators will be sufficient. Maximum likelihood esti
mators are also the most efficient and consistent in large samples. On the other hand, 
the lack of bias in ordinary least squares is a decided advantage in small samples (less 
than 10 observations per predictor). Not all estimation methods allow their properties 
to be deduced, the method of moments being a case in point, but computer simulations 
may be used. Maximum likelihood estimators are sometimes biased in small samples. 
Dividing the sample sum of squares by N does tend to underestimate (J slightly, as il
lustrated in estimating the population standard deviation, but a great many statisticians 
feel that maximum likelihood's slight bias is offset by its other advantages, particular
ly its g1;eater efficiency, in most situations. 

Freedom from bias was once regarded as more important than efficiency. Opin
ions have changed, especially when the estimator is consistent so that the bias disap
pears in large samples. In contrast, ordinary least-squares estimators are unbiased but 
may be inefficient. We have noted how considerable efficiency is lost when one uses 
ordinary least squares with a heteroscedastic criterion (Draper & Smith, 1981). Maxi
mum likelihood estimates have become increasingly popular because of the extreme
ly wide variety of problems they may be applied to and the above statistical advan
tages. Even though they are complex, they actually simplify solutions to otherwise 
difficult problems, as Bowen and Huang (1990) illustrated. Although most proce
dures we will discuss use ordinary least squares and will probably continue to do so, 
maximum likelihood methods have been used with increasing frequency. At the same 
time, we have noted how maximum likelihood estimates may be biased in small 
samples. They are therefore not "magical" despite their many advantages. Bad data 
gathered from small samples used to estimate large numbers of parameters lead to 
bad estimates! 

Virtually any maximum likelihood application provides standard errors of the esti
mates. They are useful in three major ways: (1) Dividing the parameter estimate by its 
standard error provides a t test to see if it is reasonable that the parameter is a value of 
interest (e.g., 0.), (2) the relative magnitudes of the standard errors indicate which are 
the least stable, and (3) the correlations among the estimates indicate interdependen
cies among the estimates. Winkler and Hays (1975) and Bush (1963) provide further 
information about maximum likelihood estimation. 
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The distinction between discrete (categorical) and continuous quantities is very impor
tant in psychometric theory. [n particular, test items tend to be inherently categorical, 
whereas scale scores produced by aggregating items are continuous. However, our de
finitions of categorical and discrete differ somewhat from a mathematical definition. 
Mathematics defines a quantity as continuous if it is possible to obtain a value that is 
intermediate between any two other values, and discrete otherwise. All empirically de
fined quantities are discrete by this definition. Consequently, we will (somewhat arbi
trarily) define a variable as continuous if it can assume more than 11 values, and dis
crete if it cannot. 

Quantities are useful in science to the extent that they vary even if they are binary 
(dichotomous, so that they can assume only two values, such as answers on many 
tests, which are therefore also categorical) rather than continuous. The variance and its 
square root, the standard deviation measure this concept. Variables are transformed for 
various reasons, e.g., standardization. Adding a constant to each score does not affect 
the variance or standard deviation. but mUltiplying by a constant, b, increases the vari~ 
ance by b2 and the standard deviation by b. 

Studies of individual differences are usually concerned with variation among peo
ple, whereas experiments are usually concerned with variation in group means. In par
ticular, nearly aU studies are concerned with the correlations among two or more vari
ables. The most widely used measure of correlation is the Pearson product~moment 
correlation (r) which describes the linear relation between two variabfes. Although 
there are many computational fonnulas. r may be most simply defined as the average 
cross product of two sets of standard (z) scores. The "moment" part of the definition 
comes from the fact that the deviations used in obtaining c; scores are the first moments 
about the mean where a moment is the average difference between observations and a 
constant (the mean in this case) raised to a power (the first). Similarly, the covariance, 
which plays an important role in psychometric theory, is the average cross product of 
unstandardized deviation scores. 

Many sources describe the phi coefficient, the point~biserial correlation, and Spear
man's rank-order correlation, which are only computational short-cuts for hand ca1cu~ 
lation of r in special cases. However, biserial and tetrachoric r use binary data to esti
mate what r would be if the data were continuous and normally distributed. They 
generalize to polyserial and polychoric r which may be applied to categorical data in 
general. Although there are differences of opinion, we recommend that these estimates 
generally be avoided. Moreover. one should also avoid artificially categorizing vari
ables save possibly to simplify data presentation. 

Using r involves three main assumptions. The relation between the variables should 
at least be monotonic and preferably linear; error affecting each variable should be of 
the same magnitude across levels of the other (homoscedastic), and error should be 
normally distributed. Normality is less important to description than inference, but 
skewness can cause r to underestimate the magnitude of relationships. Two major fac
tors that can limit r are range restriction and differences in distribution shape, although 
the latter primarily occurS with categorical variables. In general, r is directly related to 
true variance (variance predictable from the linear relation between the two variance) 
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and inversely related to error valiance (residual variance not predictable). Error vari
ance tends to remain relatively cons cant as total (observed) variance increases, but true 
variance generally tends to increase, and so r tends to increase as total variance in
creases. Similarly, the correlation between two categorical variables is limited by the 
similarity of their distributions which in tum reflects the similarities in proportions of 
people who pass on each of the two variables. 

The correlation ratio, eta (11), measures correlation magnitude without assuming 
linearity. Eta is the square root of the ratio of true variance (variance predictable from 
any relation between the two variables) to total variance. It is also the square root of I 
minus the ratio of error variance to total variance. 

Although they are distinct concepts, correlation and prediction are related by the 
role that r plays in one form of prediction, linear regression-r defines the slope of the 
line of best fit in predicting one standardized observable variable from another stan
dardized observable variable. The r2 defines the coefficient of determination or propor
tion of criterion variance accounted for by its relation to the predictor, and r is the 
standard deviation of predicted scores (Zy = nx, assuming Zy is the criterion and '[x is 
the predictor) in standardized form. In contrast, 1 - r2 is the coefficient of nondetermi
nation or proportion of unaccounted criterion variance, and its square root is the 
standard error of estimate or standard deviation of residual scores (Zy.x = Zy - rzx). Re
gression and correlation thus illustrate the partitioning of variance important through
out statistics. Table 4-2 is crucial in defining the relations among predictor scores, cri
terion scores, predicted scores, and residual scores. Structural equations are a more 
general approach to prediction in which observed variables are functions of latent or 
unobservable variables. 

Obtaining a correlation or the slope of a line of best fit are ex.amples of statistical 
estimation where a decision rule provides estimators. A specific estimator is an esti
mate; e.g., a sample mean is an estimate of a popUlation mean. Estimates should be 
close to the parameters of interest, and a loss function describes the disparity. Alterna
tive loss functions are used in ordinary least-squares (historically the most popular), 
generalized least-squares, maximum likelihood, and Bayesian estimation. The method 
of moments is a widely used approach which people often use without realizing it (but 
one often posing hazards). When one estimates several parameters of the same form, 
another approach is to use equal weighting (assume their values are equal). 

Many times, maximum likelihood and generalized least-squares estimation involve 
specifying parameters of a model as free (to be estimated from the data), constrained 
(defined in terms of another parameter), or fixed (set equal to a predefined variable). 
Constraining or fixing a parameter constrains a model by restricting the possible val
ues parameter estimates may assume. If the estimated parameters of model A are de
fined as free and the corresponding estimates of model B are constrained or fixed, 
model B is a nested form (special case) of model A. The fit of each model and, more 
importantly, their difference in fit may be tested by a likelihood ratio chi-square, com
monly symbolized as G2• If the difference in G2 is small, the constraint is appropria[e 
to the situation; if it is large, the constraim is inappropriate. 

In general, four properties are desirable in an estimator: (1) freedom from bias (the 
estimate should not be systematically too high or too low), (2) efficiency (estimates 
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from different samples should be similar in magnitude), (3) consistency (any biB8 
should disappear as sample size increases), and (4) sufficiency (the estimate should 
use all relevant information). Unfortunately, estimation strategies rarely possess aU 
four properties. Least~squares estimates are generally unbiased but inefficient; maxi~ 
mum likelihood estimators are often biased but efficient Recent statistical trends have 
emphasized the acceptability of the small amount of bias in maximum likelihood esti. 
mation given its greater efficiency and ability to test hierarchical models. 
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CHAPTER 5 

LINEAR COMBINATIONS, 
PARTIAL CORRELATION, 

MULTIPLE CORRELATION, 
AND MULTIPLE REGRESSION 

CHAPTER OVERVIEW 

Linear combinations are weighted sums of variables that form the heart of psychomet
ric theory. For elC.ample, the conventional practice of scoring tests by adding up the 
number of correct responses defines the total score as an equally weighted linear com
bination of item responses. This chapter begins with a consideration of their proper
ties. In particular, the variance of the sum. of an equally weighted linear combination is 
shown to be equal to the sum of the elements in the variance-covariance matrix de
fined by the variances and co variances of the elements of the linear combination. Sim
ple extensions of this conclusion are then applied to obtain the variance of a weighted 
linear combination and of standardized variables. As part of the discussion, we will 
note how properties of items determine the shape of total score distributions. We will 
show how the common view that "a good test produces a normal distribution of 
scores" is false. 

"Partial correlations" are correlations between two variables in which the effects of 
a third variable are removed. Similarly, "semipartial correlations" are correlations be
tween two variables in which the effects of a third variable are removed from one, but 
not both, of the two. Both are integral to "multivariate analysis," which deals with the 
relations among several variables. 

Multiple correlation and multiple regression occupy JDost of the chapter. "Multiple 
correlation" (R) deals with the correlation between an optimally weighted linear 
combination of predictors and a criterion, and "multiple regression" deals with de fin· 
ing the optimal weightings themselves. The optimal weights for standardized variables 
are called beta (~) weights, and the optimal weights for raw variables are called 
b weights. Both are usually estimated through the method of least squares. They 

159 



160 PART 2: STATISTICAL FOUNDATIONS 

describe the expected change in the criterion per unit change in a predictor, holding 
constant all other predictors. We will consider the factors that determine the magni
tude of R. Perhaps contrary to expectation, R seldom increases appreciably once two 
or three major predictors are included. One frequently overlooked point is that there 
is an upward bias in sample values of R; R will spuriously increase with the number 
of predictors. Ways to incorporate categorical predictors are considered. Predictor 
importance is an extremely important topic as there ure several definitions which 
vary considerably in meaning. For example, the variable having the largest validity 
or correlation with the criterion may not have the largest ~ weight. Validity defines 
what the predictor has in common with the criterion ignoring other predictors, 
whereas a ~ weight defines what the predictor has in common with the criterion Con
trolling other predictors. A third definition is incremental validity of a predictor over 
a subset of predictors (co variates). 

Although some regression problems concern only ~ weights estimated with a fixed 
set of predictors, it is more common to select variables from a larger set. One impor
tant distinction is whether the situation involves (1) actuarially oriented prediction, 
which is characteristic of predictive validation, is data-driven, and places relatively lit
tle emphasis upon the processes underlying prediction, or (2) hypothesis testing, which 
is basic to construct validation, is theory-driven, and is concerned with details of these 
processes. Stepwise inclusion of variables selects predictors on the basis of sample 
data. It easily leads to spurious results and is not recommended, especially for hypoth
esis testing. rn contrast, hierarchical inclusion of variables in a predefined order is an 
important strategy, especially for hypothesis testing. This approach stresses what new 
predictors add to previous knowledge. In addition, some situations suggest alternatives 
to ~ weights, such as equal weighting. The concept of "it don't make no nevermind" 
states that the precise weightings of predictors are often unimportant to actuarially ori
ented prediction because different weightings often produce highly correlated linear 
combinations. 

Finally, we briefly discuss certain related topics: (1) the analysis of covariance, 
which is a special case of hierarchical inclusion useful in reducing experimental error, 
(2) use of multiple regression to fit nonlinear functions, (3) canonical correlation, 
which concerns optimal relations between groups of predictor variables and groups of 
criterion variables, and (4) residual analysis which looks for systematic differences be
tween observed and predicted values. 

VARIANCES OF LINEAR COMBINATIONS 

Score distributions are often obtained by summing scores on individual variables 
(items). The simpiest case of this Hnear model provides total scores as equally weight
ed linear combinations of item responses. Ordinary "number-correct" scores on class
room tests or sums of item responses on Likert-type items are outcomes of this model. 
Regression equations are weighted linear combinations in which the weights reflect 
what individual predictors have in common with the criterion, holding constant all 
other predictors. 



CHAPTER 5: LINEAR COMBINATIONS, PARTIAL AND MULTIPLE CORRELATION 161 

There are some very important relations between the characteristics of linear com
binations and the individual measures upon which they are based. These rela
tions anow more complex methods of multivariate analysis to be easily developed. 
Becallse the results of most multivariate analyses are the same regardless of whether 
one starts with raw scores or deviation scores. it will be more convenient to work 
with deviation scores. Equation Sola is an equally weighted (also called unweighted. 
perhaps misleadingly, since there are weights, albeit equal on~s) linear combination 
(y, the lowercase denoting that it is a deviation score = Y - Y) of three individual 
variables, .tl' X2, and X3' The latter are likewise deviation scores, e.g., XI = XI .:.. XI. 
Equation 5-lb is a weighted linear combination where bl , b2, and b) are weighting 
constants applied to the individual measures. In contrast, Eq. S-lc is not a linea'r 
combination because it con[ains cross-product terms such as XIX2, and a variable 
raised to a power (xi). However, if we define X4 = XI'''!' Xs = XIX). X6 = X~J' and X1 = 
xT, Eq. 5-ld is a linear combination, a most important "trick." This section will limit 
discussion to equations of the form of Eq. S-la, and later sections will consider those 
of the fonn of Eqs. 5-lb and Sold. We will not consider nonlinear combinations like 
Eq. S-lc directly. 

y =XI +'''2 +X3 

Y = b.xl + b2X2 + 6Y"3 .' ., 
Y = XI + X2 +.t3 + ;(1'\"2 + X.x3 + X2X3 + .tj 

Y = XI + X2 + X3 + '''4 + Xs + X6 + X1 

(S-la) 
(5-1 b) 
(5-lc) 
(5-ld) 

In Eq. 5-la, each person's score on Y is obtained by summing the score on the three 
x measures. The properties of y would not be affected if some of the x variables were 
subtracted rather than added. The mean of y is zero because the means of the individ
ual variables are zero (they are deviation scores), and the mean of a sum equals the 
sum of the individual means. This is also true of Eq. S-lb but not of Eqs. S-Lc and 
S-ld, unless the cross product and power terms are themselves transformed. The fact 
that ,tl and X2 have means of zero does not imply that X.X2 or xI has means of zero. In
deed, a mean of numbers raised to an even-numbered power cannot have a mean of 
zero unless the numbers themselves are all zero. 

Many mathematical properties of linear combinations can be deduced by substitut
ing the linear combination in the equations for individual distributions. Thus, the vari
ance of y in linear combination Sola is obtained as follows: 

., Il 
cr.=-

Y N 
L(x. + .t2 + X3)! 

N 
1 ., ., ., 

= N (Xj+ '''2 + Xj + 2t t X2 + 2xlxJ + 2x2xJ) 

= 0'1 + O'~ + a3 + 2(0'12 + at3 + 0'23) (5-2) 
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The variance of any sum of variables (0;) is generally obtainable from the individ
ual variances of x\ and Xj (cii and ciJ> and their covariance {ail) as follows (note the 
change in notation-x and y, without subscripts, sufficed in the previous chapter when 
we had only two variables to consider): 

(5-3a) 

or. using Eq. 4-10: 

(S-3b) 

The variance of a sum (y) thus equals (1) the sum of the individual variances plus 
(2) twice the sum of all possible covariances among variables (see Eq. 2-3). 

There is a very useful method for depicting the variance of a linear combination 
that greatly facilitates subsequent discussion. Numerical examples will be presented 
later. First, place the terms along the top and side of a table, as follows: 

I~ 

Next, multiply corresponding elements. as follows: 

x, 

Next, sum over the number of people in the study (N). and. finally. divide each term 
by N. This produces variances in the main (or major) diagonal positions (the positions 
that run from the top left to bottom right of the table. which will be simply denoted 
"diagonal" hereafter). There are three diagonal entries in the present case-cii. ai. and 
ai. The remaining off-diagonal positions (six in this case) contain covariances. e.g .• 
a\2. We will treat the variances as co'Variances of variables with themselves in the dis
cussion below. This produces the following table: 

X1 ~ X:! 

x, 
, 

OJ Gil GI3 

Xl 0\3 ~ ~ 
X3 all ~ cr, 
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(It is conventional to let the ~jrst subscript denote the row and the second sub
script denote the column, as in Table 2-1. However, had we followed this conven
tion, the point where 0'12 = 0'21 would have been obscured.) This table contains all 
necessary data required to use Eq. 5-2 and compute the variance of y from its k indi
vidual members. The sum of the elements in the table is therefore the variance of y. 
Any rectangular table of variables such as the one above is called a "matrix." The 
matrix above is specifically called a "covariance matrix" or a "variance-covariance 
matrix." We will use the fonner term for simplicity and symbolize it as C (the use of 
boldface to denote matrices is standard notation). The covariance matrix of raw 
scores is identical to the covariance manix of the corresponding deviation scores. 
Subscripts will later be used to distinguish different covariance matrices in particular 
problems. The symbol C will denote the sum of all the elements in the covariance 
matrix C. This use of a bar over C to indicate summing is unusual but convenient. It 
is more ~ompact than the formal expression in summation notation. J:.O'ij' Conse
quently, C is the variance of a sum of variables. 

Variance of a Weighted Sum 

Linear combinations are often weighted, as in Eq. 5-1b. The weights (hi) may be deter
mined On some prior basis to give greater importance to certain variables. This might 
reliect a theory that says that one variable is twice as important as another. The 
weights may also be determined after the data are gathered by least-squares or another 
estimation method. as in multiple regression. 

The variance of a weighted sum is obtained by an el(tension of the previous matrix 
approach used with an unweighted sum. The only difference is that weights for the 
variables are placed on the top and side of the covariance matrix, as follows: 

As before, corresponding elements are mUltiplied, summed over the N observa
tions, and divided by N. Each element in the resulting matrix is a covariance multi
plied by the product of the two weights for the two variables, an extension of Eq; 4-4. 
The resulting matrix is 

bfcf, 
b1ba012 

b,b:J0 13 



164 PART 2: STATISTICAL FOUNDATIONS 

The variance of a weighted sum equals the sum of the elements in the weighted co
variance matrix (kbibpli in summation notation). as shown above. 'The variances of 
both weighted and unweighted sums equal C. We state whether Or not weights are in
volved when there is likelihood of confusion. 

Variance of a Sum of Standard Scores 

The simplest case is when the individual variables have been standardized. as in the 
following linear combination: 

The matrix arrangement for calculating the variance of a sum makes the result read
ily apparent. There are no weights, and so there are no b terms. 'The variance of any set 
of standard scores is 1; consequently Is will appear in the diagonal spaces. Since the 
covariance of any two sets of standard scores is r (see Chapter. 4), r'g appear in the 
off.diagonal spaces. The result is a correlation matrix. Hlustrated as follows: 

Za 

r'3 
r~3 
1.00 

Correlation matrices will be symbolized as R. The variance of the sum of k sets of 
standard scores equals the sum of all the elements in the correlation matrix of these 
sets of scores. The sum will be symbolized as R. If these standardized variables are 
weighted before they are summed, products of the weights will appear in the correla
tion matriJ{ just as was shown for a covariance matrix. and R will equal I.b/bJriJ. The 
diagonal elements will always be positive because bib) wBl reduce to a positive num
ber (br). However, off-diagonal values of r might be either positive or negative de
pending upon whether (1) the direction of correlation is positive or negative and (2) 
the respective weights, bi and bj , have the same or a different sign. 

Variance of Sums of Dichotomous Distributions 

One of the most important cases in psychometric theory involves the variance of a 
sum of k dichotomous variables, as in the total score variance for k dichotomous items. 
The matrix representation of the variance of total test scores for a three-item test where 
each item is scored 1 or 0 is 

X, 

x, p, q, CSu a'3 
Xa a'2 P2q~ 0'z:J 

X3 0"3 023 P3C13 
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The off-diagonal elements are again covariances, and the diagonal elements are 
variances (recall from Eq. 4-3 that the variance of a dichotomous variable is pq.) 
As the covariance of two variables is r (<I> in the present case) times the product 
of their standard deviations, the covariance between any two items, such as 1 and 
2, is 

(5-4) 

Since pq grows smaller as p departs from . .5 in either direction, the term under the rad
ical will be largest when both p values are near .5 and will decrease when either p 
value is removed from . .5. Sirriilarly, the diagonal elements will be largest when the p 
value for that item is near .5. These considerations are very important to future discus
sions of the variance of score distributions and test reliability. The variance of the sum 
of Ie dichotomous items again equals the sum of the elements in thl:: covariance matrix 
for these items, C w~ use a different symbol, R to discuss a cotrelation matrix.) With 
dichotomous items, C equals the sum of pq values plus the sum of all off-diagonal co
variances. 

Numerical Examples 

Assume that the following is a variance-covariance matrix for variables ..tit :Ca, and X3. 

x, 

20 
30 
15 

30 
15 
40 

The variance of the equally weighted sum of Xl' :C2, and x] is simply the sum of the 
nine elements in the matrix: 50 + 20 + 30 + ... + 40 or 250. 

Now, assume that Xl' "2, and X3 are given respective weights of 3, 2, and 1. This 
gives rise to the following matrix: 

3x, 2xa 1x3 

3X1 311 .50=450 3·2·20=120 3·1·30=90 
2X2 2·3·20 = 120 22 .30=120 2·1·15=30 
1xa 1·3·30::90 1·2·15=30 12 .40 = 40 

The variance of this unequally weighted linear combination is 450 + 120 + ... + 40 
or 1090. 

For a third example, we will use Eq. 4-9 to convert the original variance-covari
ance matrix into a correlation matrix. This involves dividing each off-diagonal term 
(covariance) by the square root of the product of the on-diagonal terms (variances) 
that appear in the same row and in the same column. The diagonals of this correla
tion matrix are all Is. 
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x, Xi X3 

50 20 30 
)(1 

VSO. SO 
=1.00 

VSO.30 
=.52 

VSO.4Q 
.... 67 

20 :30 15 
.1:3 v'5Q.3O = .52 Y3O.30 

=1.00 V3Q:4O "'.43 
SO· 30 30·40 

30 15 20 
.1:1 ~",.fI7 

V30 ·40 
=.43 '\"20.20 = 1.00 

50·40 20·20 

The variance of ~I + 41 + 43, XI to x) expressed as z scores, is obtained by adding the 
terms in this matrix: 1.00 + .52 + .67 + ... + 1.00 = 6.24. 

CHARACTERISTICS OF SCORE DISTRIBUTIONS 

The above principles plus some others that will be discussed in this section permit nu
merous deductions about the mean, variance, and shape of distributions of test scores 
to be developed. The principles will be developed with respect to test scores obtained 
by summing dichotomous items, but these principles ~o hold for multicategory 
items. . 

Let Y = Xl + Xl + ... + Xi: be an equally weighted linear combination (ordinary sum) 
of item responses (Note the use of r instead of y since the item scores are not in devia
tion form). The mean (Y ) is by definition: 

Also by definition: 

- IX y=-
N 

- - -=XI +Xl + ... +XA: (5-5) 

The sum of scores on any item is simply the number of persons who passed the 
item. The mean score on the item (p value) equals this sum divided by the number of 
persons (N). In other words, P is the mean of an item scored as 1 or O. The mean total 
score on a test comprised of such items (Y) is therefore 

Y = PI + Pl + ... + Pk 
=41, 

(5-6a) 
(S-6b) 
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The mean thus equals the sum of the p values. This holds for any type of dichoto
mous item (an item that is scored 1 or 0, e.g., an attitudinal item scored as agree or dis
agree, not just a pass-fail item). 

Since the variance of a sum equals the sum of the variances plus twice the sum of the 
covariances (Eq. 5-3a), the variance of any set of test scores depends on only these 
two factors. If the sum of the covariances is zero, the variance of total scores will 
equal the sum of the item variances. Since this section assumes the items are scored 
only as 1 or 0, the variance of test scores will equal the sum of pq values. The sum of 
covariances will be zero if all cOlTelations among items are zero or if negative correla
tions offset positive correlations. 

Moreover, if the k items are uncorrelated and all items have the same p value, the 
sum of pq reduces to k(pq). In this special case, the total test scores forms a binomial 
distribution, illustrated in Fig. 5-1. This shows the expected number of heads (p = .5) 
obtained when k:= 10 pennies are tossed 1024 times. The variance, k(Pq), will be 
10(.5)(.5) or 2.5. This tie-in with the binomial distribution pennits the development of 
many very useful principles about score distributions. Each coin in the example is 
analogous to a dichotomous test item: A head represents passing (a score of I), and a 
tail represents falling (a score of 0). A toss of 10 coins represents the performance of 
one person on a 1O-item test, and the number of heads is the person's score. 

The foregoing discussion suggests several principles. First, the variance of score 
distributions tends to decrease as the item p values get further from .5. This is so even 

FIGURE 5-1 The expected distribution of heads and tails for 10 coins tossed 1024 times. 
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if the average p value is .5. but the individual p values vary widely about that point. 
Second, the average correlation (and thus covariance) among items and the total scare. 
variance are intimately related. High positive interitem correlations produce a large 
variance in test scores. and low correlations produce a small variance in test scores. 
Because high test reliability depends upon positive average item intercorrelations. a 
highly reliable test has a larger variance than a less reliable test (see Chapter 6). A bi. 
nomial distribution is the limiting case of total unreliability, but this baseline is impor
tant to consider. 

The shape of the test-score distribution is deternrined by (1) the p values, (2) the co
variances among items, and (3) the number of items. As the number of items increas
es, the distribution becomes progressively smoother. The binomial distribution in Fig. 
5-1 and, for that matter. in any lO-item test is a series of discrete steps rather than a 
smooth curve. The binomial distribution approaches the smooth normal distribution as 
the number of co.ins (items) is increased. Of course, this smooth appearance depends 
upon maintaining the same horizontal scale on the graph. If the horizontal axis were 
made longer as the number of coins or items was increased. the stair-step appearance 
would remain. However, since horizontal axes are not "stretched" in that way. the in· 
crease in number of coins or test items leads to an appearance of smoothing. 

Real test scores based upon item sums are rarely normally distributed. even if the 
number of items is large, because items on a real test are positively correlated and not 
uncorrelated (independent). Items in a coin toss are expected to be uncorrelated: The 
outcome for one coin (heads verSus tails) is independent of (uncorrelated with) the 
outcome for the other coins. Items on psychological measures must not be uncorrelat
edt however. Uncorrelated items have nothing in common; there is no central "theme" 
or factor. to their content, and they therefore measure different things. It is not sensible 
to name the total score (Le., assume that it measures any trait) or even to add scores in 
the first place. Our use of items is not limited to pencil-and-paper tests. The principle 
applies equally to the number of items recalled in a memory study or to individual bar 
presses in a Skinner box. Most measures are comprised of items that are aggregated in 
some way. Seldom is only one response used to measure a trait. 

Positive item intercorrelations also flatten the distribution of test scores, as may be 
seen in Fig. 5-2. The circles represent the distribution of simulated scores based upon 
the sum of 20 unrelated items (a totally unreliable test), and the squares represent the 
distribution of scores based upon 20 items whose average correlation was .10 (a low to 
somewhat reliable test by the standards discussed in Chapters 6 through 9). All items 
had a .5 probability of being answered correctly, and there were 1000 subjects. Note 
how the tails of the distribution for the moderately reliable test scores stretch out more 
widely in each direction relative to the height at the mean as compared to the distribu
tion for the totally unreliable test scores. This also illustrates how a normal distribution 
of scores may be obtained by using a totally unreliable measure. Keep in mind. 
though, that the raw scores on the reliable measure may be normalized for conve~ 
nience. Our concern is with the raw scoreS. 
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FIGURE 5-2 A normal dIstribution produced by random data (a totally unreliable test) and the flatter dlstribu~on 
of a moderately reliable lest. 

The amount of flattening depends upon the average item intercorrelations and the 
number of items, the two determinants of test reliability (see Chapters 6 through 9). 
Very high average item intercorrelations can produce a bimodal distribution, but this is 
very rarely seen. The limiting case is perfect interitem correlations where passing one 
item means passing aU items and failing one item means failing all items. Total test 
scores fall at only two points-zero and perfect scores. Despite the difference in the 
two distribution shapes, most actual distributions obtained by summing items are suffi
ciently similar to the normal distribution because item correlations are typically low to 
allow use of the useful statistical properties of a normal distribution. 

Whether a distribution is symmetric or skewed (lopsided) mainly depends an the 
average p value and the number of items. The effects of p can be illustrated with a 10-
item test in which all p values are .1 (only 10 percent of the subjects pass each item). 
The mean (kp) is 1.0. There is only one score possible below the mean (0), but there 
are nine possible scores above the mean (2 to 10 inclusive). Figure 5-3 presents a typi
cal distribution for this case. Average p values that deviate from .5 cause the distribu
tion to be skewed, especially with small numbers of items. Average p values below .5 
tend to produce distributions that are positively skewed (skewed to the right), and the 
opposite, negative skew occurs for average p values above .5 (skewed to the left), The 
nearer p values are to .5, the more symmetrical the distribution tends to be. 

Figure 5-4 contains representative distributions. One can tell if the average p value 
is far removed from .5 simply by inspecting the shape of a score distribution, For ex
ample, a distribution with a pronounce~ positive skew implies the average item was 
difficult for that sample, and vice versa fOT a negative skew. 

Another important principle is that the skewness tends to decrease as the number of 
items is increased, holding the average p value constant. We previously showed that 
items on a lO-item test with average p values of .1 will produce a distribution of total 
scores with a marked positive skew. However. a lOO-item test with the same average p 
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FIGURE 5-3 A skewed distribution of test 
scores produced when each Item 
has a p value of .1. 
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value will be much less skewed. The limiting case of an infinitely long test will pro
... ide a symmetric distribution because there is ample room on such tests for scores to 
spread above and below the mean, regardless of the item p values. 

This process may be visualized through the analogy with coin tosses. Assume that 
10 biased coins are used with the probability of each bead being .2 and the probability 
of each tail being .8. The average number of heads over many tosses of the 10 coins 
will therefore be 2. This distribution will have a positive skew; the extreme of the dis· 
tribution will stretch out over higher numbers of heads. Now jncrease the number of 
coins tossed on each trial. Tliis will decrease the skewness. The distribution will be 
normal in the hypotheticailimiting case when an infinite number of such biased coins 
is tossed per trial. A more elaborate proof of this principle follows from the central 
limit theorem in mathematical statistics. 

The relative symmetry of the distribution is a function of the number of test items 
(or number of coins). It is Dot related to the number of people taking a test (or trials on 
which the coins are tossed). 

FIGURE 5-4 Skewed scores cistrlbutlons by a 
high average p value and a low 
average p value. 

Low P value Hi!dlpvalue 

Score 



CHAPTEF! 5: LINEAR COMBINATIONS. PARTIAL AND MULnPLE CORRELATION 171 

COVARIANCE OF LINEAR COMBINATIONS 

The previous section presented some useful principles regarding the characteristics of 
score distributions by "looldng inside" the variance of a linear combination. This sec
tion considers some principles concerning the covariance between linear combinations 
of variables. The principles will be illustrated with two linear combinations, each bav
ing three variables, but these principles bold regardless of the number of variables in 
each combination. Numerical illustrntions appear at the end of this section. The two 
linear combinations, again based upon deviation scores, are 

y =x, +.\2 +.%3 

w =x. +Xj +x6 

The x's could be six dichotomous items, continuous total scores, or a combination. 
The previOUS section demonstrated. that the variance of y equals the sum of the ele
ments .in its I,!Sulting covariance matrix, symbolized Cy• Similarly, the variance of w is 
symbolized Cw. The covariance of the two linear combinations is obtained as follows: 

0'"",= E; 
1 

= NI(xl +X2 +.%3)(X4 +X5 +A6) 

a"" = 0'14 + a" + 0"6 + 024 + 0'2.5 + 026 + 034 + O]s + CJ36 

~=~ ~~ 

Subscript i goes from 1 to 3 (y), and subscriptj goes from 4 to 6 (w). The: covariance 
of y and w equals the sum of aU covariances between members of the two linear combi
nations. Note that neither individual variances nor covariances of members within each 
of the two linear combinations are mvol ved. This covariance may be displayed in matrix 
fonn, just as the variance of a linear combination was displayed. The matrix representa
tion is accomplished by placing the variables in one linear combination at the top of the 
matrix and the variables in the other linear combination on the side: 

x, 
y .va 

x, 

w 

Corresponding terms are multiplied. summed over people, and divided by the DUlll

ber of people. The resulting matrix contains all covariances between the two sets of 
variables, as follows: 
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The sum of the elements in the above matrix is the covariance of wand y. It will be 
useful to speak of such a matrilt as a matrix of "between" covariances to distinguish it 
from the matrix of "within" covariances involved in the variance of an individual Un
ear combination. A between matrix will be symbolized as CWY with different sets of 
double subscripts used as necessary to indi~te the two linear combinations. The co
variance of two linear combinations is then CWY = !.ag. 

If weights were applied to the terms in each linear combination before they were 
summed, the weights would appear at the top and on the side of the matrix and multi
plied as follows: 

b,b40'14 

bzb40'a4 

~b40'34 

b.b60',S 

b,.bt,0'26 

~b60'38 

The sum (CWY) then equals !.bjbjaij instead of simply !.ay for the equally weighted 
case. It is helpful to the understand linear combinations by looking at the "total" ma
trix of all possible variances and covariances. Table 5-1 contains this matrix for two 
linear combinations based upon three variables each. Lines drawn in the table show el
ements respectively concerned with (1) the variance of y, (2) the variance of w, and (3) 
the covariance of y and w (note that there are two of the latter; these are transposes of 
each other and are equivalent). Matrices 1 and 2 are within matrices, and matrix 3 is 
the between matrix. 

The variances of the two linear combinations and the covariance between them can 
be obtained by summing the elements in the appropriate sections of this partitioned 
matrix. The following is the partitioning in a more concise form. 

y w 

y c.., 

w C..,. e,. 

If all variables were standardized, corresponding sections of the correlation matrix 
would be used in computation. 

TOTAL COVARIANCE MATRIX FOR TWO LINEAR 
COMBINATIONS Y AND w 

yaet wset 
0', 0'12 a13 014 O'u; GIS 

yset 0'21 O'~ aa;3 024 0'25 G2S 

031 0'32 O'~ 034 0'35 036 

wset a"" 0'42 0'43 o~ 045 a46 

0'51 0'52 0'53 054 o~ aS8 

ese1 0'62 0'113 aS4 O'S5 a: 
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Correlation of Linear Combinations 

The correlation between the two linear combinations wand y can be obtained using 
Eq. 4-9 as follows: 

(5·8a) 

This means that the correlation between two linear combinations of variables can 
be written as 

(5·8b) 

The numerator is the covariance of w and y, the sum of the between terms (CIII)/)' 
The denominator is the product of the standard deviations of w and y, the sums of the 
within terms, Cw and C)'. We strongly emphasize that there is no limit to the number of 
variables that can appear in Cw or Cy , and w and y need not have the same number of 
variables in their respective linear combinations. Even if one linear combination had 
only two variables and the other had 400, all equations concerning variances, covari
ances, and correlations among linear combinations in this chapter would still be valid. 

If all variables are standardized, Eq. 5-8a reduces to 

rwy= 
Rwy 

(5-8c) 

In the case of Eq. 5-8c, the elements in Table 5-1 contain z scores on the top and 
side, Is in the diagonal spaces, and correlations in the off-diagonal spaces. Thus, the 
sum of all the elements within a correlation matrix. is the variance of the sum of a set 
of standard scores. Likewise, the sum of the elements in a between correlation matrix 
is the covariance of two sets of summed standard scores. If variables were weighted, 
the elements of the covariance or correlation matrix would also be appropriately 
weighted. 

The correlation between a linear combination of variables with a single variable 
(i.e., one that is not a linear combination of other variables) is an important special 
case. The elements in the resulting variance-covariance matrix are schematized as 
follows: 

w 
y x, Xa Xa X4 

y ~ C.." 

X, 
W Xa 

Xa C.." Cw 

x.. 



Numerical Example 

174 PART 2: STATISTICAL FOUNDATIONS 

In the above case, Cy reduces to $ since the linear combination is but one variable. 
The sum of between co variances (Cw.v) equals the sum of all the elements in the .first 
row or column of the matrix. excluding the diagonal term for Y (0;). The correlation is 

(5-9a) 

If all variables are z scores, Eq. 5-9a reduces to 

(5-9b) 

In that case, tTy falls out of the denominator of Eq. 5-9a since it is 1.0. 
We have stressed that these equations hold equally well when the elements in linear 

combinations are dichotomous items. The diagonals of the total covariance matrix 
contain pq values. The off-diagonal elements consist of phi (<I» coefficients multiplied 
by the square root of the product of the two respective pq values. Equations 5-9 thus 
also provide the correlation between the total scores on two tests composed of dichoto
mous items. 

A variant on this procedure important in factor analysis (Chapters 11 through 13) 
is to correlate a given variable with a linear combination that includes that variable, 
e.g., to correlate XI with the sum of Xl + Xl + X'3' The procedure is really no different 
except that variable ,'1:'\ is entered twice-once as an individual variable and once as 
part of the linear combination. In an important special case, Eqs. 5-9 may be used to 
correlate a test item and the sum of scores on all test items, the item-total correlation 
which was introduce in Chapter 2 and which plays an important role in the next sev
eral chapters. 

The principles developed so far in this chapter are the basis of multivariate crrela
tional analysis. Once they are thoroughly understood. it is relatively easy to under
stand such extensions as multiple correlation, factor analysis, and discriminant analy
sis. Reread the material if you do not understand the principles. Once you are 
comfortable with them. what Hes ahead in this book will be greatly simplified. 

The following is a matrix of co variances forvariablesy=xl +x2+x3 and W=X4 +XS+x6' 

y W 

X1 Xa X:J Jl'4 Xs Xe 
x, 25.00 5.00 4.50 -2.00 -8.00 -9.63 

y xa 5.00 6.25 1.50 -1.50 -3.60 -5.50 
X3 4.50 1.50 9.00 -1.50 -3.60 -5.78 

X4 -2.00 -1.50 -1.50 4.00 3.20 -3.30 
w Xs -S.OO -3.60 -3.60 3.20 16.00 11.00 

Xe -9.63 -5.50 -5.78 -3.30 11.00 35.00 
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The sum of the variances and co variances for y (Cy • is 25.00 +....5.00 + ... + 9.00 or 
62.25. Likewise, the sum of the variances and covariances for w (Cw) is 4.00 + 3.20 + 
... + 35.00 or 76.80. The sum of the between terms (CWy) is (-2.00) + (-1.50) + ... + 
(-5.78) or -41.11. Consequently. rwy = -41.111V(62.25)(76.80) or -.59. The princi· 
pies involved in using standardized scores instead of raw scores (i.e., converting the 
variance-covariance matrix to a correlation matrix) and in using unequal rather than 
equal (unit} weights are the same as previously illustrated. 

PARTIAL CORRELATION 

The discussion of constructs in Chapter 3 stressed how science seeks to find a relative· 
ly small set of variables which explain a larger set of variables. This occurs when 
some combination of the smaller set correlates highly with each member of the larger 
set. For example, some have suggested that as few as 5 to 8 (factors) dimensions are 
sufficient to explain variation in personality [e.g., McCrae and Costa, (1985, 1987) and 
Dingman and Inouye (1986)J. Cattell (1946) and, more recently, N1ershon and Gar· 
such (1988) provide evidence for the need for 16. Even this latter figure is vastly 
less than the number of proposed personality traits as indexed through proposed 
scales. Reducing the number of. "explainer" variables (constructs) is the essence of sci
entific parsimony. 

One should demonstrate that a new variable actually adds something to existing 
constructs before that variable is added to the set of constructs. The concept of par
tialling is very important to this demonstration. Suppose a measure of anxiety corre
lates positively with the speed of solving simple arithmetic problems so that the inves
tigators conclude that the measure is a useful explainer of speed in solving simple 
problems. Now suppose that other investigators find that both measures correlate posi
tively with cognitive ability scores. Since IQ is known to be an important construct, it 
is mandatory to detennine whether the new measure of anxiety adds to the prediction 
of problem solving. This can be accomplished by partialling IQ from the other two 
measures. If the partialled scores on the anxiety test still correlate with partiaUed 
scores on the problem solving measure, the anxiety measure will actually add to what 
the intelligence test explained. If not, there is no evidence to demonstrate that the anxi
ety test measures anything new. 

A "partialed score" is simply the residual or error score when r is used to estimate 
one variable from another (it might be useful to review the very important points con
tained in Table 4-2). The anxiety score, partialling the IQ score, is 

where 2:1 = standard score on an anxiety test 
Z3 = standard score on an intelligence test 

rl3 = PM correlation between the anxiety and intelligence test 
Z 1-3 = partiaUed score on an anxiety test after variance explainable by IQ is 

removed 

(5-10a) 
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Similarly, the partialled score for the problem-solving test, holding IQ constant, is 

(5-l0b) 

where 42 = a standard score in problem solving. Both Eqs. 5-10a and 5-l0b are linear 
combinations. The symbols ZI_3 and 42-3 are totally equival~nt to the term Zy.x usetl in 
the previous chapter. We have changed notation because there are more than two vari
ables involved. As Table 4-2 indicated, these partialed scores are uncorrelated with the 
variable used for the estimation or covariate (Z3 in this case). Consequently any correla
tion between 41-3 and Z2-J is independent of the linear effects of the IQ measure. Such a 
correlation is called a partial correlation, symbolized as rI2.3' The equation is developed 
as follows. The correla~on between any two variables, again using Eq. 4-9, is 

The tenns for partial correlation are 

(5-11) 

The denominator is the product of the standard deviations of the two sets of par
tialled scores. Previously, Table 4-2 indicated that the variance of any set of partialled 
scores is 1 minus the squared correlation between the two variables. Consequently 

(5-12) 

The covariance in the numerator equals the sum of cross productS of the two sets of 
partialled scores divided by N, which can be expanded as follows: 

1 
0'(1-3)(2-3) = N L(ZI - TI343)(Z2 - '232:3) 

1 
= N L(41Z2 - r23ZlZ3 - rlJZ243 + rI3T23d) 

= '23 - '23'13 - r13'23 + '13'23 

= '12 - '23r 13 (5-13) 

Reassembling the numerator and denominator gives Eq. 5-14 for the partial correla
tion: 

(5-14) 
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It is important to remember that (I) the numerator in Eq. 5-14 is the covariance of 
two sets of scores from which XJ has been partialled and (2) the denominator is the 
product of the standard deviations of the two sets of partialled scores. 

Partial correlation is the expected correlation between two variables when a third 
variable is held constant, as if all subjects had the same intelligence test score in 
the above example. The expected zero-order (raw, unadjusted, or simple) correlation 
between anxiety and problem solving is the correlation obtained when intelligence 
is allowed to vary. However. if the relation between anxiety and problem solving 
varies with intelligence (is heteroscedastic), the partial correlation between anxiety 
and problem solving would depend upon which level of IQ was chosen. It would 
be an average across levels of IQ; IQ would be said to moderate the relation be
tween anxiety and problem solving. The partial correlation might therefore under
estimate the zero-order correlation obtained from subjects with a high IQ but over
estimate the zero-order correlation for subjects with an average IQ (the important 
topic of moderation will be considered later in this chapter and elsewhere in this 
book). Because extreme heteroscedasticity is the exception rather than the rule, 
though, the partial correlation is usually a good estimate of the correlation found 
between two variables when a third variable is actually held constant. This provides 
very useful information in testing theories or in exploratory studies of correlations 
among variables. 

A second important point is that the size of the partial correlation depends on the 
signs of the three correlations involved. If '12 is positive, r1'2.3 usuatly is smaller than 
rl2 when '1:J and r23 have the same sign, regardless of whether the sign is positive or 
negative. It is usually larger than rl2 when '13 and r2J have different signs. The reverse 
is usually true in both instances when '1'1. is negative. The word "usually" is essential 
in these three rules because there are instances in which the rules are incorrect. For ex
ample, let '12 = .30, rlJ = .10, and '23 = .80. Here, '12.3 is .37, which is larger than r12. 

rather than smaller as would be expected from the first rule given above. If both '13 

and r2'J are zero, then rl2 and '12.3 will be equal. 
A third important point is that subjective ("eyeball") estimates of the amount of 

change expected from partialling a third variable are usually too large. Suppose that 
anxiety and problem solving correlate .60 and each correlates .40 with intelligence. 
One might think that partialling intelligence will markedly reduce the r of .60. In fact, 
what occurs is as follows: 

.6 - (.4)(.4) 

- v'l'=J6. v'l'=J6 
.6 - .16 = 

.84 

==.52 
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The f12.J is only .08 lower than rll, which might not matter a great deal. It I~ 
very easy to be fooled about the size of u partial cOlTelution before it is actually 
computed. 

A fourth important point is that the covariate may itself be a linear combination of 
other variables. Thus, if y is a linear combination of variables XI through Xj, there is 
nothing wrong with partialling y from variables .t'6 and X7' This is basic to factor analy. 
sis, which consists essentially of successively partialling linear combinations of vari. 
abIes from the correlations among the variables. 

Fifth, partialling eliminates only the linear effects of the covariate. If the covariate 
has a clearly nonrnonotonic relation with either of the two remaining variables, that reo 
lation will nor be adjusted as well. One simple way to handle this problem is to include 
successive powers of the covariate as additional covariates. That is, to fully remQve 
the effects of Wfrom X and y, use W, Wl , W .... ~ (five powers are almost always 
sufficient; see Jensen. 1980). However, what bas been said before about the minimal 
effects of slight nonlinearities applies. This strategy is needed only when there is a 
clear nonmonotonicity. Techniques for performing succ~sive partialling will be con. 
sidered shortly. 

Similarly. partialling removes the effects of a construct only when the covariate ac. 
curately measures that construct. For example. if the IQ measure was unreliable or a 
poor measure of the general construct of intelligence. some effects of intelligence 
would remain in the relation between anxiety and problem solving. 

This could be done with semipartial correlation (also called part correlation). which 
is very similar to pamal correlation. The problem is to correlate ~I with Z2-3. where 
problem solving is Xh anxiety is Xl, and intelligence is XJ. These scores can be placed 
in the regular equation for r. Equation 5-15 results from expanding terms in a manner 
similar to partial correlation: 

(5-15) 

An additional term, the square root of 1 - rG. is in the denominator of the equation 
for a partial correlation (Eq. 5-14) but not for a semipartiai correlation (Eq. 5-15). 
Since this cannot ex.ceed 1, pamaI r must always be larger than semipartiai r in ab
solute magnitude. 

The partial correlation is reported far more often than the semipartial correlation. 
However, the semipartial correlation is important throughout multivariate analysis. Its 
square, called the uniqueness, describes the improvement in prediction wben a new 
variable is added to a prediction equation. 

An Example of Partlalllng 

We will now work through a problem to illustrate several points about partialling as 
weU as a number of other points made in the previous chapter, particularly Table 4·2. 
We suggest that you make the calculations yourself both by hand and on a computet 
The following are 10 observations on raw measures XI. Xl. and XJ' 
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Raw measul1l 

)(1 )(1 X3 

7 9 7 
12 8 15 
15 8 13 
10 8 9 
19 9 12 
13 8 12 
10 8 13 
12 8 11 
15 10 9 
14 9 10 

You may readily verify that the respective means for Xh Xz• and X3 are 12.70, 8.10, 
and 11.10 and that their respective standard deviations are 3.34, 1.29, and 2.38 (using 
N - 1 in the denominator since this is what a computer package will probably use). 
Since a sample z score = (X - X )Is, the first value of Zl is (J - 12.70)13.34 or - 1.71. 
These data provide the following series of z scores: 

zscores 

Z1 %2 %:1 

-1.71 .70 -1.72 
-.21 -1.63 1.84 

.89 -.08 .80 
-.81 -.08 -.88 
1.89 .70 .38 
.09 -.08 .38 

-.81 -1.63 .80 
-.21 -.08 -.04 

.89 1.47 -.88 

.39 .70 -.46 

Use Sq. 4-6 to compute the correlations among these three v~ables. These should 
be as follows (within rounding error): 711. = .344, r13 = .354, and. r23 = -.730. Next, 
compute the residuals, ll-3 and Zl-J' partialling variable Xl from variables Xl and Xlt re
spectively, by means ofEg. 5-10. These are as follows: 

ResIduaJs 

-1.10 -.56 
-.79 -.43 

.41 .51 
-.50 -.72 
1.75 .98 
-.04 .20 

-1.09 -1.06 
-.19 -.11 
1.00 .83 
.55 .38 
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Now. correlate these two residual terms. The r will be approximately .94. This is r12.J 
and is the same value you obtain by using the much easier Eg. 5-14. Note that the par
tial correlation is much larger than the zero-order correlation in this highly artificial 
case because (1) Til (.34) is positive, (2) rlJ (.35) and rlJ (-.73) have opposite signs, 
and (3) r2:J is of large magnitude. Partialling removes a large effect that operates differ
entially on the two variables and whose presence therefore reduces rll' 

After completing this exercise, compute the semipartial correlation between ~I and 
Z:2-J using both the above values and Eq. 5-15. You should obtain a value of .88 in both 
cases. Then do the same to obtain the semipartial correlation between Z2 and ~1-3 of 
.64. Finally, compute all means, standard deviations. and intercorrelations to verify 
Table 4-2. Include both the zero-order scores and z scores to demonstrate that their 
correlations are 1.0. These data will be used again below. 

Higher-Order Partialling 

After the effects of X3 have been removed from variables XI andxl. the effects of addition
al variables X4, Xs, etc., may likewise be removed. That is, Eq. 5-14 may be applied to 
residuals and, for that matter, residuals of residuals, as may Eq. 5-15 for semipartial corre
lation. These covariates may be dichotomies such as gender. For example. one may wish 
to correlate scores on a reading achievement test with scores on a mathematics achieve
ment test in grammar school children and correct for both age and gender. This is called 
higher-order partialling. The resulting correlations are designated TI2.34' Tt2.345, etc. It 
does not matter in what order the variables are removed; rll.J4 is numerically equal to 
rI2.43' The concept ofhigher-orderpartialling is very important in multiple regression. 

Another Form of Partialling 

Assume that you have obtained two measures, XI and Xl. from 10 members of each 
two groups (A and B). such as males versus females, Democrats versus Republicans, 
etc. (The IOglc presented here can be simply extended to additional groups, and it is 
not necessary that the numbers in the two groups be equal.) The data are as follows: 

Group A Group B 

X1 X2 x, X2 

18 11 10 23 
19 14 16 24 
32 15 19 27 
37 22 21 24 
24 12 20 29 
34 13 14 21 
28 11 14 24 
31 19 16 27 
2S 8 19 21 
30 14 20 2S 
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Now, suppose you are interested in the relation between variables XI and X2' .If 
you were to compute the correlation over all 20 observations, thereby ignoring the 
group to which the observation belongs, you could readily verify the fact that r = -.44. 
This is known as a total correlation, as it is based upon the total set of scores, 
disregarding the group from which they were derived. It is very misleading. Look 
at group A. The relation rl2 is clearly positive (+.62), as it is in group B (r1'2 = 
+.38). The source of this paradox is the negative correlation between the group 
means-group A's mean on variable XI is larger than group B's (27.8 versus 
16.9), but the reverse is true for variable Xl (13.9 versus 24.5). With only two 
groups, the correlation must be either -1 as here, or +1; it may take on interme
diate values with more than two groups. Neglecting to take this correlation be
tween group means into account has a strong but artifactual influence upon the 
total r. 

An unconfounded measure, the pooled within-group correlation may be obtained 
by pooling (adding) the respective sums of squares CEX2 values) and cross products 
(l:xy values) upon which O'I2'~' and ~ are based in each group and dividing each by 
the total number of subjects. This correlation adjusts for group mean differences. It is 
a form of partialling since group mean differences are partialled out (it is identified as 
such in several statistical procedures). For example, the sum of cross products is 140,8 
in group A and 31.5 in group B, and so the pooled estimate is 172.3. After computing 
the two variances in a like manner, Eq. 4-8 may then be used to obtained the pooled 
within-group correlation of .55. 

Another way to obtain this pooled within-group correlation is to define an addition
al variable denoting group membership. Thus, assign a 1 to all members of group A 
and a 0 to all members of group B (or the reverse, it doesn't matter, nor, for that matter 
do the numbers have to be 0 and I, any two different numbers will do). Treat this as 
variable 3 in computing a partial correlation between variables 1 and 2. You will obtain 
the same value of .55. 

The previous example illustrated "aggregation error"-what holds for each of sev
eral groups taken individually may not hold when the data are pooled across groups 
because differences among the groups fonn a third variable that may confound the 
outcome. When this effect is found when two or more samples are compared with re
gard to the incidence of some characteristic, the result is known as "Simpson's para
dox" (Simpson, 1951). Bickel, Hammel, and O'Connell (1975) provide an important 
e;{ample involving adverse impact in faculty hiring, and Hintzman (1980) illustra[es 
its relevance to memory data. Paik (1985) notes the relation between the phenomenon 
and correlational logic. Simpson's paradox will be discussed in two later contexts 
(Chapters 9 and 15). 

Total, between-group, and within-group correlations play important roles in multi
variate theory, especially discriminant analysis (see Chapter 14). An important thing to 
keep in mind is that the total correlation confounds group mean differences and co
variation within groups. All combinations of positive, zero, and negative correlations 
between and within groups are possible, and the total correlation will be very mislead
ing if there is a strong between-group correlation. The moral of the story is to be very 
careful about aggregating across categories. 
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MULTIPLE CORRELATION AND MULTIPLE REGRESS10N 

Chapter 4 considered the related but distinct problems of linear correlation (describing 
the linear relation between pairs of variables) and linear regression (finding the line of 
best fit predicting a criterion from a predictor, usually by the method of least squares). 
The logic and method of least-squares regression are easily extended to estimating a 
criterion (dependent variable) from a linear combination of predictors (independent 
variables). Multiple correlation involves the magnitude of this relation. For the pre~ 
sent. assume the criterion is continuous. Chapters 14 and l5 consider categorical crite~ 
cia. It is not necessary to assume that the predictors are continuous; a later section will 
be devoted to the use of categorical predictors. Let the criterion be designated 'y and 
the predictors be designated 'I, 4:2, "', (;". Let any combination of the predictors used to 
estimate the criterion be designared z; : 

where z; = estimate of 'JI 
Z I. '2' Z3 = predictors 
~ I, ~2' ~3 = weights for predictors 

(5~l6) 

As noted in Chapter 4. ~ is applied to a Z score, and b is applied to a raw score. 
Both describe the expected change in the criterion per observed unit change in the pre
dictor in their respective units, holding constant all other predictors. Unlike values of 
r, ~ weights can exceed 1.0. The problem is to find a set of ~ weights such that 

L(Zy ~ Z;>2 = a minimum 
1:(,y ~ (~I'I + I32Z2 + ~3Z3)]2 = a minimum 

(5~17a) 

(5~17b) 

After the last ex.pression is squared and summed, calculus provides a solution for 
the ~ weights by solving a set of simultaneous equations. The result is a unique set of 
~ weights for any problem in which the predictors are not linear combinations of each 
other. No solution is possible in this latter case, but commercial computer packages 
can detect the situation and attempt to delete the offending predictor(s). However, they 
may not choose the variable you wish deleted, and so you should look at the printout 
with extra care when relevant diagnostics appear. 

The Two-Predictor Case 

Solving the equations necessary to obtain ~ and the multiple correlation are very sim~ 
pIe when there are only two predictors. This correlation is commonly symbolized RJI•J2 

for two predictors and Ry.I .. J: in the general case, but we will use R in most places for 
simplicity. (Be careful tq distinguish italicized R, the symbol for the multiple correla~ 
tion coefficient, from boldface R, the symbol for a correlation matrix. and Ii, the sum 
of the elements in R.) Equations 5-18 and 5-19 are all that are needed: 
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~I = rvl - r v2r l2 

1 - rl~ 
(5-18a) 

(5-lSb) 

(5-19) 

The square root of R2 then provides R. Note the similarity of Eqs. 5-18 to Eq. 5-15 
for semipartial r; the difference is that a square root is taken in the denominator with 
semipartial r. 

We will use the same data to illustrate the computation of ~ and R that we used to com
pute the partial correlation, using XI as the criterion and X2 and X3 as the predictors. 
Consequently, XL in the previous data corresponds to y in Eqs. 5-18 and 5-19. X! corre
sponds to XI. and Xl corresponds to X2. In the previous data, '12 = .344, '13 = .354. 
and '23 = -.730. The P2 (the ~ weight for variable X2 in predicting Xl) = [.344 -
(.354)(-.730)]/(1- .7302) or 1.290, ~3 = [.354 - (.344)(-.730)]1(1- .7302) or 1.295. and 
R2 = [.3442 + .3542 - 2(.354)(.344)(-.730)]1(1- .7302) or .902. TheR is therefore .95. 

Computing P weights is very simple on a computer but complex to do by hand when 
there are more than two predictors. Procedures for the general den vation of ~ weights 
and R are presented in books listed as Suggested Additional Readings. In particular. 
see Cohen and Cohen (1983), Draper and Smith (1981), Darlington (1990). or Ped
hazur (1982) for extensive discussions of all aspects of multiple correlation and re
gression. The resulting ~ weights can then be applied to the predictors to obtain z;' the 
least-squares estimates of Zy. In turn. one could correlate z; with Zy using the regular 
formula for, (Eq. 4-9) to obtain R. Instead of correlating z; with ZY' however, If can 
be obtained more simply from the zero-order correlations and ~ weights, regardless of 
the number of predictors. as follows: 

(5-20) 

The zero-order correlations between predictors and the criterion are commonly 
termed "validities" in the context of multiple correlation and regression. Standard out
put from commercial computer packages includes a significance test that the true value 
of R is zero, the individual ~ weights, their standard errors, and associated tests of sig
nificance from zero. The validities and correlations among predictors are often not 
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standard output but may be (and should be) obtained along with other optional outPUt 
to be discussed in later sections. 

Equation 5-20 leads to the special case of Eq. 5-21 if the predictors are uncorrelated 
with one another: 

R2 2 ? '2 
1. 123 = 'yl + 'j2 + 'y3 (5-21) 

Unfortunately, observable predictors are almost always intercorrelated, but methods 
of semipartial correlation can "untangle" these correlations to compute R. Equation 
5-22 describes the untangling: 

., 'J 2 _2 
Rj.l23 = 'Yl + 'y(2.I) + ry(3.1'Z) (5-22) 

where 'yl = zero-order correlation between y and Xl (validity of Xl) 

r )1(2.1) = semipartial correlation between y and Xl, with Xl partialled from X2 but not y 
ry(:!.I:!) = semipartial correlation between y and X3, with both Xl and X2 partialled 

from X3 but not y 

It is irrelevant which variable is identified as Xit X2, etc.; the same value of R is olr 
tained if the first term on the right-lland side of the equation is ";2 and the second tenn 
is r}l.l)' However, the OI:dering often reflects a theoretical hierarchy, as we will indi
cate later in this chapter. Although you will probably do all future problems on a com
puter, it is useful to explore Eq. 5-23. The first step is to square the first predictor's va
lidity (rYI)' Next, obtain the semipartial correlation between the second predictor and 
the criterion. holding constant the first predictor. Enter its square as the second term in 
the equation. Third. obtain the semipartial correlation between the third predictor and 
y, holding constant the nrst two variables. Enter its square as the third term. This 
process can be carried out for any number of predictors. Successive terms in the equa
tion are successively higher orders of squared semipartial correlations. The first term is 
the square of a simple correlation. the second term is the square of a first-order semi
partial correlation, the third term is the square of a second-order semipartial correla
tion, and so on. Nme that the If in the above two-variable numerical example can be 
obtained within rounding error from the sum of (1) ,f3 ;:: .3542 ::: .126 and (2) dez-J) 
;:: .8832 = .780. using Eq. 5-10. 

Seroipartial correlations are used rather than partial correlations because the predic
tors must be partialled from one another but not from the criterion. Partial , answers 
one hypothetical question: What would the correlation between two variables be if one 
or more other variables were held constant? This is hypothetically the same as assum
ing these other variables are actually constants, given homoscedasticity. The R2 an
swers a different hypothetical question: What would the sum of the squared validities 
be if the predictors were independent of one another? However, this issue pertains to 
the predictors and not to the criterion. In R (and therefore R2), one wants to leave the 
criterion intact and not partial.any variance attributable to the predictors. The problem 
is to determine how much an actual variable Y correlates with a linear combination of 
predictors which have been orthogonalized (made to correlate zero with one another). 
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Testing the Significance of R and Increments in R 

Despite our emphasis upon statistical description rather than nutl hypothesis testing, 
we will illustrate how to test the significance of R (actually, R2). The test that R = 0 
uses the F statistic found in any statistics boole (Eq. 5-23): 

R2/k 

F= (1-R2)/(N-k-l) 

where k = number of predictors 
R2 = squared multiple correlation 
N = total number of subjects 

(5-23) 

The test has k degrees of freedom in the numerator and N - k - 1 degrees of free. 
dom in the denominator. If the obtained value is sufficiently large, it may be assumed 
that R > O. 

A closely related procedure, whose importance will be discussed later in this 
chapter, is to test the significance of the increment in R from a base value obtained 
with ka predictors (Ra) to a value of R obtained with kb predictors that include the 
first kg (Rb). We will also discuss why there is always a chance increment due to the 
bias inherent in the greater number of predictors, making Rb > R,. (it is proper to 
refer to Ro. as a multiple correlation even when ka is 1). This increment is tested 
using Eq. 5-24: 

(5·24) 

where ko. = number of predictors in the smaller set 
R~ = squared mUltiple correlation obtained from the smaller set of predictors 
kll = number of predictors in the larger set (which must include all the predictors 

in the smaller set) 
R~ = squared mUltiple correlation obtained from the larger set of predictors 
N = total number of subjects 

Again. consult a table of the F distribution. The test has kb - ka degrees of freedom 
in the numerator and N - kb - 1 degrees of freedom in the denominator. 

The following example, though simulated, came from the second author's experi
ence. An executive was concerned about the effectiveness of a commercial multiscale 
personality test that was administered to store managers in a chain. The criterion was 
the judged effectiveness of the managers (assume that these are valid for purposes of 
the example). The executive was curious about the effectiveness of the profile as a 
whole. One scale was basically a short-form intelligence test. Call this predictor XI and 
assume that it cO.lTelates .35 with the criterion ratings (perceived effectiveness). Also 
assume that the R between all 10 scales of the inventory (predictors) and this criterion 
is .45 and that there are LSO managers in the sample. 

Equation 5-23 can be used to test the null hypothesis that the intelligence measure 
relates to job performance: 
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F= (1-.352)/(150 _ 1 - 1) 

.1225 
= 

.8775/148 

= 20.67 

This value of F is significant beyond the .0 1 level with 1 and 148 degrees of freedom. 
Equation 5-23 can also test the significance of the R obtained from a1110 predictors 

in the personality profile: 

F= .452/10 

= 

= 

(1- .452)/(150 -10 -1) 
.2025/10 
.7975/139 
.02025 
.00574 

=3.53 

This is also significant beyond the .01 level. but with 10 and 139 degrees of freedom. 
Note that although R is larger than when only one predictor was entered. the F ratio is 
smaller. Equation 5-24 is used to evaluate the difference between the correlations ob
tained with 1 predictor and with all 10 predictors: 

(.452 - .352)1(10 -I) 
F = (1 - .452)1(150 -10 - 1) 

(.2025 - .1225)19 
=--'--.7-97-5"-/1-3-9 "'--

.0089 
= 

.7975/139 

.00889 

= 1.55 

This difference is not significant. The increase in R from .35 with 1 predictor to .45 
with 10 predictors reflects a bias due to the larger number of predictors which we dis~ 
cuss in the next section. We had every reason to use the intelligence scale (which prob
ably could have been replaced by any of dozens) first, and so the result indicates how a 
little truth plus a lot of sampling error can lead up to a misleading conclusion about the 
test as a whole. This is an introduction to hierarchical model testing which we will dis
cuss more fuUy later. 
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The R is determined by the following: 

1 The R tends to be higb when the predictors correlate highly with the criterion 
(have high validities). If all the predictors cOlTelate zero with the criterion, R must also 
be zero. Conversely, if some of the predictors have high correlations with the criterion. 
R will also be high. 

:2 The R cannot be less than the highest validity. If. for example, one predictor 
correlates .50 with the criterion. R cannot be less than .50. regardless of the other 
validities. 

3 The R cannot be negative. The statistical procedures for deriving weights adjust 
their signs to make R zero or positive. However. one can detemrine how individual 
variables relate to the criterion by looking at each of their validities. 

4 The R is larger when tbe predictors have relatively low cOlTelations among them
selves. Each can then add something to the predictive power of others. If the correla
tions among predictors are high. they are highly redundant and so they will add little 
to the prediction. When all correlations among predictors are eero, Eq. 5·21 shows 
that the If equals the sum of the squared validities Ct?;y). Also, ~i = TjJl' where i is' a 
given predictor. These very important facts can be easily proved from the correlation 
of sums and will be used many times in discussing multivariate statistics. Thus, if two 
predictors correlate zero and each cOlTelates .50 with the criterion, the R'- is .50 = .502 

+ .502 and so R = .71. On the other hand., if the two predictors correiate .50, R decreas
es to .58 (see Eq. 5-19). Additional increases in the correlation between the predictors 
further reduce R. If the two predictors were perfectly correlated. R would be .50. 

S The relations among R. the predictors' validities. and their !3 weights are often 
difficult to determine without performing the actual computation. This is particularly 
true when there is a mixture of positive and negative correlations. A suppressor rela
tionship is an important special case. In a suppressor relationship, ~j > r'Jl for predictor 
i. Variable Xi is also said to have a suppressor relationship when r,y and !3i differ in sign 
but both are of substantial magnitude. In the fonowing example, R is higher (.69) than 
the zero-order correlation between Xl and y (.60). Tzelgov and Henik (1991) provide 
an extensive discussion of suppressor relationships with examples. The following ilw 
lustrates how it may arise. 

'Iy= .60 
'2y =.00 
'12 = .50 

131 = .6 - (.0)(.5) = .8 
1- .52 

~ ::: .0 - (.5)(.6) _ -.4 
1- .52 

If ::: (.8)(.6) + (-.4){.O) = .48 

R =.69 
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De!lpite the fact that X2 is uncon'eluted with y and therefore has a validity of 0, its 
high correlation with XI (r12 = .50) supplies important information about variance in ,(, 
that is not correlated with variance in y. The squured correlation (r212) describes this ir
relevant variance. Consequently, when this component of variance is subtracted from 
Xl (note that ~ is negative), the predictive power of Xr is increased. Actually, suppres
sor variables are rarely found in practice, but they illustrate the distinct surprises that 
sometimes come about when they do occur. 

6 The R rarely increases dramatically as the number of predictors increases. Sup
pose 10 tests were investigated for their ability to predict college performance. A typi
cal finding is that (a) one test cOlTelates moderately with the critetion, (b) combining 
that test with another test of high validity increases R above any of the zero-order COr
relations (validities), (c) adding a third test increases R slightly, and (d) additional tests 
increase R only slightly beyond that. Seldom are more than two Or three tests needed 
in applied prediction problems, but there are counterex.amples, e.g., the aforemen
tioned study by Mershon and Gorsuch (1989). The R usually does not continue to in
crease because the redundancy (high intercorrelations) among the predictors eventual
ly catches up with the information obtainable from new predictors. Of course, it is 
always possible that a new, less redundant predictor will increase R. This search for 
important new constructs that add to prediction is at the core of psychology. 

7 The sample R is systematically biased upward so that it tends to be larger than 
the population R. One major reason for the bias is that predictors are usually selected 
from a larger set, e.g., 3 tests may be selected from a set of 10. This selection takes 
enormous advantage of chance when it is based upon data and not theory. For exam
ple, if there are 10 predictors, 120 different sets of 3 predictors and 210 different sets 
of 4 predictors can be chosen from 10 initial predictors at random. Some predictors 
will correlate highly with the criterion because of sampling error rather than any inher
ent predictive ability and therefore correlate poorly in another sample. Chance also 
plays a role in determining the patterns of correlations among predictors. 

Capitalization upon chance decreases with sample size and increases with the pool 
of possible predictors. For example, R will be so spuriously high as to be worthless if 
3 variables are selected from a group of 20 predictors in a sample of only 100. In con
trast, the upward bias in R will be negligible when 3 variables are selected from a 
group of 6 in a sample of tOOO. See Green (l99t) for a discussion of the issue of sam
ple size in multiple regression. 

It is not necessary to use least-squares regression weights in a prediction equation, 
and the next section will consider some altemative approaches. Weights defined in ad
vance, such as equal weights, or added in a predetermined theoretical order and their 
associated values of R are not subject to this spurious inflation, as are weights that are 
estimated from the data, e.g., ~ weights. However, all are subject to the usual type I 
error (falsely concluding that a variable added to the equation improves prediction) 
and type II errol' (falsely concluding that the added variables do not improve predic
tion) present in any statistical inference. 

Values of R derived from ~ weights are biased upward for a second reason even 
when predictors are not selected from a larger pool. Suppose three tests are used to 
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predict a criterion. One is not taking advantage of chance in variable selection, since 
all predictors are used. However, chance still affects R because we can know only the 
sample correlations and not the population correlations. This is true for any set of 
weights and the associated value of R when variables are chosen on the basis of data. 
The ~ weights extract all possible predictive power, but, in so doing, they capitalize on 
sampling error among correlations. A test that happens to have a large validity as a re
sult of sampling error will have a large 13 weight, and a test that happens to have a 
small validity will have a small P weight. 

Consequently, the R obtained from a relatively small sample will tend to become 
smaller when reapplied to a larger sample. Large samples have less chance of produc
ing unusually large correlations by chance because the parameter estimates are more 
stable. This tendency for R to decrease as the sample grows larger is called "shrinkage" . 
The following formula estimates the shrinkage in R when it is reappJied to an infinitely 
large sample so that it is unbiased: 

where R unbiased estimate of the population multiple correlation 
R ::: observed multiple correlation found in sample of size N 
k::: number of predictors 

(5-25) 

For example. suppose R is .50 in a sample of N::: 100 with k = 8 predictors. The un
biased estimate of the population R (R) is .44. Equation 5-25 indicates that the infla
tion in R (bias) declines as the ratio of sample size to number of predictors increases. 
Bias is insignificant when the ratio is 100: I, but it is substantial when the ratio is 10: 1. 
When there are as many predictors as people, R will artifactually equal 1.0. This sirua
tion takes every opportunity of chance. It will hold even with random data because the 
equations producing an R of 1.0 can always be solved when there are as many un
knowns (~ weights) as subjects. Of course, this value of R would not hold up if the 
weights were applied to a new sample. Lord and Novick (1968) developed this partic
ular fonnula, modifying an earlier version by Wherry (1940). 

As is true of most other problems in psychological measurement, nothing belps so 
much as a large sample. A sample of about 100 will provide a relatively unbiased esti
mate of R when there are only 2 Or 3 predictors, but a sample of 300 to 400 is needed 
when 9 or 10 predictors are used. 

CategOrical Predictors 

As noted in the section titled "Another Form of Portialling," categorical variables are 
now used quite commonly in multivariate analysis thanks to Cohen (I968). This use 
reflects the point made in Chapter 1 that a scale may be regarded as an interval scale 
when it contains only two points. This is the basis of the analysis of variance. If the 
variable takes on only two values, such as gender, one level may be coded 0 and 
the other coded 1. The choice will affect the sign of the resulting correlation with the 
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criterion: [f the group coded I has the higher mean, the correlation (rpb, as discussed in 
Chapter 4) will be positive; otherwise it will be negative. The sign of the ~ weight will 
be likewise determined. Otherwise, the choice of which variable is given which code 
makes no difference. A variable coded 0 or I is called a "dummy" or "indicator" vari
able. The independent variable's "scale" has interval properties, by definition, because 
the scale has only two points. 

There are several ways to code a categorical variable that has more than two cate
gories. These alternatives do not affect R, but one strategy may be more useful in a 
given setting than another because of differences in the way the resulting ~ weights are 
interpretable. In all cases, k categories will be used to form k - 1 individual predictor 
variables. For example, American voters may be classified as Democrats, Republicans, 
or Independents. One strategy is to define two dummy variables representing Demo
crats and Republicans, respectively. A Democrat is coded 1 on the first dummy vari
able and 0 on the second; a Republican is coded 0 on the first dummy variable and a 1 
on the second, and an Independent is coded 0 on both variables. A third dummy vari
able for the Independem category is redundant because knowing that someone is nei
ther a Democrat nor a Republican implies that he or she is an Independent. No One is 
coded I on both variables since the categories are murually exclusive. The two dummy 
variables are therefore negatively correlated. 

An alternative (among a literal infinity of others) is to code both Democrats and Re
publicans +1 and to code Independents -Ion one variable. This variable denotes 
whether the in~ividual is or is not affiliated with a major political party. The second 
variable might 'be coded + 1 for Democrats, -1 for Republicans, and 0 for Independents 
and represents whether a person is a Democratic or Republican given that he or she af
filiated. This is called orthogonal coding because the correlation between the two 
resulting variables will be zero if there are equal numbers of people in the three 
categories. 

A somewhat different issue arises when the categories form an ordinal scale, e.g., 
academic ranks (instructor, assistant professor, associate professor, and professor). The 
value of R obtained from using three categorical predictors does not consider the rela
tive magnitudes of the differences among the ranks, as it does not even assume the 
ranks are ordered. Coding the ranks as a single predictor (1 :::: instructor, 2 = assistant 
professor, 3 = associate professor, and 4 = professor) does assume they are equally 
spaced. The reduction in correlation using this single predictor as compared to using 
three categorical predictors is a measure of nonlinearity, as noted in the last chapter. If 
it is small, which it typically is when the criterion means for successive predictor val
ues are monotonic, one predictor can replace several. Te){tbooks that discuss the de
tails of multiple regression, such as Pedhazur (1982), present details on the use of cat
egorical variables as predictors. 

A problem arises when the predictors are highly intercorrelated or multicollinear. This 
is not a practical problem when one or more predictors is an exact linear combination 
of the others since, as we have noted, no solution is possible without eliminating one 
or more or the chosen predictors. The more realistic problem is when one or more pre-
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dictors is an approximate linear combination so that the solution proceeds to apparent 
completion. 

Multicollinearity affects the stability of the regression weights in that slight 
changes in the data will produce substantial changes in the weights. However, it will 
not affect R itself. This can be demonstrated by perfonning an orthogonal component 
analysis (see Chapter 11) on a set of multicollinear predictors. The reSUlting orthogo
na! components will not be multicollinear, by definition, but the values of R produced 
by the original variables and their components will be identical. Among the many 
anomalies that can occur with unstable ~ weights is tnat weight ~i can be larger than 
weight ~j but ~I can be nonsignificant and ~j significant. This is because the signjfi
cance of a ~ weight is tested by the ratio of its absolute value to its standard error (t) or 
this ratio squared (.P), and ~I can have a larger standard error than ~j. The high correla
tion between the two predictors in the numerical example given above (-.729) illus
trates multicollinearity, but there is no magical value of the correlation to define multi
collinearity exactly. 

If your problem allows you to eliminate Some predictors, try to locate the offenders. 
One statistic that is extremely useful is the tolerance of a predictor. This is 1.0 minus 
its squared multiple correlation with the other predictors (the criterion does not enter 
into this calculation). A variable with a very low tolerance is unlikely to add to predic
tion-its variance is largely shared with the other predictors, "by definition. UnfortU
nately, no single predictor may have an unusually low tolerance relative to the others, 
yet mu!ticollfnearity may still be present. Another indicator of multicollinearity is 
when the determinant of the predictor correlation or variance-covariance matrix used 
in computing R is small. Defining this quantity also goes beyond the scope of this 
book, but it is discussed in books listed as Suggested Additional Readings. Moreover, 
it mayor may not be available, even as optional output (tolerances are available, 
though perhaps as optional output, in all the major packages). Some application (tests 
of theories, as we will discuss below) also dictate looking at all predictors. No proce
dure will be entirely satisfactory in this case, but the problem should be noted. 

Other signs of an unstable solution are (1) a large standard error of the parameter 
estimates or its square, the variance, and (2) a large correlation among one or more pa
rameter estimates. The latter are quite different from the correlations among the pre~ 
dictors but are readily obtainable. Large standard errors and correlations among esti
mates imply that alternative weightings are likely to produce similar results, meaning 
that the actual weights are not unique. Variables with large standard errors are also un
likely to be useful. 

One way to handle a multicoUinear set of predictors without eliminating any of 
them is a technique called ridge regression (Price, 1977; Darlington, 1968). It is a cal
culational device that goes beyond the scope of this text, and some (Morris, 1982; 
Rozeboom, 1979; Pagel & Lunneborg, 1985) are highly critical of it. 

Predictor Importance 

It is extremely common to evaluate the relative importance of a set of predictors. Un
fortunately, the concept is inherently ambiguous. A predictor that is most important by 
one criterion may not be by another. One definition of "importance" is the validity, de-
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fined eurlier as the zero-order correlation between a predictor and a criterion. This (or 
its square) describes the information a predictor provides about the criterion, ignoring 
all other predictors. If you can use only one predictor, choose the one with the hlghest 
validity. The validity coefficient also remains unchanged as additional variables are 
entered or deleted. 

Another definition of "importance" is the relation between a pr~dictor and the crite
rion, balding constant all other predictors. This is indexed by the ~ weights, but there 
are some statistical complications. One is that adding new predictors to the equation 
typically reduces the ~ weights of all variables because the new variable typically has 
something in common with each of them, even if it is merely sampling error. When 
two predictors are highly correlated, both of their ~ weights will be small because the 
effects of each will also be small when the other is controlled. Second, ~ weights are 
much more sensitive to sampling error than are validities. Consequently, one should 
look at the standard errors of the p weights as well as their absolute value. The "bot
tom line" is that each of a series of predictors may be highly valid, but none particular
ly important to independent prediction. 

If the predictors have a common unit of measurement, the b weights may be more 
useful than the P weights. Range restriction (small predictor variance, perhaps due to 
sampling error) will reduce a ~ weight. However. ~ is divided by the predictor's stan
dard deviation to produce b (Eq. 4-2l a), which partially offsets the range restriction. 
Using b instead of ~ is especially useful in comparing weights in different samples. 
The b weights should not be used when the predictors are in different units since they 
are highly sensitive to these often arbitrary scale differences. 

The "uniqueness" of a predictor is the difference in R2 when (1) all variables are 
included in the model, called the saturated model, versus (2) the predictor in ques
tion is eltcluded from the modeL This definition provides similar information to the 
~ weights and describes what the predictor adds to the other predictors. However, it 
is readily verified that the t Of F statistic used to test the significance of a ~ weight 
and a uniqueness are identical. The ~ weights are readily available OUtput from all 
computer programs; uniquenesses usually require effort to obtain. Although they are 
numerically different, they do not provide different information. The uniqueness is 
also numerically equal to the squared semipartial correlation between the added 
predictor and the criterion, controlling for the other predictors in the added pre
dictor. 

A third category of definitions is the improvement in prediction above that provid
ed by one or more predictors known to be relevant to the criterion or incremental va
lidity (Sechrest, 1963). One or more predictors serve as a covariate to provide a base
line for evaluating unknown predictor effects. For example, one might attempt to 
predict college grades from high school grades and a series of personality measures. 
Since high school grades are a known detenninant of college grades, one would be 
much more interested in the increment the personality measures provide over high 
school grades than in their validities alone since the personality measures may be con
founded with the same intellectual factors that are reflected in grades. The unique
ness-beea weight criterion is a specia! case in which the baseline is derived from all 
variables save the one in question. 
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The incremental validity criterion is intermediate to the zero-order correlatiun and 
uniqueness-beta weight criteria as far as defining predictor importance is concerned. 
Definitions based upon zero-order correlations do not take the redundancy of a given 
predictor into account at all. For example, X, and X2 could contain aU of the criterion
related variance, yet X3 could still have the highest zero-order correlation. The X3 could 
be important by itself yet useless in combination with XI and Xl. In addition, the incre
ments to R2 produced by an individual predictor depend upon its order of entry. Save 
for suppressor effects, the earlier it is entered, the larger its increment, so that its incre
mental validity lessens as variables with which it shares variance are entered ahead of 
it. In contrast, order of entry is immaterial to the values the ~ weights of a fixed set of 
predictors and the associated R. 

On the other hand, the ~-weight and uniqueness definitions are extremely stringent. 
A variable must measure something novel about the criterion in order to be important. 
Variable XJ in the above example would have a ~ weight of zero, but it would still be 
valuable as it could be used to replace two other variables. Defining importance rela
tive to the improvement in prediction does not require uniqueness with regard to aU 
other predictors, only the covariate(s). It is therefore most useful in addressing the 
question of what a measure adds to what is already known in a given situation. Thus, 
if XI is the covariate. the incremental validity of X2 corrects for XI but not XJ. Incremen
tal validities are less affected by sampling error than ~ weights, though they are more 
affected than zero-order correlations. 

There are other measures of predictor importance. Darlington (1968, 1990) pro
vides an excellent discussion of these. Keep in mind that much of the "fury" about the 
best measure in prior discussions arose because different investigators conceived of 
importance differently. Decide first which meaning is most relevant to your study and 
act accordingly. 

SELECTION AND ALTERNATIVE WEIGHTINGS OF PREDICTORS 

It is perhaps in the minority of cases that you will simply be concerned with the Rand 
~ weights provided by a given set of predictors. One selects variables from a larger set 
(1) to find a parsimonious set of predictors that does a good job in estimating criterion 
scores or (2) hierarchically to test a theory about the relative importance of various 
measures 

Consideration 1 implies that the researcher seeks a relatively small number of vari
ables that will do an adequate job in predicting a criterion. Much applied effort is 
spent in obtaining the most predictive power with the smallest number of predictors. 
For example, 10 or more tests might be applied initially to predict success on a partic
ular job (Y). If it is impractical to use more than 3 or 4 tests, the goal of the study is to 
find a small set of variables that has a higher value of R with Y than any other set of 
the same size. This approach is often called "actuarial prediction," as it implies that 
the investigator is uninterested in why the predictors achieve their goal. As noted in 
Chapter 3, this tends to be associated with the predictive validity paradigm, but even 
so, theoretical issues are often present, and so it is perhaps better to use the term "aetu
arially oriented prediction." 
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Consideration 2 implies an interest in the processes that detelmine a measure. It is 
inherent in construct validation. Due ex.ample is whether a predictor is valid becau~e 
of its direct effects or because of mediation. If predictor X, affects criterion y directly, 
then it will maintain its relation when other possible variables (e.g .• X2) are controlled. 
Consequently, r,y.2 and ~, in an equation predicting y from XI and Xz will be sizable. 
However. if X2 mediates the effect. these two quantities will be small even if rl y is 
large. For ex.ample, gender differences arise on many measures. However, many are 
interested in the extent to which these gender differences are biological outcomes ver
sus due to such possible mediators as differential socialization. Path analysis (see 
Chapter 13) is one way to evaluate mediational effects. Whether or not a predictor's 
effects are direct or mediated by a third variable is less important to actuarially orient
ed prediction than to hypothesis testing. In contrast. a "moderator" is a variable which 
affects the correlation between two other variables. Thus, rly may be large and positive 
under some conditions and small or even negative under others; e.g .• a test may predict 
academic performance at one university and not at another. A later section of this 
chapter and Chapter 9 deal with evaluating moderator effects. 

Predictor importance comes into play regardless of whether one's needs are purely 
in prediction or in evaluating processes. Vital to this issue is the distinction between 
variable selection that is data-driven versus guided by some form of prior theory. This 
distinction is very basic to multivariate analysis and will reappear in similar form in 
Chapters 11 through 13 when we cpnsider the difference between exploratory (data 
driven) and confirmatory (theo/=y driven) factor analysis. In the present case, nearly all 
psychometricians have a strong preference for using theory to guide variable selection 
wh~n possible because of the tremendous role chance plays in data-driven procedures. 

Stepwise Inclusion of Predictors 

Stepwise selection is a data-driven device for selecting variables which has its propo
nents (Darlington, 1968, 1990; Draper & Smith, 1981) and its critics (Cooley & 
Lohnes, 197 t). We lean toward the latter position, especially and strongly when it 
comes to hypothesis testing. 

In forward selection, the predictor with the highest zero-order correlation is entered 
first, followed by the variable that produces the largest increment in R2 over the first 
variable, followed by the variable that produces the largest increment in R2 over the 
first two, etc. The process ceases when no increment is significant. It would therefore 
stop at the first stage if no predictor correlated significantly with the criterion. Con
versely. backward selection starts with all of the predictors, deleting in tum those 
whose presence is least missed (those producing the smallest decrease in If). An infer
ential criterion is again lIsed to test the significance of the changes in R2, the change 
being a decrement in this case. The two strategies can be combined by first adding pre
dictors and then testing to see wb.ether any previously added predictors have become 
redundant because of newer predictors, or vice versa. 

The following common error illustrates why stepwise selection can be especially 
misleading in testing theories. Assume that XI and X2 each relate to y. and that the step
wise solution results in the selection of .t', but not X2' It is not proper to conclude that Xl 
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is unimportant. What happened was that ,t', had a higber sample correlation than x? 
and that R;.12 was not significantly greater than ,;,. This could easily happen becaus~ 
variables XI and Xl Were highly correlated even if there were no popUlation difference 
between them or even if 'y2 was actually greater than 'yl in the population. Limited 
sample size often contributes to this. 

Another major reason to be conservative about using stepwise solutions is that ex
isting algorithms offer little control for the role of chance in variable selection. This 
was noted at least as far back as Cohen (1968). Wilkinson (1979) made an important 
but largely ignored observation about predictor selection: Tests of significance for in
clusion severely underestimate the role of chance because they do not correct for the 
multiple comparisons that are made. The significance level used to decide whether the 
first variable should be entered assumes that one particular variable has been chosen in 
advance, which is not the case, by d~finition. 

For example, suppose there are 20 predictors and none are related to the criterion 
nor each other. The probability that a type I error will affect any given predictor is a., 
by definition. Letting CL = .05, the probability of correctly concluding that the predictor 
is invalid is .95. Given that the predictors are independent, the probability that correct 
decisions will be made for all 20 predictors is .9520 or .36. Conversely, the probability 
that at least type I error will arise is 1 - .36 or .64, and so the odds are nearly 2 to 1 
that a significant relation can be found even though the predictors are totally invalid. 
Setting a. = .01 still leaves a probability of .18 that at least one predictor will appear in 
the prediction equation. Despite the fact that over a decade has passed since Wilkin
son's (1979) article, several major packages have failed to correct this error [see Hays 
(l988, Chap. 11) for a discussion of several methods for correcting for these multiple 
comparisons]. This spurious effect is very easy to demonstrate through computer 
simulation 

There are perhaps defensible limited uses of stepwise selection, especially in actu
arially oriented prediction, as when one is indifferent about which predictors are to be 
retained. The number of predictors should be relatively small to avoid the problem 
noted in the previous paragraph. It is also preferable to combine stepwise and hierar
elucal approaches, which we will discuss below, instead of using stepwise selection 
alone. Do not simply "dump" a large number of convenient variables into an analysis 
and interpret the results. Large samples are also an absolute necessity. If you wish to 
select from as many as 10 variables, employ 500 or more persons in the study. What
ever the sample size and amount of number of predictors selected, it is vital to exam
ine the ~ weights, the R, and, especially, the variables selected in the initial investiga
tion in a new sample. This is known as "cross validation." However, stepwise 
inclusion is inappropriate for model testing; that is what hierarchical inclusion is de
signed for (see below). 

All Possible SlJbsets Approaches 

Another available approach is all possible subsets regression which provides R esti
mates for all predictor combinations. This may be done with all Zk models possible 
with k predictors (each predictor may be included or not included, independently of all 
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other predictors), or it may be limited to a specified number of predictors (in which 
case the term "some possible subsets" might be more ape even though the llUthors have 
not seen it used). An all (or some) possible subsets regression often illustrates (l) the 
slight effects of alternative models with the same number of predictors or (2) the con
sistent superiority of models containing certain predictors over others. It can also be 
generally informative as to the effects of swapping vadables, (e.g .• cheaper versus 
more costly ones) in and out of the equations. As long as cine recognizes that the 
model producing the highest R probably may have done so by chance and that the 
more successful predictors need to be cross-validated. these results can be quite infor
mative. Keep in mind the gradual increase in R expected from increasing the number 
of predictors (Eq. 5-25). 

Even though all subsets regression is well within the capability of nearly every 
major statistical package, the downside to this approach is that the amount of informa
tion. to say nothing of paper. generated may be immense. For example, 10 predictors 
yield 2 10 (1024) combinations of predictors. Whatever else is done, one should gener
ally restrict the number of precllctors searched. 

Hierarchical Inclusion of Variables 

In a hierarchical process, variables are entered in an order determined by theory or 
other prior considerations (some authors term this "stepwise." but we limit this term to 
data-driven processes as considered above). It is eSp'ecially appropriate if the theory is 
sufficiently well defined to define a complete hierarchy (order). The first variable or set 
of variables serve as a covariate for the second, the first and second serve as covariates 
for the third, etc. Hierarchical inclusion is incremental because its involves how much 
a given predictor(s) increments its predecessors. One controls for the effects of the 
preceding variables in testing the increment of a given variable. Hierarchical selection 
therefore is not concerned with what a predictor tells about the criterion but what it 
adds to what is already known based upon successive partiaHing. Equation 5-24 pro
vides appropriate significance tests on the increments to Rl precisely because order of 
variable entry has been specified in advance, in contrast to the procedure in stepwise 
inclusion. 

Hierarchical selection or entry therefore involves incremental validity and succes
sive partialling as discussed above. Further discussion is found in any textbook dealing 
with multiple regression, such as Pedhazur (1982. pp. 62-63). Decisions to retain or 
exclude variables can be based upon the magnitude of increment as well as on statistiw 

cal significance. 
To illustrate the use of hierarchical selection. consider the issue of evaluating the 

role of vocational interest in predicting college grades. By itself, a test of whether this 
measure predicts college grades is of limited value. A significant zero-order correla
tion could mean (1) there is some inherent role of vocational interest and therefore a 
direct relation between vocational interest and grades (2) better students have more of 
an academic interest than poorer students. and so the relation is mediated by academic 
ability; or (3) both. It is probably more informative to determine if vocational interest 
improves upon the prediction afforded by a known predictor of academic abilicy such 



CHAPTER 5: LINEAR COMBINATIONS, PARTIAL AND MULTIPLE CORRELATION 197 

as rugh school grades or possibly a combination of high school grades and SAT scores. 
This is a test of a direct effect. comrolling for academic ability. High school grades, 
alone or in combination with SAT scores, may be sufficient as predictors. Note that it 
makes tittle sense to test the effects of adding the known measure (e.g., grades) to the 
unproven measure. The burden of proof is on the unproven measure. One important spe
cial case is to see whether an expensive predictor, such as expert judgment, improves 
prediction over the baseline provided by a inexpensive predictor such as past perfor
mance or some other actuarial basis. It is often not difficult to show that the el(pensive 
predictor relates to the criterion-the more important question is whether it is worth the 
cost (Dawes, 1971; Dawes & Corrigan, 1974; Goldberg, 1965, 1968a, 1968b). 

If vocational interest measure predicts college grades because more able students 
have higher vocational interest scores and not because of any inherent relation be
tween vocational interest and grades, its zero-order r may be large but its increase in 
R2 will be small. Natural hierarchies sometimes follow from theoretical considerations 
specific to the situation. Wickens and Olzak: (1989) provide an example to be consid
ered in Chapter 15. Perhaps the main point to consider is that simple effects are evalu
ated before more complex effects because of the principle of parsimony in science. 

Combining Strategies 

Hierarchical strategies sometimes suffer from an ambiguity in the order of entering 
variables. For example, suppose there are seven variables, Xl to ;C7' you are considering 
for use in a regression equation. You know that XI should be entered first, as it has 
proven successful and is inexpensive to administer. However, you may have no ration
ale for some or all of the others. Even so, your one constraint reduces the number of 
possible orders from 7! (5040) to 6! (720). Further reflection before proceeding to look 
at the data may suggest others. For example, you may conclude that .t'2 or X3' but not 
X4, ;Cs, X6, or X7, should come after Xl> and that X7 really should come last. It is quite 
possible that this may leave you will a small enough set to explore individually. 

Even though theoretical considerations usually limit the number of possible orders, 
the limitation may not be sufficient, and so stepwise selection under the relevant con
straints may be defensible. The main idea is to avoid having a stepwise solution substi
tute for thought. You will not sacrifice anything of value by avoiding stepwise regres
sion even though it is occasionally useful in deciding among variables when a theory 
is absent. 

Moderated Multiple Regression 

Moderated multiple regression is a form of hierarchical entry designed to determine if 
the relation between two variables is influenced by a third or moderating variable. 
Moderating variables have come under extensive discussion in social psychology 
(Baron & Kenney, 1986; Bissonnette, Bernstein, Ickes. & Knowles, 1990a, I 990b; 
Paunonen & Jackson, 1985). The moderator may be either continuous or categorical. 
As noted in the previous discussion of partial correlation, partial correlations become 
misleading when the covariate is also a moderator. 
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The hierarchy of predictors is (l) the main predictor, denoted XI; (2) the presumed 
moderator, denoted X:2; and (3) the joint effects of the two, defined as the cross prod
ucts of their scores (XIXl = X3)' This cross product reflects the combined effects or in
teraction of the main predictor and moderator. [t is an application of the principle illus
trated when u nonlinear (cross-product) term in Eq. 5-1c was put in the linear fonn of 
Eq. 5-ld. For example. cognitive ability (XI) might moderate the relationship between 
amount of study time (Xl) and grades (y), so that the order of entry would be cognitive 
ability, amount of study time, and their product. If cognitive ability were a dichotomy 
(which, hopefully it isn't save for this example), more able students would be coded l, 
less able students would be coded 0, the cross products would be the study times for 
the more able students but scores of 0 for less able students. 

Stage 1 uses amount of study time to predict grades. A significant correlation be
tween it and the criterion (grades) at this stage (rly)' using Eq. 5-23, would confirm the 
expected overall value of studying. Presumably, the sign of rl y would be positive be
cause more study time would lead to higher grades. 

Stage 2 involves using both the main predictor and the moderator. A large differ
ence in R;'I:2 between using the cwo predictors in conjunction versus the d y for the 
main predictor alone indicates that more able students aod less able students get differ
ent grades in general, holding study time constant. This test uses Eq. 5-24. The sign of 
the ~ weight denotes whether the more cognitively able students performed better, as 
one would expect, or, improbably, worse, It is equivalent to stating that there is an in
tercept difference in the regression lines relating amount of study time to grades at dif
ferent ability levels. Note that this test is quite different from one based upon a simple 
correlation between ability and grades (r2,,) which ignores amount of time spent study
ing. The effect of cognitive ability inferred from the moderator's ~ weight at stage 2 
controls for the relation between abilty and amount of time spent studying. The reason 
for adjusting for the overlap between amount of time spent studying and ability but not 
amount of time spent studying and grades (Le., for using semipartial rather than partial 
correlation) was presented in introducing semipartial r and is discussed further below. 

Stage 3 involves the difference between the R2 between the saturated model con
taining the main predictor, moderator, and cross-product term (R~ l23) and the R? ob~ 
tained from the additive model using only the main predictor and moderator (R;.I?)' 
This test also uses Eq. 5-24. Note that the more complex cross-product term is evaluat
ed after its simpler components. Stage 3 is therefore a test of the uniqueness of the 
cross-product term. A significant difference in R2 means that the slope of the regres
sion line relating amount of time spent studying to grades varies with ability. This test 
is formally identical to testing an interaction in the ANOVA. The only difference is 
that the predictor. the moderator, or both may be (but need not be) continuous vari
ables. This test is appropriate even when the R;.11 from the additive model does not 
significantly differ from the R;I obtained from the main predictor alone or even when 
neither differs significantly from zero. 

Figure 5-5 contains three of the outcomes possible with a dichotomous moderator. 
In Fig. 5-Sa there is neither a slope nor an intercept difference between the two levels 
of the proposed moderator. As can be seen, this does not imply a lack of a grade differ
ence between more and less able students-it merely indicates that the two groups 
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FIGURE 5-5 Hypothetical scatter plots relating amount of time studied (X) to grades (Y) when (a) there Is no 
difference between more and less able students In either slope or Interoept, (b) there [s an 
Intercept difference faVOring able students but no slope difference. and (a) there [s both a slope 
and an intercept difference. 

may be fit by a common regression line despite possible differences between them on 
both the predictor and on the criterion. Note that if we accept this as the final model, 
we attribute group differences in grades to the different amount of time spent studying 
and not ability per se. 

Figure S~5b presents perhaps a more likely possibility. an intercept difference fa~ 
voting the more able students as well as an effect of amount of time spent studying. 
This says that even though they study the same amount of time. more able students 
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will obtain better grades than less able students. However, the two effects are indepen_ 
dent or additive-increasing the amount of time spent studying benefits both groups 
equaUy. 

Figure 5-5c probably contains the most likely outcome, at least for a intellectually 
demanding curriculum. This illustrates both an intercept and a slope difference. The 
form of [he relationship indicates that even though a more able student will get better 
grades than a less able student jf they both study for an average amount of time, the 
more able student will benefit from additional study more than the less able student. 
This figure further i11ustrates heteroscedasticity. In one extreme case, the r between 
amount of study and grades may be positive for more able students but zero for less 
able students. In an even more extreme case, r may be positive in one group and nega
tive in the other group, and so the overall regression line has a zero slope. Note that 
only the stage 3 result is relevant to moderation; when moderation occurs, statements 
about the main predictor (main effect) need to be qualified. 

An alternative way to test the hypothesis that the relation between amount of time 
spent studying and grades is different for high and low cognitive ability subjects is to 
compare the magnitudes of r between amount of time spent studying and grades in the 
two ability groups, using what the Fisher Z/ transformation (Hays, 1988). There ate 
two major reasons for not doing this. First, Fisher's test requires that the proposed 
moderator be a dichotomy. A more serious problem is that it is generally more sensi
tive to both type I and type II errors arising from incidental differences in variability of 
the groups (Bissonnette, Bernstein. Ickes. & Knowles, 1990a. 1990b). Also note that 
moderated multiple regression and the Z' test deal with slightly different issues-the 
former deals with regression, by definition, and the 2' test deals with correlation. 

Although we used amount of time spent studying as the predictor and cognitive 
ability as the moderator, we could have done the reverse. The result at stage 2 could 
well be different in this case since it tests the incremental effect of studying, control
ling cognitive ability rather than the reverse. However, the result at stage 3 will be 
identical because both comparisons test the incremental effect of the cross product 
over the additive effects of cognitive ability and amount of time studying. The two 
questions therefore produce the same answer regarding moderation (interaction). Mod
eration is especially important to the highly controversial topic of test bias as it applies 
to groups defined on the basis of race or gender. This topic will be considered in Chap
ters 9 and 10. See Cronbach and related papers for a discussion of some recent 
methodological points. 

Once selected for inclusion in a linear combination, the next issue is how to weight the 
variables. The distinction between actuarially oriented prediction and model testing 
applies to weighting just as it does to variable selection. Indeed, variable selection is 
basically a special case of weighting in which omitted variables are given weights of 
zero. Optimal weighting. as defined through least squares ~ weights or a similar esti
mation procedure, is but one of several possibilities for weighting the chosen van-
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abies. Optimal weightings are used in item response theory (Chapter 10), various 
forms of factor analysis such as principal components (Chapters I t through 13). pro
file analysis. discriminant analysis and scaling (Chapter (4), and categorical modeling 
(Chapter l5), as well as in regression. 

One problem with optimal weight.'! is that they are highly subject to sampling error 
since the sampling error in a ~ weight is a function of all the variables used in the 
analysis and not just the specific predictor and the criterion. Weights that are optimal 
in the original normative sample will not be optimal in a second sample because of (I) 
sampling errol', which is a function of sample size, the number of variables, and their 
intercorrelation; and (2) systematic differences between the characteristics of the two 
samples. Regression weights may be robust across samples that have quite different 
means and variances, but this should not be taken for granted. Also, weights derived 
from a small, poorly constructed sample may generalize less well than equal 
weights-a bad pilot study may be worse than none at alL As a rule of thumb, but not 
a magical number, you should have 10 subjects per predictor in order to even hope for 
a stable prediction equation. The term "bouncing beta" describes the often large fluctu
ations in ~ weights over samples due to sampling error. 

Our entire discussion has been based upon the traditional approach to estimation, 
(ordinary) least squares. As noted in the previous chapter, generalized least squares 
and, especially, maximum likelihood are alternatives which are available in computer 
programs like LISREL. These methods are at least as demanding of large samples as 
ordinary least squares. but they have the advantage of allowing hypotheses about fixed 
and constrained parameters to be tested. For example, moderation may be tested by 
evaluating the difference in fit (G2) between a modei in which the regression weights 
are allowed to vary freely and a nested model in which they are constrained to equality 
among levels-of the presumed moderator. Some models may make specific predictions 
about the values of regression weights which may be tested by allowing them to vary 
freely and then nesting a model in which the values are fixed appropriately. It seems 
probable that this approach will become increasingly popular relative to traditional 
approaches. 

Equal weighting is an alternative to optimal weighting that appears in classical test 
theory (Chapter 6) and centroid and multiple group factor analysis (Chapters 11 and 
13). The predictive properties of optimally weighted and equally weighted linear com
binations are often nearly identical as long as the signs of the individual variables are 
chosen appropriately; i.e. variables which correlate negatively with the criterion are 
subtracted in the linear combination. For example. suppose optimal weights for 
Scholastic Aptitude Test (SAT) and grade point average (OPA) measures were ob
tained by multiple regression to predict academic performance in college. Now, sup
pose one were also to compute the equally weighted sum of SAT and GPA (in;:: score 
or other form appropdate to eliminating the arbitrary scale differences). The r between 
the two linear combinations might exceed .9 so that either combination, or, for that 
matter, any set of positive weights may predict the criterion as well as any Other. 

Kaiser (1970; also see Dawes. 1971; Dawes & Corrigan, 1974; Wainer, 1976) used 
the term "it don't make no nevermind" to describe this outcome. This is an important 



202 PART 2: STATISTICAL FOUNDATIONS 

principle to keep in mind even though it should not stop you from using optimm 
weighes if the data dictate or from looking at individual ~ weights. You should routinely 
compare the results of optimal and equal weightings by correlating each linear combi. 
nation with the criterion. If possible, cross validate the weights. High correlations 
among parameter estimates suggest that equal (or any other) weights will probably 
work as well as optimal weights, a corollary to the multicollinearity that may be 
present. 

A compromise alternative is to use an empi.rical weighting that does not rely upon a 
formal definition of "optimaL" For example, some advocate using validities (zero" 
order predictor-criterion correlations) instead of ~ or b weights when the normative 
base is small. Although there is little formal rationale for this procedure, it is a middle 
ground that allows more important variables to receive greater weight. In addition, it is 
not as sensitive to sampling error as optimal weighting since sampling error affects 
only the two involved variables. It may appear unpatriotic to use anything that is not 
optimal, but there is often good reason for nor doing so. This book stresses the need 
for simple and direct approaches to problems. Optimal weighting is cenalnly not sim" 
pie even though it may be necessary. 

Actuarially oriented prediction usually does not require optimal weighting or any 
other specific choice, as its goals are pragmatic-to maximize the correlation between 
a linear combination of predictors and a criterion. In contrast, optimal weighting is 
necessary for some model testing. For example, if the hypothesis states that x, '5 effects 
are mediated by :\'2, one tests the significance of ~I in a model containing XI and .1:2 as 
predictors, which requires optimal weights. However, the hypothesis may deal with 
whether Xl relates more strongly to y than X2 does. This involves the relative magni. 
tudes of fly and f2J1 rather than optimal (~) weights. Some hypotheses, considered later 
in the chapters on factor analysis, can be tested with either optimal or equal weights. 

Computing regression weights in a small sample for model-testing purposes is ap
propriate, assuming it addresses the issue at hand, as the lack of power handicaps all 
variables. One jmportant distinction is between demonstrating the contribution of a 
predictor by showing that its ~ weight is statistically different from zero and compar· 
ing the magnitudes of the ~ weights associated with two variables. A demonstration 
normally requires a smaller sample size than a comparison because the stll!ldard error 
of a difference is usually larger than the standard error of a single variable even though 
both are functions of all variables. Sample size affects the confidence with which any 
conclusion can be reached, but it is especially risky to inspect relative magnitudes of 
predictors in small samples because of the instability of these weights. 

Another possibility is to use some theory (which may simply be a hunch) that leads 
to unequal weights, rational weighting. Equal and rational weights are not affected by 
sampling error, by definition, since the weights are nat estimated from the data. How
ever, both may fail to incorporate relations that are present in the data and thus may 
not be the best choice. It is wise to compare the results of using unequal weights and 
using equal weights, just as it is wise to compare the results of using optimal weights 
and using equal weights. There is little reason to use rational weighting in prediction 
when the results correlate very highly with equal weighting; using equal weights helps 
sidestep unnecessary defense of the choice of weights. 
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RELATED TOPICS 

The Analysis of Covariance 

Nonlinear Relations 

In the analysis of covariance (ANCOVA), a covariate is entered before treatment ef
fects of more focal interest. The covariate is normally a continuous variable, and the 
treatment effects are normally categorical, but this is not necessary to the logic. This 
logic is nothing else than a hierarchical (incremental) approach to eliminate the effects 
of variables of lesser interest (we have noted that the ANOVA itself is a special case of 
multiple regression in which the predictors are categorical). The main, and most clear
ly appropriate, use of the ANCOVA is when the covariate and criterion are highly COr

related but subjects have been assigned at random so that the covariate and treatment 
effects are uncorrelatect. Putting the covariate in first may eliminate a source of vari
ance that would have been part of the experimental errOr had it been ignored. 

For example, suppose students are given a pretest on a topic, then assigned at ran
dom to different instructional groups, and then given a pastiest on the topic. Pretest 
and posttest scores will probably be highly correlated because both tap individual dif
ferences in cognitive ability. In an ordinary ANOVA, cognitive ability forms part of 
experimental error and may be sufficiently great to eliminate differences due to in
struction, especially in small groups. However, if the pretest scores are entere:d first, 
the part of individual differences assessed by the pretest become a systematic effect 
that is not part of the experimental error. The logic of this appro,aeh is sounder than 
simply using the simple difference score between the post test wid pretest since this 
simple difference does not use the correct correlation between the two in adjusting. In 
effect, simple difference scores overcorrect for the pretest, but the "it don't make no 
nevermind" (equal weighting) principle may also be applicable. 

The ANCOVA is sometimes used to correct for preexisting group mean differences 
when the treatments must be administered to intact groups, e.g., classes that differ in 
ability. This is a somewhat questionable use, but one criterion for applicability is 
whether there is a causal relation between the treatment effect and the covariate. If 
'there is, the covariance adjustment must be suspect. In either event, results of the AN
CaVA should be interpreted with a caution to the reader. 

We have stressed that r represents the relationship between two variables fairly well as 
long as this relationship is monotonic. This same principle holds in multiple R. 

There is a second aspect of studying nonlinear relations. Trend analyses Concern 
fitting different functions to data. These often fonn a polynomial series of the fonn 
Y = b\X + b1,X2 + b.yf.3 + ... + bkJ(lr.. One approach to fitting polynomials has much in 
common with.moderated multiple regression. It was noted that the transformation of a 
variable from the nonlinear form of Eq. 5-1c to the linear fonn of Eq. 5-1d allowed 
the (relative) simplicity of linear methods to be used with nonlinear tenns. Th~ same 
principle may be used here. Let XI ;:: X, X2 ::: X2, XJ = X3, etc., and test the significance 
of the increment in R2 as each term is added in the sequence, starting with the simplest 
(XI)' In this case, the successive te11IlS are generally correlated, but there is a more 
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elegant alternative approach using orthogonal polynomials that provides independent 
predictors (Winer. Brown. & Michels, 1991). Letting X, :::: log X or some other func
tion allows nonpolynomial functions to be fit when appropriate. 

It is usually a simple matter to compute the residuals, Zy - z; (symbolized Zy.)( in the 
previous chapter where there was only one predictor). These residuals are not neces
sarily random. They are extremely important to applied prediction problems as a check 
on the completeness of the prediction (whether all systematic sources were accounted 
for) and the assumption of normally distributed error made in inference. Draper and 
Smith (198l) and Pedhazur (1982) are good sources for the mechanics. 

Residual analyses are perhaps not performed often enough, but most major pro
grams provide useful diagnostics on an optional basis. Some of the important things to 
look for are the following: 

1 Outliers. An outlier is an observation with a large residual. If the assumptions of 
the model are met, residuals will be normally distributed 5 percent of the observations 
will fall outside a ±1.96 standard error of estimate units, for example. However, out~ 
Hers should be random observations. If they have some property in common, a rele
vant predictor has probably been omitted from the model. You may also detect coding 
errors by the inspection process. 

2 Independence. Magnitudes of residuals should be independent of predicted but 
not obtained scores (see Table 4-2). Lack of independence can arise from nonlinear 
predictor~cri[erion relations, among other factors. 

3 Homoscedasticity. The variance of residuals should be approximately equal 
across levels of the predictor. Homoscedasticity may be seen when residuals for differ
ent groups are compared. For example, the second author once served as an expert 
witness to examine faculty salaries. On average, females received less pay than males 
even after correcting for such variables as length of service. However. residuals for 
male faculty members were more variable than residuals for female faculty members, 
and so the lowest~paid faculty relative to relevant predictors were actually males. 

Additional details may be obtained when the observations have a meaningful serial 
order. However, this is more likely to arise in areas like economics, where time series 
ate common, than in psychology and related areas where most observations are ran~ 
domly related to one another, e.g., individuals randomly sampled in some manner. 

"Canonical analysis" is an extension of multiple correlation and regression in which 
an optimal weighting of predictors is related to an optimal weighting of criteria rather 
than a single criterion. The first canonical variables are the linear combinations of pre
dictors and criteria producing the largest correlation (canonical correlation). These lin
ear combinations are then partialled from the data. The search for new linear combina
tions and associated correlations is then repeated. 
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Redundancy analysis (Stewart & Love, 1968) is a closely related procedure (so 
closely related, in fact, that the two are often combined in the same computer proce
dures). This procedure is concerned with how much variance in the criterion is ex
plained by an optimal combination of predictors, and vice versa. For ex.ample, a very 
high canonical correlation can arise when one predictor correlates highly with one cri
terion even if these individual variables are unrelated to all other variables. The canon
ical correlation might be misleading because very little of the total variance is ex
plained by the relationship.Unfortunately, canoni<:al analysis often tends to be used as 
a "multivariate fishing expedition." The interested reader is referred to the Suggested 
Additional Readings for a more detailed discussion. 

The core of this chapter is the concept of a linear combination or sum of variables that 
may be equally or unequally weighted. A particularly useful "trick" is to take a nonlin
ear combination, such as one containing cross products of two variables or powers of 
individual variables, and make it a linear combination by redefining variables. One 
very fundamental relationship is that the variance of an equally weighted linear combi
nation equals the sum of the individual variances plus two times the sum of the covari
ances. The resulting set of variances and covariances used in this computation, the 
variance-covariance matrix, is widely used in psychometric theory. Simple algorithms 
provide the variance of a weighted linear combination and linear combinations of stan
dardized variables, in which case the variance-covariance matrix becomes a correla
tion matrix. Another important special case is when the individual variables are binary 
(dichotomous), such as items on many tests.. 

Characteristics of individual binary variables affect the distributions of the total 
SCOres (linear combination of item scores), In the limiting case of items that are totally 
uncorrelated (i.e., a totally unreliable test), this distribution will be normal. However, 
positive item correlations cause the distribution to flatten and, in the extreme and rare 
case of extremely high correlations, become bimodal. The item difficulties (probabili
ties of answering abilities' items correctly or p values) also detennine the shape of the 
distribution. Tests comprised of easy items will tend to be negatively skewed, and tests 
comprised of clifticul[ items will tend to be positively skewed. Since these may be de
sirable outcomes, the commonly held belief that test scores should be normally distrib
uted can be shown to be false. We next dealt with covariances and correlations be
tween linear combinations, which are basic to multivariate analysis. 

A partial correlation between two variables is the estimated correlation between 
them assuming one or more additional variables (covariates) are held constant. It is the 
correlation between the two sets of residual scores with respect to the covariates. A 
semi partial correlation is similar except that only one of the variables being correlated 
is adjusted. Partial and semipartial correlations are effective estimates only when the 
relation to the co variates is homoscedastic, (i.e., the correlation between the two vari
ables is the same across levels of the covariate) and the covariate is valid and reliable. 
Some other key points are as follows: (1) the signs of the correlations among the vari
ables being correlated are crucial in determining whether partialling increases or 
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decreases the strength of relationship, (2) the effects of partialIing are generally less 
than expected from examining the unpartialled (zero-order) correlation, (3) the covari
ate may be a linear combination of individual variables, and (4) partialling ordinarily 
removes only the linear effects of covariates. Removing the effects of more than one 
covariate is called higher-order partialling and is independent of the order in which the 
covarintes are removed. A second form of partialling was discussed involving the con
cepts of within-group, between-group, and total correlations. These arise when two 
variables are correlated across different groups. It was noted how spurious effects can 
arise when variables are inappropriately aggregated across groups, Le., total correla
tions are reported when the pooled within-group correlations are more appropriate. 
One special case of this artifact that appears with frequency data is caned Simpson's 
paradox. 

The multiple correlation (R) is the correlation between an optimal linear combina
tion and a criterion, and mUltiple regression concerns the optimal weights that pro
duce R. These weights are called beta (~) weights when applied to standardized 
scores, and b weights when applied to raw scores. They describe the change in the 
criterion, holding constant other predictors per unit change in a predictor when the 
data are expressed as z scores and raw scores, respectively. The weights are ordinari
ly complex to compute, but the case of two predictors is simple. Formulas were pre
sented to test the significance of R and of increments in R as new predictors are 
added to old ones. 

The R (1) will be large when the zero-order correlations between predictors and the 
criterion (validities) are high, (2) cannot be lower than the highest validity, (3) can re" 
fleet unexpected results through suppressor relationships in which a ~ weight exceeds 
the zero-order correlation or both are of substantial magnitude but of opposite sign, (4) 
illustrates a law of diminishing returns regarding the addition of predictors-rarely are 
more than two or three predictors needed for optimal prediction, and (5) is usually 
larger in a sample than in the population. The magnitude of this bias is directly related 
to the number of predictors and inversely related to the number of observations. 

Predictors may be categorical. The general technique is to form k - 1 new variables 
from the original k categories. In dummy coding, an observation is coded as 1 on a 
given variable if that observation belongs to a designated category (e.g., Democratic 
voters) and a 0 otherwise. In orthogonal coding, contrasts of interest are defined. For 
example, voters may be classified as 1 on one variable if they are either registered Dem
ocrats or registered Republicans and 0 if they are Independents. Democrats would be 
coded t, Republicans -1 (or the reverse), and Independents 0 on the second contrast. 
The two contrasts therefore ask "Is the individual affiliated with a political party?" and 
"If so, which one?" 

Highly intercorrelated predictors are multicollinear, which affects the stability of 
the ~ weights (but not R)-altemative weights may predict as well as the optimal ones, 
and small changes in the data may produce large changes in the weights. One item of 
evidence for multicollinearity is a low tolerance (1.0 minus the multiple correlation of 
one predictor with the other predictors). Other (and related) signs of instability are 
when the predictors have large standard errors and when their estimates are highly cor
related. 
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Many studies evaluate the importance of the various predictors. Unfortunately, the 
tenn has several meanings which address different questions. One definition is in 
tenns of the relative magnitudes of the validities, which index what predictors share 
with the criterion, ignoring other predictors. In contrast, ~ weights define what predic
tors share with the criterion, holding constant other predictors. Intermediate between 
these two definitions is the incremental validity or increase in Rl produced by a given 
predictor plus a specified set of predictors over that produced by the specified set alone. 

Variable selection depends upon the goal of the study (Le., whether it is actuarially 
oriented and thus minimally concerned with how prediction occurs) versus hypothe::;is 
testing. as in construct validation. Two examples of hypotheses are "mediation," in 
which the effects of a predictor upon a criterion are produced indirectly by a third vari
able, and "moderation," in which the magnitude of correlation depends upon an addi
tional variable. Regardless of the goals of the study. we recommend that stepwise vari
able inclusion be used with extreme caution if at all. This procedure involves selection 
on the basis of the sample data. It often leads to spurious estimates of significance and 
can easily be misinterpreted, as one variable can be included and another excluded, 
implying one is more unimportant on the basis of small, nonsignificant differences in 
correlation. A somewhat better procedure is all-subsets regression in which all possi
ble combinations of predictors are examined. In order to use this effectively however, 
it is often necessary to minimize the number of combinations, i.e., use a "some possi
ble subsets" approach, and be aWare of the bias in ~ample values of R. 

An even better approach is hierarchical inclusion in which the effects of variables 
are evaluated in a predetennined order based upon a theory. Moderated multiple re
gression is a particular form of hierarchical inclusion used to test moderator effects in 
which (1) the main predictor is entered at the first stage, (2) the presumed moderator is 
entered at the second stage, and (3) the cross product of the main predictor and pre
sumed moderator are entered at the third stage. A significance difference in R2 between 
the values obtained at stages 3 and 2 implies a moderation effect. 

Variable weighting is closely related to variable selection, as a variable that is not 
selected may be regarded as having a weight of O. Least-squares weighting is not the 
only viable approach, especially in actuarially oriented prediction. One alternative is 
equal weighting; the results of using optimal and equal weighting are almost indistin
guishable. Generalized least-squares and maximum likelihood estimates may also be 
useful in testing certain specific hypotheses that can be stated in the form of differ
ences in fit (02) between a nested and a more general model, e.g., models that con
strain or fix parameters that are free in the more general model. 

Some related topics include (1) the analysis of covariance in which the incremental 
effects of a predictor of interest are assessed, controlling for a variable of lesser inter
est (the covariate); (2) the analysis of trend and other nonlinear relationships; (3) 
canonical correlation, which is an extension of multiple correlation in which optimal 
linear combinations of predictors are correlated with optimal linear combinations of 
criteria, often unfortunately leading to "multivariate fishing expeditions," and (4) 
residual analysis. Residuals are the difference between observed and predicted scores. 
Large values (outliers) having some common property indicate a relevant predictor has 
been omitted. Other facets of the analysis may also provide useful information. 
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PART THREE 
CONSTRUCTION OF 

MULTI-ITEM MEASURES 

Most measures are composites formed from aggregating individual items into a scale. 
Classical measureme'nt theory aggregates items simply by summing item responses 
as in a ''number correct" score on a classroom test. This part contains five chapters 
dealing with the process of aggregation. First, we consider the definition and tole of 
measutelIlent error both in individual and composite measures. This includes a discus
sion of one classical approacn. sampling items from a domain (pool) of possible items. 
The succeeding chapter is concerned with actual assessment of test reliability. The 
third chapter employs these principles to discuss construction of the most common 
forms of tests. The fourth chapter deals with VariOIlS special problems (guessing, 
speeded tests, adverse impact and test bias, Ilalo effects in observations, response bi88-
es and response styles, and tests consisting of several scales). The final chapter pre
sents modem developments, largely in the form of item response theory in which a 
scale score may be defined in terms of the pattern of responses. Scores on a test devel
oped through such procedures need not bear a one-to-one relation to the nUlD:ber of 
correct respones. 
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CHAPTER OVERVIEW 

THE THEORY OF 
MEASUREMENT ERROR 

, 
Some error is involved in any measurement. whether it is the measurement of temper
ature, blood pressure, or intelligence. In order to assess its effects, we must know 
something about the processes that gave rise to the measure. Most of tfris chapter con
siders how random measurement error affects the internal consistency of linear combi
nations [e.g., scates on conventional, linearly scored tests (sums of correct respons
es)], which are the heart of classical test theory. Such scores may be contrasted with 
scores based upon patterns of item responses used in modern psychometric theory 
(Chapter 10). 

There are several classical theories of measurement error. Several assume that the 
objects of measurement (e.g., people) have true scores on the attribute being measured 
but differ as to the definition of "true score." One definition is that the true score is the 
average score that would be obtained over repeated testings. Measurement error caus
es obtained scores to vary over the testings. The standard deviation of obtained scores 
over these generally hypothetical testings for a given individual defines the "standard 
error of measurement." Some. but not all of these models further assume that the mea
surement error is normally distributed about individual true scores and, moreover, is a 
constant for all objects of measurement. 

A particularly useful model of a process that gives rise to true scores is called "do· 
main sampling." Tests are constructed by selecting a specified number of measures at 
random from a homogeneous, infinitely large pool. This may be approximated by 
imagining that individuals are given successive sets of 10 problems, each Ot which 
consists of adding pairs of four-digit numbers. Under these conditions, the correlation 
of any given test score with the average of an test scores (the reliability index) can be 
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shown to equal the square root of the correlation of any given test score with another 
given test score (the relia.bility coefficient). In turn, the reliability coefficient can be 
shown to estimate the racio of variance in true scores to the variance in observed scores. 

The "parallel test" model is one alternative to domain sampling. It assumes that two 
or more tests produce equal true scores btl[ generate independent random measurement 
error. Although it defines rather than estimates the reliability coefficient, its major pre
dictions are the same. The role of factorial complexity in measures of reliability is 
considered; a key point is that a test may measure more than one thing (factor) yet be 
highLy reliable. In addition, we consider ways to estimate how precise a given reliabili
ty estimate is. 

Some further deductions from the domain-sampling model are then presented. One 
deals with the expected change in reliability coefficient as the test length is increased. 
This is known as the Spearman-Brown prophecy formula. Cronbach's coefficient 
alpha (Ct.) is perhaps the most important outcome, as it provides actual estimates of re
liability. The Ct. is basically the ratio of the sum of the covariances among the compo
nents of the linear combination (items), which estimates true variance, to the sum of 
ail elements in the variance-covariance matrix of measures, which equals the obs~rved 
variance (see Eqs. 5-3). Other related deductions from the domain sampling model in
clude the (1) estimation of true scores from obtained scores, (2) computation of the 
standard error of measurement from the reliability coefficient, and (3) attenuation. At
tenuation deals with the fact that measurement error causes the observed correlation 
between two measures to be lower than it would be with more, reliabLe measures, and 
fonnulas aTe given to estimate what the correlation would be in the absence of mea
surement error. 

The next section of the chapter discusses models of reliability that lead to some
what different predictions than those previously considered. The factorial domain
sampling model considers relations among groups of measures that do not necessarily 
measure the same tbing and leads to generalizability theory, considered in Chapter 7. 
The binomial model is one of many that does not assume that measurement error is 
constant and normally distributed for all objects of measurement. In particular, mea· 
surement error associated with extreme true scores is estimated to be (1) smaller than 
the error associated with true scores nearer the mean and (2) skewed (positively for 
low scores and negatively for high scores). 

In contrast to definitions of reliability based upon the internal consistency or covari
ances among components of a linear combination, "reliability" can also mean tempo
ral stability. Temporal stability basically concerns the correlation between scores over 
repeated testings. It is important not to confuse the two types of definitions, as a mea
sure can have high or internal consistency independently of high or low temporal sta
bility. High internal consistency is very desirabLe, but temporal stability mayor may 
not be: trait measures are intended to be reliable, but state measures aTe not. 

THE CONCEPT OF MEASUREMENT ERROR 

It is common and appropriate to think of an obtained measure as deviating from a true 
value (the term will be given more precise meaning later in this chapter). Such mea
surement error can be a mixture of: (I) systematic and (2) random processes. When it 
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is systematic, it can (la) affect all observations equally and be a constant error or (I b) 
affect certain types of observations di fferently than others and be a bias. A miscalibrat
ed thennometer that always reads three degrees too high illustrates a constant error in 
the physical sciences. If the thermometer were sensitive to some in'elevant attribute 
such as the color or the density of what was being measured, the error would be a bias. 
Finally, random error would be introduced if the person reading the thermometer were 
to transpose digits from time to time while recording observations. 

There are obvious biases and random errors in the behavioral sciences, though the 
situation may be less obvious with constant errors. If clinician A were to judge the in
telligence of each of a series of individuals five points higher than clinician B, they 
would be calibrated differently, but either or both could have a constant error since the 
true IQ is unknown. Indeed, the concept of a constant error could well be viewed as 
largely inapplicable to the behavioral sciences, to the extent that true values are rarely, 
if ever, known. However, a clinician, a rater, or an evaluative process may be sensitive 
to irrelevant attributes like race, gender, penmanship, etc., and thereby be biased. This 
would hold whether the person was prejudiced against a given group or "bent over 
backward to be fair." Likewise, unsystematic differences in ratings on repeated testing 
illustrate one form of random error when it can be assumed the person rated did not 
change. 

This chapter is concerned with random errors. Random errors are important be
cause they limit the degree of lawfulness in nature by complicating relationships. Sup~ 
pose that perceived light intensity (\fI) is a power function of physical intensity (<11) ac
cording to Stevens' law, with an exponent of .35 as in Eg. 2-2, so that If' = <p,l;;. 

Random errors in measuring <p or, more likely, 'II will cause the obtained curve to ap~ 
pear jagged and therefore more complex rather than smoother and simpler. These er
rors jumble nature's lawfulness in all of science. Systematic biases in psychological 
measures are als9 very important, and these will be discussed at several points in 
Chapters 7 through 10. Even if the concept of constant error was meaningful in the be
havioral sciences, it affects all obs~rvations equally and therefore does not influence 
group comparisons, and so it need not be considered further. Indeed, it has no effect, 
by definition, unless a scale has a meaningful zero, i.e., is a ratio or absolute scale 
since it affects only the location of the scale mean (see Chapter l). 

Random errors influence measurements in the behavioral sciences in several ways. 
Scores on a particular classroom test are influenced by (1) the content sampled, e.g., 
luck in studying the right material, discussed below, (2) luck in guessing (Chapters 9 
and lO), (3) state of alertness, and even (4) clerical errors, etc. Ratings of any fomt 
(e.g., evaluations of improvement in therapy) will reflect both random and systematic 
variation among judges and within a given judge over successive occasions. Specific 
sources of random error will be discussed later. 

Random measurement errors are never completely eliminated; but one should seek 
to minimize them as much as possible and thus portray the ultimate lawfulness in na
ture. One definition of "reliability" is freedom from random error, i.e., how repeatable 
observations are (1) when different persons make the measurements, (2) with alterna
tive instruments intended to measure the same thing, and (3) when incidental variation 
exists in the conditions of measurement. This definition implies homogeneity of 
content on multi-item tests and internal consistency or high correlations among 
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components of the overall measure such as items on a conventionally scored test. For 
simplicity, we will assume that the constructs whose homogeneity is to be evaluated 
are static. A second, totally distinct definition is stability over time (occasions Or 
waves), which will be considered briefly at the end of this chapter. It will also intro
duce the many problems involved in measuring change. 

In other words, measurements must be stable whenever essentially the same results 
should be obtained. Science is concerned with repeatable phenomena, which implies 
the repeatability of its measurements. Random measurement errors impose limits on 
repeatability that wi.1l be explored from here to Chapter 10. 

Measurement reliability is a classical issue in scientific generalization (see Chapter 
1). Measurement is reliable to the extent that it leads to the same or similar results, re
gardless of opportunities for variations to occur. Reliable measures allow one to gener
alize from one particular use of the method to a wide variety of related circumstances. 
This link between the theory of reliability and scientific generalization will become 
even more apparent in discussing specific models of measurement error. 

Of course, high reliability does not mean high validity. One could, for example, 
measure intelligence by having .individuals throw stones as far as possible. Distances 
obtained by individuals on one occasion will correlate highly with distances obtained 
on another occasi.on. Being repeatable, the measures are highly reliable; but stone toss
ing is obviously not a valid measure of intelligence in the sense of Chapter 3; i.e., it 
will correlate with other measures of strength and not correlate with other measures of 
intelligence. Measurement error pLaces limits on the validity of an instrum~nt, but 
even its complete absence does not guarantee validity. Reliability is necessary but not 
sLljficient to validity. 

Tbe theory of measurement error has been developed largely in the context of psy
chology and largely by psychologists. A perhaps common view is that measurement 
error is more of a problem in psychology than in the physical sciences, but this is only 
partially true. Measures in other areas of science often have as much, or more, random 
error than they do in psychology. Indeed, physiological blood pressure measurements 
are far less reliable than many psychological measures, and simllar examples could be 
drawn from all of science. Even so, the development of the theory of measurement 
error by psychologists such as Spearman (1904) may partially reflect response to this 
common criticism. It may also reflect psychologists' healthy self-consciousness about 
measurement problems, or, perhaps, be simply an accident of history. 

At the same time, the importance of measurement error may be overstated for at 
least two reasons. First, we will later show that measurement error does not hann most 
in vestigations as much as might be thOUght. Second, we will describe numerous equal
ly important topics in psychological measurement throughout this book:. Perhaps more 
has been written about measurement error than even more important topics like validi
ty because the theory of measurement error lends itself so well to mathematical treat
mene. Nonetheless, the theory of measurement error js important to psychological 
measurement, and so this chapter and the next will be devoted to it. 

The theory of measurement error to be presented is surely one of the most workable 
mathematical models in psychology. The theory can be derived with few assumptions 
about the nacure of data, and the same fonnulas can be derived from different sets of 
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assumptions. The theory is very robust in that it tend,!; to hold even when purricular as
sumptions are markedly violated. Although we will mention rather sophisticated. com
plex mathematical models of measurement error, you will hopefully be surprised how 
well the major conclusions from these more complelt models agree with those deriv
able from a much simpler and more conventional theory to be emphasized. 

ONE FOAM OF CLASSICAL TEST THEORY 

Contrasting what is "classical" versus "modem" is always a bit risky, but we, like 
nearly all authors, will consider measures based upon linear combinations as classical. 
This implies the linear model of Chapter 2 that is used in scoring conventional tests as 
linear combinations of responses to individual items and may be contrasted with the 
emphasis upon scoring tests based upon the pattern of item responses discussed in 
Chapter 10 (response profiles). However, Tburstone's law of comparative judgment is 
also generally regarded as classical, if for no other reason than that it appeared more 
than 60 years ago, but it is not based upon linear combinations. Conversely, the 
Guttman (1950) scale is considered modem despite its long history because, as Chap
ter 2 noted, it is based upon response profiles rather than sums. This chapter is limited 
to scores obtained from the linear model. Furthermore, nearly all discussion involves 
equally weighted sums. 

Figure 6-1a illustrates one classical theory of measurement error, which will be 
modified subsequently. This approach is but one of many that can be regarded as clas
sical according to our definition in terms of using the linear model. Figure 6-1 b is dis
cussed later in the chapter in the section devoted to the binomial model, and its as
sumptions are different. Persons A, B, and C are each assumed to have true scores on 
an attribute that would be found with no errors of measurement. The true SCores for 
the three individuals fall at progressively higher points along the continuum. Since the 
obtained score contains random error, it differs from the true score. If one could give 
many alternative test forms (e.g., words from a common pool used to provide different 
spelling tests), the average of the test scores would closely approximate the true score. 
For the present, we will assume that scores obtained from alternate forms are (1) dis
tributed symmetrically above and below the true scores (i.e., are unbiased in the sense 
of Chapter 4), (2) normally distributed, (3) add in absolute value to the true score to 
provide the obtained score, and (4) have equal variance (are homoscedastic). These as
sumptions are not necessary to all classical approaches, although they are convenient 
for now. Further note the similarity to the discriminal dispersions of Thurstone scaling 
as in Fig. 2-4. This reflects the common statistical conception of how a constant (true 
score in this case) may vary because of the effects of a random (stochastic) process. 

The more the obtained scores vary about the true score, the more measurement 
error there is. The "standard deviation" of each person's error distribution indexes the 
amount of error. If the standard deviation of errors were the same for all persons, 
which this most simple form of domain-sampling model assumes (but not alternatives 
such as the binomial form discussed below), one standard deviation could define me 
expected amount of error. This standard deviation of errors is called the "standard 
error of measurement" (O'meos). It is common in the physical sciences ro define the 
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FIGURE 6-1 TNe scores and distributions of obtained scores for a person whose true score falls below the 
mean fA). at the mean (B). and above the mean (e) for the domain-sampling model (a) and the 
binomial model (b). 

reciprocal of Omeas as the precision or tolerance, but we will not follow this conven
tion. The issues illustrated by Fig. 6-1 will be used to provide an extensive discussion 
of measurement enor. 

THE DOMAIN-sAMPLING MODEL 

We propose that the most useful model of measurement elTOr considers any particular 
measure to be composed of responses to a random sample of items from a hypothetical 
dolll$ of items. All example is a five-item test, on which each item requires the addi
tion of pairs of four-digit nmnbers. Any given test could literally be generated by a 
program that randomly samples items from the (10,,)(10,,) possibilities for any given 
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item. Note that although this number is large, it is finite. The model assumes an infi
nite pool of possible items, but it works well as long as the pool of potential items is 
large. 

Both individual difference measures and experimental measures can be thought of 
as arising from this process of domain sampling. The number of correct solutions to 
the above additional problems could either be used for ordinary grading or to compare 
instructional methods, for example. Many eltumples could be chosen to show how par
ticular measures represent samples from a hypothetical domain of items. Many authors 
use the term "universe" or "population" of items instead of "domain" to refer to the 
hypothetical collection of items. We do not do so because of the possible confusion 
with the universe or population of persons or other objects of measurement. 

One practical problem is that test items are usually composed rather than sampled 
from a well-defined domain. However, the model usually works well in practice be
cause the variety of items composed for a test usually has effects similar to those of 
actual random sampling. The purpose of any particular measurement is to estimate the 
measurement that would be obtained if one could employ all the items in the domain, 
e.g., all possible four-digit addition problems. 

We will denote the score that a subject would obtain if it were possible to test the 
whole domain as a true score. A sample of items (test) is reliable to the extent that the 
score it produces correlates highly with these true scores. One important part of our 
definition is that it that true scores are, in principle, obtainable by testing over the en
tire domain, even though that might be physically impossible. This proceSs causes ran
dom error to "average out." One alternative to domain sampling is caned "Platonic 
true score theory" (Sutcliffe, 1965) in which this true score is a given-the Score is as
sumed rather than derived from the largely hypothetical process of repeated test ad
ministration. We do nDt intend this meaning even though Platonic true score and 
domain-sampling models make nearly identical predictions. Two alternative terms for 
true score are "domain score" and "universe score," but these do not communicate our 
intent of an error-free measure. 

We will later expand the model to consider the possibility that the items in the do
main vary in various ways, e.g., by the physical condition of the subject, the examin
er's skill, the testing environment, etc. However, we will first simply consider the 
problem of testing a homogeneous group of subjects with a set of items in a homoge
neous domain before complicating the model. We will later show that it is very simple 
to include additional factors that influence measurement error other than the sampling 
of items per se. 

The domain-sampling model does not require that any specific number of items be 
sampled in order to define a particular measure. Each sample (test) can consist of a 
single item or many items. The model can also be devel<;>ped without concern for the 
type of items employed or even their factorial composition. We will develop the 
domain-sampling model initially using standard (z) scores for individual variables. 
Measures are sums of standard scores On variables. We deliberately use the terms 
''variables'' and "measures" in this section rather than "items" and "tests" to stress that 
the model is not limited to pencil-and-paper tests. Using z scores rather than deviation 
(x) or raw (X) scores leads to results in terms of correlations (r) rather than variances 
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(cr;) and covariances «(J.(~). Of course, variables are usually not standardized before 
they are summed to obtain total score~~ e.g .. a score based upon dichotomous vari~ 
ables is usually the sum of a series of Os and Is. However. using z scores has little 
effect on the deductions to be made and makes it much easier to understand the theo~ 
ry of reliability that follows from the model. Moreover. we will later switch from l: 

scores and correlations to raw scores. variances. and covariances to develop certain 
other statistics. 

The model assumes an infinitely large correlation matrix containing all correlations 
among variables in the domain in which rij denotes the correlation between variables 
Xi and xJ. The average correlation in the matrix (Tij) indeltes the extent to which a com~ 
mon core exists among the variables. It is nol necessary that this core be a single factor 
in the sense of Chapters 11 through 13. The dispersion of correlations about this aver
age indicates the eKtent to which variables vary in sharing this common core. If one 
assumes that all variables share equally in this core, the average correlations in each 
column of the hypothetical matrix would be the same and would equal the average 
correlation in the whole matrix (T/j)' Keep in mind that we do not necessarily assume 
that all values of rij are the same, but rather that the sum or average correlation for any 
one variable is the same as the sum or average for any other variable, which is much 
tess restrictive. 

If the above assumption holds, one may compute and not simply estimate the corre
lation of any particular variable with the sum of all variables in the domain. as follows. 
Since aU variables are expressed as z scores, the fonnula for the correlation of variable 
XI with the sum of scores on k variables is 

(6-1) 

Equation 6-1 is simply the expansion of the formula for the correlation of one vari~ 
able with the sum of k variables (Eq. 5-Bc). This further illustrates how a single vari~ 
able may be correlated with a linear combination that includes that variable. Variable 
XIr a variable in the domain. is also part of the sum of variables ."1 through X.t. The nu~ 
merator of Eq. 6-1 simplifies to 

1 1 2 
N-Ez\CZl + Z2 +Z3+ '" + Zk) = N -l:(z\ +Z\Za +ZIZl + ... + ZIZk) 

= ..!..(:tz1 + LzIZ2 + EZ IZ3 + ... + :tzlz0 
N 

= 1 + '12 + rl3 + .. , + rlk 

= 1 + (k - l)i'tj 

= 1 + (k-l)i'ij 

The expression in parentheses (:tz~ + LzIZ2 + Iz1zJ + .. , + Lz\z0 contains the prod
uct of sets of standard scores for variable ,"I with itself (Iz1) and all other variables 
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(e.g., LZIZl) in parentheses. The expression I + '12 + rl3 + ... +rlk results from dividing 
by the number of people (N). The elements in the sum are the correlation of variable XI 

with itself (1.0) and with each of the other variables, r12. '(3, etc. This may be simpli
fied to 1 + (k - l)rl}' where rli is the average correlation of variable x( with each of the 
other variables. The final result, I + (k - l)rU' holds when this average correlation is 
the same as the average for all variables (flj = '11)' the crucial assumption made above. 
Furthermore, the sum of the correlations of variable XI with the remaining k - 1 vari
ables, excluding variable XI itself, is (k - 1);11' 

The left-hand term of the denominator of Eq. 6-1 is the standard deviation of vari
able XI in Z score form and therefore LO, and so it "falls out" of the denominator. The 
right-hand term of the denominator is the standard deviation of the sum of the k z 
scores, including variable XI' Chapter 5 showed this variance equals the sum of all 
terms in the intercorrelation matrix (R) as an ex.tension of Eqs. 5-3. There are ~ ele
ments in any intercorrelation matrix. Of these, k are diagonal elements and k2 - k are 
off-diagonal elements. The sum of these diagonal elements equals k since each of the k 
diagonal elements in a correlation matrix is 1. Instead of adding the off-diagonal ele
ments, one could obtain the same value by multiplying the average off-diagonal ele
ment (;ij) by k2 - k. This makes no assumptions about the properties of R, unlike the 
crucial assumption that r'J ='lj made in the numerator. These considerations allow the 
denominator ofEq. 6-1 to be written as 

Reassembling numerator and denominator gives the following formula for the cor
relation of variable Xl with the sum of the k variables in the domain: 

1 + (k- 1)fl/ 
, --{====== I(L.k) - '\ / 

V k + (k2 - k)r/j 

(6-2) 

We next consider what happens when the potential pool of variables (k) approaches 
infinity so that rlj is the average of an infinite number of correlations in a domain rather 
than a finite k x k matrix. The first step is to divide each term in the numerator and de
nominator by k: 

11k + 'i) - r;Jk 
'I(l ... k) :: --r-...... = ...... -

V 11k + 'Ij -r;Jk 
(6-3) 

As k approaches infinity, terms divided by k approach zero. Since only two terms in 
Eq. 6-3 are not divided by k, the equation reduces to 
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(6-4) 

The correlation of variable '\:I with the sum of an infinite number at' variables in a 
domain therefore equals the square root of the average correlation among variables in 
the domain (i'Ij)' The same holds for any other variable. This holds only when all vari
ables have the same average con-elation with other variables (flJ = fi)' If that is so, Eg. 
6-4 can be written as 

rl(l...k) = Vi; (6-5) 

By detini~ion, the correlation of variable XI wi.th the sum of the k variables ap
proaches the correlation of variable XI with true scores (the sum or average of Scores 
on all possible variables) as k approaches infinity, and so the following symbolic ab
breviations will be useful: 

(6-6) 

The correlation r't (the correlation between variable Xl and true scores, i.e., the sum 
or average of all variables in the domain) equals the square root of the average correla
tion of variable XI with all other indi vidual variables, 

If you are troubled by the "ghostly" concept of infinity, think in tenns of any big 
number. For example, a domain of 1000 possible variables would be indistinguishable 
from an infinity. Indeed, the results would be satisfactory with even 100 potential vari
ables. The formulas derived so far, especially Eq. 6-6, are the foundations of the theo
ry of measurement error, and many useful principles will be developed from them. 

Multi-Item Measures 

The previous section provided basic formulas for measurement error with respect to 
individual variables, which could be items or any other measures sampled from a hy
pothetical domain. Nearly all measures are composed of a number of items (we now 
return to this simpler term "items" even though what follows is also not limited to pen
cil-and-paper tests), but the model can be easily ex.tended to multi-item measures. 
Think of dividing the infinitely large matrix of correlations among items into groups of 
h items. The sum of scores in each group of items constitutes a test score which would 
range from 0 to h if the items were dichotomously scored. If items were randomly 
sampled to form tests, correlations among different tests would tend to be the same. 
Such randomly sampled collections of items constitute "randomly parallel tests," and 
their means, standard deviations, and correlations with true scores would differ only 
by chance. Assuming that the average correlation of each test with the sum of all other 
tests is the sarne for all tests, one can proceed from Eq. 6-1 as before, but this time z 
scores apply [0 whole tests rather than individual items. This leads to 
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where rl} = average correlation of test XI with all tests in domain 
'It = correlation between test XI and true scores in domain 

221 

(6-7a) 

(6-7b) 

This is identical to the result obtained with individual items, Eq. 6-6, and is pre
sented as a separate equation merely to stress that it makes no difference whether the 
measure is a single item or the sum of several items. The crucial assumption of equal 
correlations among scoring units (rl) = 11}) is actually much more sensible with Whole 
tests than with individual test items. Idiosyncracies of individual items (e.g., wbether 
or not a particular addition item involves carrying) average out on Whole tests, but 
may systematically affect correlations among individual items. Moreover, the FI) be
tween whole tests will be larger than the FI} between individual items, so that values of 
'11 will also be higher for whole tests. 

By convention, the correlation of one test, which can be a single item, with another 
test in the domain is called its "reliability coefficient," which will be symbolized as 'II 
for variable XI, fj/ for variable Xi, and so on. The correlation between test XI and true 
scores (rl/) is called its "reliability indelt." The reliability index is the square root of 
the reliability coefficient. The reliability coefficient cannot ex.ceed the reliability 
index-the correlation between two fallible' measures (rl~ cannot be higher than the 
correlation between a fallible measure and its true score (fit). 

Estimates of Reliability 

The more tests that have been randomly sampled in a finite domain, the better the reli
ability estimates. For example, the square root of the average correlation between one 
20-item spelling test and five other 20-item spelling tests (~) should more closely 
approximate 'It than the square root of the correlation between the first test and one 
other test ('It). However, reliability estimates are not obtained in practice by correlat
ing a test with several other tests. Practical measures of reliability are usually based 
upon either (1) items within a single test or (2) between a test and one other test. We 
will later consider the efficiency of such estimates when only one correlation is used to 
estimate a hypothetical infinite number of correlations. 

One may test the hypothetical square root relation between the reliabmty coeffi
cient and reliability index empirically when it is meaningful to aSSume that ilj equals 
Fl]. Some measures are so readily obtainable that it is possible to retest the subject 
many times. For example, practice a sample of subjects at reaction time responses 
until their perfonnance is stable to help satisfy the above assumption. Then run them 
for at least 100 trials to produce a domain of responses. Their reaction time on one 
trial is a one-item test. Correlate their results on one arbitrarily chosen trial (e.g., the 
tenth) with (1) their results on another arbitrarily chosen trial (e.g., the fifteenth) to es
timate ru and (2) the average over all trials to estimate 'It. These two correlations re
flect the reliability of individual differences in a one-item test of reaction time and 
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should closely approximate a square root relationship. The same may be done taking 
blocks of k trials: Correlate one block with another block and then correlate either 
block with the overall average reaction time. Both correlations will be higher since 
this is nowak-item test, but the same square root relationship should hold. 

The Importance of the Reliability Coefficient 

It will be helpful to restate several of the similar appearing terms that we have used. 
First, rlr or rl(I ... £) is the correlation between a set of scores on a given test (-"I) and cor
responding true scores, also known as the reliability index. It is exactly equal to the 
square root of Fij or the average correlation between aU pairs of tests in the domain, 
which may also be written as 'Il' In tum, Flj (rll) may be estimated by FIj. the average 
correlation between test XI and the other tests in the domain, and Flj may also be writ
ten as 'II, the reliability coefficient for test XI. Many important principles can be devel
oped about measurement error once a good estimate of 'II, and therefore of 'It> is ob
tained. There are precise ways to estimate rl .. but we will delay discussion of how this 
is done and the precision of such estimates until later. 

Although rl l is the correlation between an actual variable and a hypothetical vari
able rather than between two actual variables, it can be used in the same mathematical 
ways that any correlation can. Figure 6-2 is a scatter diagram of the relationship be
tween a set of observed (fallible) scores on X, (z,) and associated true scores (Z,), The 
reliability coefficient (rll) lISed to generate these data was '.81, and so the correlation 
between obtained and true scores (the reliability index or 'II) is .9. The line of best lit 
(see Eq. 4-16) is 

where z~ = estimated true z score 
Zl = observed z scare 
rtr = reliability index 
'II = reliability coefficient 

The square of the reliability index (rtl) equals the proportion of true-score variance 
ex.plainable by a fallible measure, and vice versa. This is because the square of any 
correlation equals the variance in one variable explainable by variance in another vari
able (see Chapter 4, especially Eqs. 4-15b and 4-24b.) However, r~r is simply rll' the 
reliability coefficient. Consequently, rll provides the proportion of true-score variance 
in the fallible measures (see Eq. 4-15b or 4-24c). This proportion takes on even more 
meaning when the fallible measure is expressed as a deviation score rather than a z 
score since 'II becomes expressible as 

(6-9) 
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FlGURE S.2 Regression line and scatter diagram between obtained scores and true scores for 20 hypothetical 
observations obtained when '11 = .81 (rll = .9). 

where 01 = observed variance of variable ;{\ 
~::; variance of variable XI explainable by true scores 

Equation 6-9 shows that rll equals the true-score variance in a measure divided by 
its actual (observed) variance. Viewing the reliability coefficient in this way facilltates 
the development of many principles about measurement error, but another model will 
be described before developing these principles. 

THE MODEL OF PARAlLEL TESTS 

We have already discussed a model for randomly parallel tests whose means, standard 
deviations, and correlations differ because of the sampling of items (content). We also 
stated that the best way to estimate the reliability is to correlate one test with a number 
of other tests from the same content domain. However, that is usually impractical; a 
test is usually correlated with only one other test, if that, to estimate its reliability. ihis 
could easily be inaccurate since one correlation estimates the average of many. Conse
quently one could rightly question whether the correlation between two tests meaning
fully estimates the reliability of either. 

If it is assumed that two tests actually are literally parallel and not just parallel in a 
statistical sense, 'lit and therefore 'I" can be derived directly. 1\vo tests are parallel it' 
(1) they haVe the same standard deviation, (2) they correlate the same with a set of true 
scores, and (3) all of their variance that is not explainable by true scores is pure ran
dom error. It is sometimes useful to assume that the two tests have the same mean, but 
that assumption is not necessary here. 
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Several additional ~nciples follow from assumption 3 that the variance in each 
test not explainable by true scores is pure random error. First, random errors balance 
one another. by definition. and so the mean of the error scores on each test is expected 
to be zero. Second. error scores on one test are uncorrelated with error scores 00 the 
other test, and, third, errors on both tests are uncorrelated with true scores, since pure 
random errors do not correlate with anything else except by chance. Of COUl'Se, these 
three assamptiollS may not hold in a small sample. which is why we ate primarily coo
cerned with large samples. 

The deviation scores on two parallel tests can be broken down as follows: 

XI = t+el 

xl=t+e'l 

where Xl == obtained deviation score on test XI 

Xl = obtained deviation score on test ~ 
t == true score 

el = error on test xI 

el == error on test ~ 

Since only the fallible scores (.tl and ~ are observable, the only way to learn about 
the true and error scores (t, e I. and eJ,) is to correlate these fallible scores. If the co~ 
lations between eacll test and the true scores (which are assumed equal) were known, 
the result could be used in a reFSsion equation to estimate scores on the tWo fallible 
variable, using the following st~ps. 

These principles may be statixl formally as foUows: 

0, ==G'l 

'It== '2r 

'tc. = 0 

'''2 == 0 
T~'l = 0 
~ •• ==O 
X.2 ==O 

Since error scores are uncorrelated with true scores: 

and 

(6-10) 

(6-11) 

The error-score variances must be equal because both the obtained score variances 
and the true-score variances of the two tests are equal. 
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Using Eq. 4-6 in conjunction with Eq. 4-9, the observed cOlielation between the 
two parallel tests is as follows: 

u,x2lN 
r12= 

0'10'2 

Since XI and.-c:z are the sum of true and error scores, and the two standard deviations 
in the denominator are equal, 

1.:33 
(t + e,)(t + eiJN 

= C:~:r + 1:tel + 1.:te2 + Ie1eiJIN 

O'? 

'2 at + a,,, + O't. + 0'. It = __ ---'1 ____ .:;.2_-..;..1 .;;:.2 

0'; 
The three covariances in the numerator (O're, , O'tll2' and 0"1112) drop out because errors 

on the two parallel tests are assumed to be uncorrelated with true scores and with each 
other, leaving 

The correlation between two parallel tests equals the true-score variance in either 
test divided by the obtained variance of eitber test. This same ratio was derived from 
the domain-sampling model (Eq. 6-9). Since the ratio is the same for both tests, we 
will symbolize it as ru (or rn or r.cl rather than r12' 

Various methods can be used to prove that the correlation of test XI with true scores 
equals the square root of the correlation between the two parallel forms. One method for 
showing this will prove especially useful later. An important consequence of the present 
assumptions is that the residual scores on the two tests (scores obtained by partialling 
the true scores from the two parallel tests) are uncorrelated because they are the error 
scores on the two tests and these errors are uncorrelated. Another way of saying this is 
that the partial correlation between the observed scores, adjusting for the true scores, is 
zero. Consequently, the numerator of this partial correlation must also be zero: 

Since the model assumes that both tests correlate the same with true scores ('tr == 
r2,), rll == r~, and 'It = ~ (Eqs. 6-7). Correlating obtained scores with true scores 
leads to the development of many principles of measurement error, but we first need to 
consider relations between the two models thus far considered. 
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PERSPECTIVES ON THE 1WO MODELS 

Two different-appearing models therefore reach the same conclusions about measure. 
ment error and in fact provide many other identical results. Actually, they are not dif
ferent models-the parallel-test model is a special case of the more general domain
sampling model. I.f all sample tests in the domain have the same standard deviation 
and correlation with total scores in the domain (true scores) and the partial correlations 
among sample tests are zero when adjusted for true scores, the domain will consist of 
parallel rather than randomly parallel tests. The correlation between any two tests (rjj) 
will then equal the average of all correlations among tests Cfij), and the square root of 
that correlation will be the correlation of any test with true scores (rlr)' 

The three assumptions necessary for the parallel-test model require one to ignore 
the actual problem of estimating rl l ' According to the parallel-test model, the rlj be
tween two tests in a domain defines tather than estimates the reliability. The domain
sampling model frankly acknowledges the problem of estimation. 

UnfortUnately, the parallel-test model is not a fruitful way to extend theories of 
measurement error. It is unclear what attribute the true scores have in common since 
true scores may be defined by only two tests. It is easier to think of a domain of possi
ble test items and constructing an actual test by sampling these items, randomly or oth
erwise. If there were several supposedly parallel tests rather than two and their inter
correlations differed, what would the reliability be? One is in a quandary since the 
model ex.plicitly assumes that all parallel tests have the same reliabillty. The domain
sampling model acknowledges this possibility: The estimated reliability of anyone 
test is the average of its correlations with the other tests. 

Although the parallel-test model makes three assumptions, only the least import~t 
of these (equality of variances) can be tested. Neither the assumption that (1) the two 
tests correlate equally with true scores or (2) errors on the two tests are uncorrelated 
(the partial correlation between observed scores, adjusting for true scores, is zero} can 
be directly tested. The parallel-test model has been popular because of its simplicity, 
but it ignores the issue of the precision of reliability estimation. Any result obtained 
from the parallel-test model specifying a characteristic of measurement error has a 
corresponding formula in the domain-sampling model estimating that characteristic. 
For example, the correlation between two tests specifies the reliability in the parallel
test model, but chis correlation is considered only an estimate in the domain-sampling 
model. However, the domain-sampling model makes several deductions that have no 
counterpart in the parallel-test model. Specifically, issues related to the precision of re
liability estimates obtained with different numbers of items and different distributions 
of correlations have no counterpartS in the parallel-test modeL This model can handle 
only questions about relations among numerous tests by postulating different parallel 
tests. Inevitably, this discussion relaxes the assumptions about parallelism; what starts 
as a parallel-test model evolves into a domain-sampling model. 

The authors strongly favor the domain-sampling model as a theoretical framework 
for discussing and investigating reliability. Actually, the basi.c idea of randomly sam
pling items from a domain provides various models for measurement error. some of 
which will be discussed later in this chapter. We have thus far considered only the sim
plest case where the average correlation of each item with the others is the same for aU 
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items. This is not to say that the domain sampling model does noc have problems being 
implemented in the real world. Our first example of a domain was to have students add 
four-digit numbers. However. we glossed over the fact that 1 + 1 is just as much a mem
ber of that domain as is 9257 + 3481. The difference in difficulty illustrates the idea of 
sampling error in the domain. One could introduce constraints to minimize the variation 
in difficulty for this specific problem (e.g., requiring four digits none of which is a zero), 
but this is not always possible. One perhaps never finds indivi.dual items that are alike as 
"peas in a pod," but summing items minimizes this problem. 

We have noted that many problems, especially in personality research, also involve 
domain sampling only in the vaguest sense. A person may start with a plan to define a 
trait by sampling the assumed attributes of that trait. However, each item is quite clear
ly a distinct entity, so that thinking of randomly sampling is dubious. One uses the best 
set of items that can be obtained. The domain-sampling model's deductions may hold 
poorly, if at all, if this is the case. We wi.11 note below how the effects of doubling the 
number of items in a test derived under domain sampling are predictable in a straight
forward fashion. However, the best items will usually be proposed first if tilis sam
pling process is not used. Lengthening the test may not achieve the desired end be
cause it will involve including poorer items. 

Factorial Composition 

It is not true that the domain-sampUng and parallel-test models assume that all items 
measure only one factor. Both models would hold if items were divided becween two 
(or more) factors, e.g., if the domain were divided between spelling and arithmetic 
items. Random samples of items from this two-factor domain would still tend to corre
late the same with one another, and true scores would jointly reflect spelling and arith
metic ability. There would still be a square root relation between fll and fit, the key 
deduction from both models. Similarly, both models would hold if each item was a 
compound of a number of factors instead of having different items reflect different 
factors. For example, if each item simultaneously measured spelling and arithmetic 
ability, all item intercorrelations would be similar. The domain-sampling model con
cerns the extent to which one "anything" correlates with an infinite number of "any
things." This correlation (the reliability index, rl/) is estimated or defined (according to 
the model chosen) by the square root of the average correlation of one or more any
things (the reliability coefficient, fll' f'.a, etc.). 

Factor composition, however, is important in two ways. First, correlations among 
real items are likely to vary more when different items measure different factors. This 
will later be shown to reduce the precision of the reliability estimates. Consequently, 
even though the domain-sampling model leads to unbiased reliability estimates in a 
factorially complex domain, such estimates might be unstable as a result of content
sampling error. The second important consideration is that investigators usually seek 
to investigate a unifactor domain to make the resulting measure interpretable. No one 
should care about studying the internal consistency of a polyglot domain of test mate
rials. This book stresses that the purpose in developing a new measure is to define a 
unitary attribute. Even though the model holds for multifactor items, the results are 
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more meaningful and estimates of reliability are more precise when items are dominat. 
ed by a singJe factor. Unfortunately, high reliability does not imply thut items measure 
only one factor. 

PRECISION OF RELIABILITY ESTIMATES 

We have talked about the precision of reliability estimates from the domain-sampling 
model in a number of places. Such estimates are precise to the extent thut different 
random samples of items correlate the same with true scores. If aU items had exactly 
the same correlation with all other items in the domain, this correlation would com
pletely specify the reliability. These items would therefore also have exactly the same 
correlation with true scores, Le., the square root of any interitem correlation. There is 
random error in any actual sampling of items to the extent that these item intercorrela
tions vary. For example, if the correlations between XI and other items in the domain 
ranged only from .LD to .30, the average correlation of XI with a number of other items 
randomly selected from the domain would estimate the reliability of XI rather precise
ly. However, if the range was from -.30 to .60, the average correlation of XI with the 
ocher items would estimate the reliability poorly. 

There is a double problem of sampling related to the precision of reliability esti. 
mates-the sampling of objects (usually people) and the sampling of items. We previ
ously noted that it is very difficult to consider both sampling problems simultaneously. 
To do so would lead us into statistical complexities beyond the scope of this book. We 
also noted earlier that classical measurement theory is mainly a large-sample theory 
which assumes that a sufficient number of persons are studied to minimize sampling 
error from subjects. This is necessary not only to simplify measurement cheory but 
also because measurement theory cannot usually tolerate the large doses of sampling 
error arising from a small number of SUbjects. Consequently, we will assume that a 
representative sample of 300 or more persons has been employed and focus on the pri
mary concern of the theory of measurement error-sampling of items. 

A domain of items is of interest only if the average correlation among items is posi
tive. If the average correlation is zero or near zero, the items as a group have no com
mon core, and it is useless to assume they measure a unitary attribute. Assuming that a 
core does exist, the next issue is the relative homogeneity of these correlations because 
it is most desirable that these correlations be relatively homogeneous. 

Correlations always vary in magnitude. The particular statistical model we will use 
to evaluate the influence of this variation upon the precision of reliability estimates as
sumes that correlations are normally distributed about the average value and statisti
cally independent of one another. Both assumptions must be somewhat slightly incor
rect. If the average correlation is positive, the distribution of correlations must be 
negatively skewed and therefore nonnormal. Also, intercorrelations are not indepen
dent of one another, e.g., rn is not independent of rl3 because item Xl is common to 
both. However, these assumptions are only slightly violated for typical test items, 
since their correlations usually range between .10 and .30. Conversely, be careful in 
applying them to correlations among multi-item tests because these correlations do 
often exceed .7. 
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We will explain below how test reliability is a direct function of the average corre
lation among items (i'Ij) for any given number of items. Longer tests are more reliable 
than shorter tests, but the test reliabilities are deducible from the 11} in both cases. Be
cause of this, the precision of any reliability estimate is a direct function of the preci
sion of the estimates of 11j. Assuming such correlations are nonna11y distributed, the 
approximate standard error in estimating 11j is 

(6-13) 

where 0' rlj == standard error in estimating 1ij from the whole domain 
O"IJ == standard deviation of the distribution of actual item intercorrelations 

Ie == number of test items 

Equation 6-13 is merely an adaptation of the customary formula for the standard 
error of the mean, sampling items rather than people. In conventional applications, the 
standard error of average scores for people equals the standard deviation of scores di
vided by the number of persons. Each correlation in Eq. 6-13 is co~sidered a score. 
The standard deviation of correlations within a test estimates the standard deviation of 
correlations in the whole domain. The de~ominator of Eq. 6-13 looks complicated at 
first glance, but it is only the square root of the number of possible correlations among 
k items minus 1. The 1 is subtracted to obtain the proper degrees of freedom. . 

It is apparent from the fonnula that the error in estimating 'u is directly related to 
the standard deviation of correlations among items and inversely related to the num
ber of test items. This provides an important principle: Not only are longer tests 
more reliable than shorter tests (to be proven later), but their estimates of reliability 
are more also precise. The standard error in estimating 'Ii from a IO-item test in 
which the average correlation among items is .20 and the standard deviation of cor
relations is .1 0 is 

.10 
0" ---;=== 

1;) - V(5)(9) - 1 

.10 
~V44 

.10 
= 6.63 

==.015 

One expects that 95 percent of normally distributed estimates lie in a ±2.0 standard 
error "band" above and below the estimated parameter, e.g., tlle mean. The analogous 
expectation here is that the average correlation among items will be similarly distrib
uted over random samples of items. In the present case. the standard error for average 
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correlations obtained from IO-item tests ;s only .0 IS. One expects that 95 percent of 
the sample values will fall between .17 and .23. Lengthening the test to 40 items re
duces the standard error to .0036l 

This example illustrates that reliability estimates are rather precise even for tests as 
short as 10 items. Since most tests are longer than to items. sampUng error due to hem 
selection is vanishingly small. assuming the items have been sampled from a domain. 
This precision arises because the number of correlations among items increases rough
ly as the square of the number of items. This factor appears in the denominator of Eq. 
6-13. For example. there are 780 possible correlations among 40 items. This provides 
the same precision for estimating the average correlation that would be obtained in 
sampling 780 people in order to estimate a mean. There is thus usually little error in 
estimating reliability due to random error in item selection. 

Suppose that two tests assumed to come from the same domain correlate more 
poorly with one another than predicted from the average correlation among items 
within each test in a large sample. This would probably reflect systematic differences 
in item content when obtained from a large sample of SUbjects. We will discuss this 
point more fully later. 

We have thus far assumed that all items are in z-score fonn. but items are rarely stan
dardized before they are summed to produce test scores. One might wonder if differ
ences in item variances disturb the principles that have been developed so far. For ex
ample, dichotomous items have different p values and therefore different variances 
CEq. 4-3). In fact, these differences do not complicate the domain-sampling model. 
The model could be developed from the item covariances as welt as from item correla
tions and would produce the same principles. Also. differences in p values of items 
usually have very little effect on the precision of reliability estimates, particularly on 
tests with 20 or more items (Cronbach & Azuma. 1962). 

FURTHER DEDUCTIONS FROM THE DOMAJN-SAMPLING MODEL 

Test Length 

One may deduce other principles of measurement error from the domain-sampling 
model. These are useful boch in the development of measurement theory and in ban
dling everyday research problems. 

We previously mentioned that the reliability of scorel; Q,b.tained from a domain sample 
increases with the number of items sampled (k). Thus, lndividual items may correlate 
paody with true scores, but a lO-item test might correlate .50 with true scores, and a 
lOO-item test might correlate above .90 with true scores. The rate of increase in relia
bility as a function of k can be deduced using the following matrix., which depicts the 
correlations of items with true scores and one another: 



X, 
Xg 

Xa 
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fU 

The first column and first row of the matrix contain correlations of true scores with 
all variables. All diagonal elements are correlations of items with themselves (1.0). 
The remainder of the matrix contains all possible correlations among items. The dis
cussion in Chapter 5 about the correlation of sums allows the following: 

(6-14) 

Equation 6-14 is simply the cotIelation of the sum of k variables with one variable 
t. The numerator is k times the average correlation of items with true scores. The left 
side of the denominator is 1.0 and drops out of the equation. The right side of the de
nominator is the square root of the sum of intercorrelations among the k items. There 
are, of course, k diagonal elements. One can substitute 2 times the average correlation 
times the number of correlations for 2 times the sum of item intercorrelations, which 
allows Eq. 6-14 to be transformed to 

(6-15) 

The formula is theoretically correct, but since the Dumerator contains the average 
hypothetical correlation of items with true scores. it is of no practical use. However, 
square both sides of the equation (r}l ... k) will be symbolized. as ra): 

kl-2 

'" ra = ----"---
k + !?-flj + kflj 

Then, divide numerator and denominator by Ie: 

1 + (k-l)FIJ 

(6-16) 

(6-17) 

Since the cOtIelation of any item with true scores may be estimated by the square 
root of the average correlation of that item with other items, ki'ij can replace ki'1~ in the 
numerator, producing 
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krii 
rk/r. = ---"---

I + (k - l)rjJ 
(6-18) 

It is hard to overestimate the importance of Eq. 6- l8 to the theory of measurement 
error. It is the general form of the Spearman-Brown prophecy formula, named after its 
originators. An example will illustrate use of the fOl1nuia. Let tne average correlation 
among items on a 20-item test be .25. Then 

20(.25) 
ririe = -l-+-(l..:...9)-(.'-2S-) 

= 5.00 
1 + 4.75 

5.00 
= 5.75 

=.87 

It was previousLy shown that ra is the estimated square of the correlation of Scores 
on a collection of items with true scores. Consequently the estimated correlation with 
true scores in the above example equals the square root of .87 or .93: ~n the equation, 
ra is the rel1ability coefficiem, which in this case is .87. This illustrates, how a highly 
reliable total test score can be obtained from items that have an average intercorrela
tion of only .25 given a reasonable number of items, e.g., 20. 

Although rid: was introduced to obtain the correlation of a collection of items with 
true scores, it equally well defines the expected correlation of one k-item test with 
other k-item tests in that domain. Thus, ra also estimates the reliability of a test that is 
lengthened by a factor of k. The next chapter will show how this is used in actual re
search. Equation 6-18 holds regardless of the size of the units that are added. All one 
needs to know is the average correlation among the units. Thus the formula would 
hold if the k units being combined were pairs of items, 10-item tests, or WOO-item 
tests. One comes to the same conclusion about the effects of lengthening a test with a 
particular number of items regardless of the number of items per test if the assump
tions of the domain-sampling model hold. However, these assumptions often do not 
hold when, as we have noted, the measure begins with the best items. If subsequent 
items are not as good, the ex.pected gain in lengthening the test may not be realized. 
Equation 6-18 assumes that each collection of items, regardless of size, represents a 
random sample from the domain. so that the tests are randomly paralleL 

One of the most frequent previous uses of Eq. 6-18 was with "split-half reliability 
estimates. II In this method, the items on a test are divided in half, and the two half-tests 
are correlated. The correlation describes the reliability coefficient for a test of "half 
length," and Spearman-Brown is used to infer the reliability of the whole test. Howev
er, computer methodology allows for a better approach, Cronbach's (1951) coefficient 
alpha. presented below. Nonetheless, it is useful to look at the special case of doubling 
a test's length: 



CHAPTER 6: THE THEORY OF MEASUREMENT ERROR 233 

2r'2 
rick::: -- (6-19) 

1+ r'2 

where r,l::: correlation between two half-tests 
ride ::: reliability of whole test 

Thus. if the correlation between two halves of a test. such as the scores on the odd 
and even items. is .80, the reUabilir.y of the test as a whole is (2)(.80)/( I + .80) ::: 
1.60/1.80 ::: .88. 

The Reliability of an Item Sample and Coefficient Alpha 

The logic of the previous section in determining the effect of test length on reliability 
can be extended to detennine the reliability of any particular sample of measures. This 
reliability depends entirely on (1) the average correlation among items and (2) the 
number of items. These values. obtainable by any intercorrelation algorithm like SAS' 
PROC CORR, can be substituted in Eq. 6-18 to obtain a reliability estimate, but there 
is a much easier way to obtain the same result as Pi) can be used in the numerator in-
stead of rlt. Equation 6-16 then is . 

fide = ? 
k + k'flJ - krij 

(6-20) 

If the average correlation in a set of test items is a good estimate of the hypothetical 
average correlation of all items in a domain (rlj). some very useful formulas can be de
duced. Rather than introduce new terminology, a precise estimate of rij will be symbol
ized as the actual avemge correlation in the domain. Further note that the denominator 
in Eq. 6-20 equals tbe sum of tbe elements in the matrix of correlations among the k 
variables. so that Eq. 6-20 can be rewritten as 

(6-21) 

The numerator equals the sum of all the elements in a matrix: whose average ele
mentis fij. This differs from the sum of elements in an actual item intercorrelation ma
trix (R) in two important ways. First. the former macrix does not have variances on the 
diagonal (unities with G scores). Consequently the sum of variances (k) must be sub
tracted from R to approximate the numerator. Second, it is only an approx:imation be
cause tbe sum of elements with zeros in the diagonal equals (k2 - k)f/j rather tban /CPij' 
In other words, the result needs to be i.!!!lated by the following ratio to obtain fri)o after 
subtracting the sum of variances from R: 

" = /C-k k-L 
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This allows the reliability of a k-item test to be written as 

[kI(k - l)](R - r.a7) 
R 

= ~ (R-J;CY7) 
(k- 1) R 

Since variables are expressed as ~ scores, Eq. 6-22 reduces to 

k R-k 
rltJ<=-- ----

k-l R 
(6-23) 

It has thus far been convenient to work with z scores, but we will now work with the • 
item co variances rather than with their correlations because the total score will most 
likely tbe based upon the sum of raw item responses and not their! scores. This also 
means that we need not assume that all items have the same variance (same p values 
for dichotomous items), a source of minor imprecision in estimating reliability. In that 
case Eq. 6-22 becomes 

k(C -IO'~) 
rick = (k - l)C (6-24) 

Recall from Chapter 5 that C is the sum of the elements in a covariance matrix (C), 
in this case the square matrix of variances and covariances among items. 

Equation 6·24 could actually be used to estimate the reliability of a k-item test from 
its item covariance matrix, but the discussion in Chapter 5 about the variance of sums 
suggests an even simpier approach. The sum of the elements in this covariance matrix 
is simply the variance in total scores, C = a;. Thus, Eq. 6-24 may be rewritten as 

(6-25) 

or 

(6-26) 

Equation 6~26 is one of the most important deductions from the domain-sampling 
theory of measurement error, Cronbach's (1951) coefficient alpha (ex). This formula 
can also be derived fcom the paralle1·test model, and very similar formulas can be de
rived from other mathematical models for measurement error. Coefficient a. is also a 
special case of a broadly useful measure called the intraclass correlation (Hays, 1988: 
Winer, Brown, & Michels, 1991). 
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Although it may look very different, Cf. is identical to Eq. 6~ 18 used in estimating 
the reliability of a k·item test when (l) the average item covariance rather chan the av
erage item intercorretation is employed and (2) the average of the item variances (pq 
values for dichotomous items) is substituted for 1 as the first part of the denominator 
in Eq. 6~18. All these considerations justify the vast importance of Cf. in the theory of 
reliability. It represents the e:tpected correlation of one test with an alternative fonn 
containing the same number of items. The square root of CL is the estimated correlation 
of a test with errorless true scores. It is so pregnant with meaning that it should rou~ 
tinely be applied to all new tests. 

When one investigates the reliability of a test composed of dichotomous items, Ct 

takes on the foDowing special form 

rid: = _k_(l - i:.p2Q ) 
k-l Oy 

(6~27) 

Equation 6~27 follows from Eq. 6~26 because 'f.pQ equals 1;oT. This special case is 
called Kuder-Richardson formula 20 (KR-20) for historical reasons. 

All that is needed for any test regardless of whether or not it is comprised of di
chotomous items are (1) the individual item variances (values of pq for dichotomous 
items, but this does not matter to a computer), which are summed to provide !.a~Cr.pq 
for dichotomous items), (2) the variance in observed scores (O'~); and (3) the number 
of test items (k). It is easy to compute, and there is no excuse for not computing it for 
any new measure. 

Another way of looking at ex further underscores its importance. We have stressed 
that the reliability coefficient is the estimated average correlation of a test with all pos~ 
sible tests of the same length obtained by domain sampling. Thus, ex is the expected 
correlation of one test with another test of the same length purportedly measuring the 
same thing. It can also be viewed as the expected correlation between an actual test 
and a hypothetical alternative form even though that alternative form may never be 
constructed. If the actual test is called x and the hypothetical test is called y, the co~ 
variance matrilt of items on the two tests can be depicted as follows: 

x 

y 

According to the domain-sampling model, the average diagonal term in Cx and Cy 

will be the same, and the average off~diagonal elements will also be also the same. It also 
is expected that the average elements in C.f)I will equal the average off-diagonal element 
in C .... or Cy• Thus, ex can be derived from the correlation of sums (Chapter 5) as follows: 

C.'t)' 
r.f)I = -~-= r.=;-::-~-= ;=;-= vey vey 
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According to the model, C.t and Cy are approximately equal, and so the equation can 
be rewlitten as 

The average coefficient in eX)' and thus their sum can also be derived from C .•. One 
first subtracts the variances of diagonal items from C", and then inflates the result by 
the previously developed factor k(k - 1) to produce (l. 

The data in Table 6-1 may be used to illustrate the calculation of (l for a three-item 
test (k = 3). You may readily verify that the sum of the elements in this variance
covariance matrix (C = 0';) is 47 and the sum of the diagonal elements (I0'7) is 23. 
Consequently (l = 312(47 - 23)/47 or .71. Although it may seem unrealistic to use a 
three-item test for any purpose other than an example, this could arise from using 
three raters to evaluate a series of individuals with respect to an attribute of interest. 
The result would describe the reliability of the composite (mean or average rating). 
The 0; measure is not limited to test items in the ordinary sense. The above result as
sumes that scores were not standardized. Note that the variance of X, is twice that of 
Xl, which will cause it to have heavier weighting in an equally weighted composite 
of raw scores. This can be avoided by standardizing the raw scores. However, it is 
much simpler to obtain a correLation matrix (R) from the variance-covariance matrix 
(C), using methods discussed in Chapter 5, and to apply Eq. 6-26 to R. You may 
verify that rl2 = .71, '13 = .45, and r2J = .47. The sum of all nine elements in R (R) is 
6.26, and the sum of the diagonal elements is k or 3, and so 0; = 311. (6.26 - 3)/6.26 
or .78. Standardization had essentially no effect. This mayor may not hold true 
when k is small but will tend to be the case for larger values of k. Also note that 0; is 
considerably greater than the average correlation among the three measures (.71 + 
.45 + .47)13 or .53. This is in fact generally the case-the average correlation severe
ly underestimates the reliability of a composite of three or more related measures. Re
lated ex.amples appear in Chapter 7. 

TABLE 6-1 VARIANCES AND COVAAIANCES AMONG 
THREE HYPOTHETICAL MEASURES 

10 
5 
4 

Measure 

5 
5 
3 

4 
3 
8 
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Variance of True and Error Scores 

Equation 6-12 provided the very basic definition of the reliability coefficient as 

The reliability coefficient equals the estimated ratio of true-score variance to total 
(actual or observed) variance. Rearranging tenns, 

(6-28a) 

and 

(6-28b) 

True scores (t) are always, of course, hypothetical, so that they can only be estimat
ed in practice. Unless observed deviation scores (,1:) are perfectly reliable, the variance 
of t will always be less than the variance of x by a factor of 'II' Since error scores are 
uncorrelated with true scores, 

(6-29) 

Because a~ and a; are directly related, one might erroneously assume that reliable 
tests have smaller standard deviations than unreliable tests. Inspecting the fonnula for 
a (Eq. 6-26) shows that just the reverse is true. The larger the average item covari
ance, the more reliable the test. The reliability is zero when the sum of item covari
ances is zero. Note that the variance of a sum equals the sum of variances plus the sum 
of all co variances in the covariance matrix.. The variance of a totally unreliable test 
equals the sum of variances only. Consequently the more reliable the test, the larger 
the variance of test scores. If, for example, two 2()..item tests have the same average pq 
value, the one with the larger variance is more reliable. 

It is true that the error varian~e adds to whatever true (reliable) variance is present, 
but it also is true that the true variance adds to whatever error variance is present. The 
variance of scores of a completely unreliable measure equals the sum of the item vari
ances. This is the lower limit on the variance of obtained scores. As the test becomes 
more reliable, the positive covariances cause the observed variance to increase. 

, Whereas there is a severe limit on the size of the variance of errors, there is much less 
of a limit on the sum of covariance terms. For example, the item covariances on a 
moderately reliable 30-item test contribute at lease three times as much to the variance 
of test scores as the item variances. Thus, reliable tests have larger observed variances 
relative to unreliable tests of the same length. 

Estimation of True Scores 

The square root of rll is the estimated correlation of obtained scores with true scores 
(rl t) and can be used to estimate true scores from obtained scores. Equation 4-21a 
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provides the general form of the slope of the regression equation for estimating ooe 
deviation score from another deviation score (since these are deviation scores, Eq. 
4-21b leads to an intercept of 0): 

0" 
y' = 2'_I 0" .<y-

;r 

The problem is to estimate true deviation scores (t') from obtained deviation scores 
(x). It was previously shown that the standard deviation of true scores (crt) equals 
"';;:a .... , where r;at is the reliability of x. True deviation scores can be estimated as 

a 
t ' = _t,nX 

ax 

= v;:;;.a .• r..rr. 
ax 

= £r;r,x 

Since r ~ equals the square rOQ[ of r = 
t'=V;::~ 
= rxxX 

(6-30) 

(6-31) 

True deviation scores (t') are thus estimated as the product of the reliability coeffi
cient and the obtained deviation scores. 

Although Eq. 6-31 is the best least-squares estimate of true scores, the domain-sam
pling model does not assume that tests in the domain have linear regressions with true 
scores. Linearity of regression is not crucial to most of the principles that can be de
rived from the domain-sampling model (e.g., the effect of test length on reliability), 
but it is important to any relatively simple estimation of true scores. We presently as
sume (somewhat inaccurately) that the relationship between obtained scores and true 
scores is linear but will discuss this point more fully in Chapter 10. 

As is true in any correlational analysis, obtained scores must be regressed to 'obtain 
a best least-squares estimate of true scores. This fact gives rise to an important princi
ple: Obtained scores are biased estimates of true SCores. Scores above the mean are bi
ased upward, and scores below the mean are biased downward. The farther scores are 
in either direction from the mean obtained scores, the greater the absolute magnitude 
of bias. As a group, people with high obtained scores have a preponderance of positive 
measurement errors (good luck), and the opposite is true for people who have low ob
tained scores (bad luck). 

This fact makes little difference in one sense because estimated true scores corre
late perfectly with obtained scores. For this reason, there is usually little to be gained 
by estimating true scores, which we consider more funy in the next chapter, when con
structs are static. In this case, the major importance of estimating true scates is to set 
confidence intervals fOT the effects of measurement error on obtained scores, which 
will be discussed in the next section. 
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The bias in obtained scores raises an important theoretical point, however. Suppose 
one actually bad true scores which could then be used to estimate obtained scores. [f 
both are in Ncare fann., the regression equation is 

where z~ == estimate of an obtained standard score for x 
Zt == true score 
r Xl == correlation between true and obtained scores 

{6-32} 

Subtracting t~ from the actual values (z,J provides the errors of estimation (residu
als), which are errors due to unreliability. We have previously assumed that sucb errors 
of estimation are uncorrelated with the variable used for estimation (true scores). 
which is another way of saying that error scores and true scores are uncorrelated. 
However. errors of estimate are correlated with the variable being estimated (obtained 
scores): 

r~. = Vl-r! 
=v'l-r~ 

(6-33) 

Thus if x had a reliability of .64, obtained scores would cor.refate .60 with error 
scores. The correlation is positive: High obtained scores are biased upward, and low 
obtained scores are biased downward because errors correlate positively with obtained 
scores (see Table 4--2). 

The Standard Error of Measurement 

One may compute the standard error in estimating obtained scores from true scores as 
in any regression problem. The standard error in estimating one variable in deviation
score form (x) from another variable in deviation or raw-score fonn (y) is 

If x is a set of obtained scores and y = t is a set of true scores. Eq. 4-23b becomes 

(6-34) 

As noted in earlier in this chapter, the standard error in estimating obtained scores 
from true scores is called the standard error of measurement (O'tuau)' This quantity is 
the expected standard deviation of scores for anyone taking a large number of random
ly parallel tests. One can use it to set confidence intervals for obtained scores, but such 
confidence intervals are not symmetrical about the obtained score. Thus. it is incorrect 
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to set the 95 percent confidence jnterval as equaling two standard errors of measure_ 
ment below and two above the obtained score, although this is often done. The confi
dence interval is symmetric about the estimated true score (t'), as will be discussed 
more fully in the nel(t chapter. . 

Using O'mcllll implicitly assumes that the distribution of errors has the same shape 
and size for people at different points on the continuum of tme scores. The domajn
sampling model does not make these assumptions, and they are not needed for 
the most important deductions from the model. They are required, however, to set 
confidence intervals for estimated true scores, but there are reasons to believe that 
both assumptions are usually incorrect. This matter will be discussed more fully 
subseq uently. 

We said at the start of this chapter that measurement error is "bad" because it tends to 
obscure or attenuate the lawfulness in nature; correlations are lower than they would 
be in the absence of measurement error. The effect of measurement error upon ob
served correlations may be estimated. Similarly, one may also estimate now much 
higher the correlations between true scores would be than the correlation between fal
lible scores. One simple approach to developing the proper formulas is to assume that 
two·tests from two different domains should have uncorrelaced errors, and errors on ei
ther t~st should be uncocrelated with true scores on either test. The resulting correla
tion between fallible scores on the two tests can be "taken apart" as follows 

0'." r --=.2 - 0' ... 
IV 2 

= 
0.0'2 

(l/N)I(tlt2 + tle2 + t2el + ele!) 

0',02 

(t/N)(ttltl + Itlel + tt2el + telel) 
= 

Only the firSt term in the numerator is not zero, leading to 

(6-35) 

The numerator shows that the covariance of obtained scores is equal to the covari
ance of true scores. If there were no measurement ettor, the covariance term in the nU
merator would remain the same, but the standard deviations in the denominator would 
shrink by the amount derived previously. Thus, if there were no error present, the cor
relation between the two sets of scores (ril) would be 
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0' 12/( 0' 10'2) 

=~v,; 

(6-36) 

Equation 6-36 is known as the "correction" for attenuation. but it really only esti
mates bow high the correlation would be if the two variables were made perfectly reli
able rather than a true correction (these estimates can exceed La!) In other words. 
Eq. 6-36 estimates the limiting value of the correlation between samples of items from 
two domains as the number of items from each domain increases. Equation 6-36 also 
applies to samples of items drawn from the same domain. but the result is trivial. The 
correlation between two such tests is expected to equal the product of the tems in the 
denominator, and so rb equals 1.0. 

One important principle that can be derived from Eq. 6-36 concerns the maximum 
correlation that any set of fallible scores can have with any other set of scores. If rb 
were 1.0, '12 would be limited only by the reliabillties of the two tests: 

(6-37) 

The correlation between one test and another test may therefore be higher than its 
own reliability coefficient. In the limiting case, the correlation between the two tests 
would equal the square root of the reliability of the first test if the second test was per
fectly reliable. The square root of the reliability is the correlation of a test with true 
scores or the "reliability index." the upper limit on the correlation between a sample of 
an item in one domain and a sampte of items in another. The utility of the domain
sampling model would be open to serious question had any other conclusion been 
reached. The next chapter discusses various uses for formulas concerning attenuation. 

ALTERNATIVE MODELS 

We have placed major emphasis in this chapter on the domain-sampling model be
cause (1) it is relatively easy to understand. (2) it permits simple derivations of many 
important principles. and (3) deductions from the model have a high degree of internal 
consistency. Several different approaches led to the same formulas, and fonnulas serv
ing quite different purposes were derived from one another. Other models compere 
with the domain-sampling model. For ex.ample. one of these is the parallel-test model. 
This was shown to be a special case of the domain-sampling model. Actual1y. this and 
other possible models we will now discuss are complementary to rather than compen.-
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tive with the domain-sampling model. They supplement information provided by the 
domain-sampling model alone in [he simple form in which it was presented. 

Factorial Domain-Sampling Model 

The Bjnomial Model 

The domain-sampling model we presented concerned a hypothetical infinite number of 
test items or other scoring units where all items measured the same attribute. No dis
tinctions were made between possible subgroups of items within the domain, and the 
major problem for the development of statistical formulas for measurement error Con
cerned the average correlation among items in the domain and the dispersion of COrre
lations about that average. This is the simplest form of more complex domain-sam_ 
pling models which classify the items in various ways within the overall domain in a 
very similar manner to the many ANOVA designs. 

Each method of classifying the content within a domain is called a "factor" (but not 
in the sense of "factor analysis"), and there can be as many factors as there are types 
of measurement error to be investigated. For example, clinical psychologists might 
rate the improvement of patients in psychotherapy. The various psychologists might be 
one factor in the domain. A second factor might be the occasions over which ratings 
are obtained (e.g., weekly), and a third might be various measurement scales, perhaps 
evaluating behavior at home versus at work. This produces a three-factor design for 
structuring the content of the domain of measurements. Generalizability theory. dis
cussed in the next chapter. dea!s with such factorial designs. It is particularly well suit
ed to the common problem of estimating the incetjudge reliability of three or more 
raters (when there are only two raters, the ordinary r between them suffices}. 

The binomial model (Lord & Novick, 1968) provides useful supplementary informa
tion to the domain-sampling model. This model assumes that errors have a binomial 
distribution about true scores. It can be illustrated in the special case where all items in 
a domain have p values of .5. A person with an average true score would then have a 
probability of .5 of correctly answering any item selected at random from the domain. 
The expected score on any random sample of k items is k/l, but this would be subject 
to binomial error over samples. Since errors are random, the scores obtained for two 
people on an item sample would be statistically independent. Consequently each per
son would produce a binomial distribution of obtained scores over tests. We men
tioned previously that the shape and standard deviation of the binomial distribution de· 
pend on p and the number of test items (k). The average person's distribution would be 
symmetric and approximate a nonna! distribution as k increased. 

A person with a high true score illustrates one key consequence of the model. That 
person would have a high probability of cOlTectly answering any given item in the do
main. Consequently the resulting distribution of obtained scores for different item 
samples (crmeas) would be negatively skewed rather than symmetric and O'rrteaII would be 
smaller than the average person's. The corresponding distribution for a person with a 
very low true score would be positively skewed, but O'meas would also be relatively 
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small. The amount of skewness for persons at either extreme is inversely related to k 
and would not be noticeable on long tests, e.g., 100 items. 

The binomial model is a very sensible model for determining the shape and distrib
ution of obtained scores, and so one should reconsider the simple model in Fig. 6-la. 
Figure 6-1b illustrates a more realistic outcome than assuming that the standard error 
of measurement is the same at all points on the true score continuum and the distribu
tion of errors is normal. The figure indicates that the distribution of obtained scores 
tends to (1) have a smaller standard deviation and be positively skewed for a person 
like A who falls below the mean of the distribution, (2) have a larger standard devia
tion and be symmetric for a person like B who falls at the mean of the distribution, and 
(3) again have a smaller standard deviation but be negatively skewed for a person like 
C who falls above the mean of the distribution. 

This means that the relationship between obtained scores and true scores is Some. 
what heteroscedastic since ameas decreases toward the extremes of the distribution. 
The relationship between true and observed scores also tends to be slightly nonlinear. 
This and subsequent models predict an S~shaped (ogival) rather than a linear relation 
between true and observed scores. However, these potential modifications of the 
domain-sampling model are usually so slight as to have minor consequences for the 
results. Measurement error plays an important role in linear approaches to test scoring 
in Chapters 7 through 9. Its role in a different approach based upon the pattern of reo 
sponse, item response theory, will be considered in Chapter 10. 

RELIABILITY AS STABILITY OVER TIME . 

A second definition of "reliability" is stability over time. This is usually assessed by 
some form of correlation between Scores on the same test, or, if memory for previous 
answers is likely to play a spurious role, parallel forms. One such measure is simply 
the correlation between observed scores, but this procedure may run into problems 
(Cronbach & Furby. 1970; Lord & Novick, 1968; for a partial defense of these mea
sures, see Rogasa, Brandt, & Zimowski. 1982). This issue will be explored in the next 
section. Measures which have high temporal stability are called "trait measures," and 
measures which have low temporal stability are called "state measures" (Anastasi, in 
Wainer & Messick, 1983; Spielberger. Gorsuch, & Lushene, 1970), although the 
distinction is a continuum. Cognitive abilities tend to be traitlike, and mood is more 
statelike. In general, the longer the interval between testing, the lower the temporal 
stability. 

Random error may attenuate measures obtained at two separate times, just as it may 
affect internal consistency (homogeneity). However, the two definitions are basically 
independent in that a test may have high temporal stability and high homogeneity, ei
ther. or neither. If a series of adults are asked to add the number of letters in the name 
given them at birth to their height and the "test" is repeated 2 years later, the correla
tion between the two measures should be 1.0 (high temporal stability). despite the zero 
correlation between the two items and consequent lack of internal consistency. Simi
larly, physiological measures like blood pressure and pulse rate are reasonably wen 
correlated at any given time but tend to be unstable over time. 



Difference Scores 

244 PART 3: CONSTRUCTION OF MULTI-ITEM MEASURES 

Measuring change in geneml is an extremely difficult problem. Collins and (-{orn 
(1991) have recently edited a volume that summarizes the many trends in this area. In 
general, it is important to consider several special cases because measures suitable in 
one situation may not be suitable in another. One slIch special case i!i "cumulative 
growth," in which true scores (if not observed scores) are expected to increase monot
onically, as is true of the development of skills, versus situations in general, Where 
there may be ups and downs in the true scores, such as mood. An even more special 
case is linear growth, in which the changes in true scores over time fall along a straight 
line versus situations in which this is not the case (certain nonlinear forms of growth, 
e.g., ex.ponential growth, can be made linear by a transformation of variables). 

The obvious minimum number of observation periods needed to study change, 
often called waves, is two. Some situations allow only this minimum, but many imply 
the need for more than two. At least three periods are needed to determine whether 
growth is linear, for example, and estimation of certain changes in scores is facilitated 
by having several waves. At a substantive level, gains found in a treatment group rela
tive to a control group in an immediate posttesc are often offset by subsequent recidi
vism in the treatment group. This assessment implies the need for a delayed posttest 
Yet another consideration is whether the focus is on group changes (as in much reo 
search) or individual changes (as in individual classifications). In addition, some mod
els for change can be handled from the perspective of domain sampling, perhaps re
quiring extensions in the form of multiple domains, as discussed more fully in the 
section titled "Generalizability Theory" in the next chapter~ others, &uch as Collins and 
Cliff's (l990) approach to cumulative growth based upon an extension of Guttman 
scales (see Chapter 2), use item response theory. Statistical considerations that are spe
cific to the situation, such as the degree of correlation among the measures and their 
reliability are also important 

A common denominator of any situation that involves change over time is the fact that 
one can compute an observed difference score. If we assume a two-wave study for 
simplicity, this may be denoted ci, = XI2 - Xil ::: (tn + e .. 2) - (til + e/l). The subscript i de
notes individual, Xii and:en are the scores observed at the two time periods, til and t/2 

are the corresponding true scores, and eil nnd et1. are the a.'1sociated errors of measure
ment (assuming deviation scores only for simplicity of discussion). The use of simple 
difference scores is often criticized. We will shown in the next chapter [hat if Xii and 
X,2 are highly correlated over subjects, as they are in many situations, especially when 
the time interval is short, dj will be highly unreliable. In addition, there will be a built
in correlation between dj and Xii of l - r'2 if the scores are standardized, where r,2 is 
the correlation between X/I and :eil' This correlation follows from the correlation of 
sums (see Chapter 5). 

Rogosa et al. (1982), however, note that if it is reasonable to assume that the mean 
of the two sets of error scores is zero, the d j is an unbiased estimator of the true change 
(ti2 - tn). Moreover, tbe reliability and correlation with initial (baseline) tests are 
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determinable. If there are wide individual differences in amount of true change, the 
difference score may have high reliability. [n general, the stability of a measure such 
as X. can be low either because of wide variation in amount of change or because of 
low internal consistency, but these have very different implications. Rogosa et aJ. 
make an interesting side point by noting that most examinations of change concentrate 
upon the case in which amount of change is either negatively related or unrelated to 
change. This is often an artifact of standardizing XIl and Xi2 ratner than letting their nat
ural differences in variance contribute to the analysis. Real life contains many in
stances of a positive correlation in which the "rich become richer." Cogent arguments 
against standardization and in favor of letting variability differences remain date back 
at least to Thorndike (1966). 

One commonly suggested alternative to simple difference scores are residual 
change scores based upon some form of partialling .til from Xi2' The simplest form is 
the residual frorn the ordinary least-squares regression of the observed Scores. Among 
its other problems is that it treats Xli as if it were error-free, i.e. as if it were til' Further 
compounding this problem is that the error scores, ell and 8,2 cannot be assumed inde
pendent over subjects. As noted in Chapter 4, generalized least-squares estimation is 
one approach to this problem, albeit beyond the scope of this book. Rogosa et al. dis
cuss some other estimation procedures, but they too are complex. One intent is' to im
prove the definition of change measures by taking more of the data into account than 
the individual differences. 

Rogosa et aI. note, and we agree, that the best measure of change is the difference 
in true scores, ti2 - tn. We will discuss the estimation of these scores individually in 
the next chapter. When it can be assumed that the errors are not highly correlated or if 
methods like generalized least-squares or structural equation modeling can be used to 
take this correlation into account, this may prove a useful approach. Before this is 
done, however, it is also useful to evaluate the reliability of the observed difference 
score since it is the simplest and most direct definition of change, despite its problems. 
Also, remember that standardizing the elements of a difference score may produce 
spurious results. 

One Other Consideratlon 

Although Collins and Cliff's (1990) model for cumulative growth falls outside this 
chapter because of its use of the Guttman model, they make one extremely cogent 
point that is immediately relevant: Items that are useful in measuring static constructS 
may not be useful in measuring change (and, by implication, vice versa). For example, 
a general achievement item that deals with the ability to carry out addition problems 
would probably be failed by nearly all students early in grammar sepoo} and thus not 
discriminate within cohorts at this level. One would have good reason to exclude it 
from a test of early achievement. The same item may be too easy for more advanced 
students, and so one may also wish to exclude it in that group. However, items of this 
form. can be ex.tremely powerful predictors of change when the focus is upon that as
pect of acbievement. This argument applies to sentiments as well as judgments. 



SUMMARY 

246 PART 3: CONSTRUCTION OF MUlTI·ITEM MEASURES 

This chapter was concerned with measurement error that affects all observations ran~ 
domly, as opposed to error that has a constant effect upon all observations or affects 
some but not all observations based upon some systematic characteristic (a bias). Con
ventionallinear scoring was assumed so that the observed test score was a linear com
bination of item responses. Each object of measurement was assumed to have true 
scores on an attribute that could be found with no errors of measurement by repeated 
testing with alternative forms. It was initially assumed that scores obtained from alter
native forms (1) were distributed symmetrically above and below the true scores (un
biased), (2) were normally distributed, (3) add to the true score to provide the obtained 
score, and (4) have equal variance (are homoscedastic). The standard deviation of ob
tained scores about a given true score produced by measurement error defines the stan
dard error of measurement. 

The notion of domain sampling was then introduced to study the internal consistency 
of measures. The idea is that there are an infiniry of problems of a given type such as 
adding pairs of four-digit numbers. Constructing a test involves sampling items at ran
dom from this domain. The reliability index (ril) is the correlation between a set of 
scores on a given test (XI) and corresponding true scores. It is exactly equal to the square 
root of the average correlation between all pairs of tests in the domain (fij' also written as 

. ;'\1)' In turn, iij erll) may be estimated by the average correlation between test."tl and the 
other tests in the domain or reliability coefficient for test XI (flj' also written as r\l)' A 
key point is that the reliability coefficient equals the ratio of the variance of true scores 
to the variance of observed scores. Moreover, a high degree of internal consistency does 
not guarantee that a measure is unidimensional (measures only one thing). 

The parallel-test model proceeds from somewhat different assumptions than the 
domain-sampling model. It assumes pairs of tests which (1) correlate equally with true 
scores, (2) possess independent (uncorrelated) error, and (3) have equal variance. In 
general, it defines the same relationships that domain-sampling models estimate, in 
particular the square root relationship between the reliability index and reliability coef
ficient. Consequently, major results are not limited to one particular model of reliability. 

Reliabilities are usually estimated from a single test or, at most, the correlation of 
one test with an alternative form. Consequently, the precision of the reliability esti
mate needs be considered. This is inversely related to the standard deviations of item 
intercorrelati ons. 

The domain-sampling model provides several important deductions: 

1 The Speannan-Brown prophecy fonnula estimates the expected increase in test 
reliability as a function of increased length. 

2 Even more important is Cro"nbach's coefficient alpha (CG) which estimates the re
liability coefficient from the item intercorrelations. 

3 The reliability of a test increases as its total variance increases. 
4 The standard error of measurement for standardized variables is the square root 

of 1 minus the reliability coefficient. 
5 The distribution of obtained scores using the standard error of measurement is 

symmetric about the expected true score rather than the obtained score. 
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6 Unreliability reduces or attenuates the observed correlation between measures, 
but it is simple to estimate what the correlation would be between perfectly reliable 
measures or, for that matter, measures of any given reliability. 

We then considered some alternative models designed to broaden the applicability 
of the basic domain-sampling model. The factorial domain-sampling model handles 
items that are multidimensional, and the binomial model recognizes that the standard 
error of measurement for dichotomous items may be greater for individuals who score 
near the midpoint of a scale than individuals at the extremes. Finally. the chapter con
cluded with a second, completely distinct meaning of reliability: stability over time. 
Whereas internal consistency is always desirable, temporal stability mayor may not 
be: Trait measures are designed to be temporally stable, but state measures are not 
Moveover, measures of internal consistency such as a are independent of measures of 
temporal stability, which are normally based upon the correlation between repeated 
testings over time. 

Measuring change is a very difficult problem. Models are now in the process of 
evolution to deal with such specific forms of change as cumulative growth (monotonic 
increases in performance) and, as a special case, linear growth. The simplest measure 
of change is the difference between two observed scores. This has been traditionally 
criticized because the reliability of differences between two positively c9rrelated 
scores (as test-retest scores are likely to be) is low (see Chapter 7) and because there is 
an artifactual negative correlation between the observed change a!¥i the initial scores. 
However, the suggested alternatives. such as covarying the initial score from the sec
ond measure, also have problems. Consequently, observed differences need not be as 
fatally flawed as was once thought. Potentially better methods of meaSuring change 
can perhaps be derived by computing the change in estimated true scores. Estimation 
of true scores is considered in the next chapter. Two related points are that (1) one 
should not standardize the scores used to define change but let their natural units of 
variance contribute to the results and (2) items that may not be useful in measuring 
differences within a group because they are too easy or too difficult (or, in a more gen
eral sense, answered in a consistent direction) may be useful in measuring change. 

SUGGESTED ADDITIONAL READINGS 

Lord, F. M., & Novick, M. R. (1968). StatisticallMaries o/mental test scores. Reading, MA: 
Addison-Wesley. 

Rogosa, D. R., Brandt, D., & Zimawski. M. (1982). A growth curve approach to the measure
ment of change. Psychological Bulletin, 92, 726-748. 

Note: The vast majority of research into psychometric theory in the past 15 years has been ori
ented toward modem test (item response) theory, which we will discuss in Chapter lO. Fur
ther references will be provided at that point. Lord and Novick (1968) discuss both classical 
and modem approaches (of that time). Their book is still a widely cited classic, but it is very 
technical. Perhaps the single area in which classical test theory bas been most expanded in 
recent years is generalizability theory, discussed in [he next chapter. The references present
ed there typically are applicable to the issue ofreliability in general. 



CHAPTER OVERVIEW 

CHAPTER 7 
THE ASSESSMENT 

OF RELIABILITY 

Whereas the previous chapter presented the theory of reliability, this chapter will stress 
application of these principles. Some additional fonnulas will be developed to assess 
the effects of measurement error on research results and applied decisions. We previ~ 
ously said that measurements are reliable to the extent that they are repeatable and that 
any random influence which causes different measurements of the same variable to 
vary is a source of measurement error. The domain~samp1ing model was used as one 
approach to investigate such random sources of error. Each test is considered a random 
sample of items from a domain, and measurement error is present only to the extent 
that samples are limited in size. Thus, a long test with a positive average correlation 
among items is always a highly reliable test, the degree of reliability being estimated 
by Eq. 6-26. 

This line of argument assumes that all measurement error arises from content sam~ 
piing. But is content sampling the only factor that prevents measurements from being 
repeatable? We shall first look at some of the factors that reduce the repeatability of 
measurements and then see if they can be adequately handled by the domain-sampling 
model. In particular we will exantine variation between two forms of a test as well as 
variation within a test. This forms part of the basis for the estimation of reliability in 
different circumstances. e.g., through altemati ve forms. Part of this discussion in~ 
volves the long-range stability of measures. 

Various practical uses of the reliability coefficient are considered as extensions of 
the material in Chapter 6. The correction for attenuation can be used to ex.amine the 
correlation between two variables as the reliability of each is changed to a designated 
(higher or lower) level and not simply made perrec[ as was previously assumed. Confi
dence intervals about both obtained and trUe scores are explored. Fmally, the effects of 

248 
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group dispersion (variability) are discussed-explicit in the definition of the reliability 
coefficient is the notion that its magnitude is directly related to the variance of ob
tained scores. 

Information gained by evaluating a test's reliability can be used to make suitable 
modifications. The most obvious way to do this is to alter its length using the Spear
man-Brown prophecy formula. Standards of acceptable reliability are presented. These 
depend upon what type of decision is to be made-tests used to contrast groups need 
not be as reliable as tests used to make decisions about individuals-but to a large ex
tent, the issue is one of "How high is up?" Moreover, the importance of high reliability 
is also often exaggerated. Limited reliability is not the major reason limiting test valid
ity, and, unfortunately, the search for reliable measures often causes people to replace 
relatively valid but somewhat unreliable measures with less valid measures. 

Test construction proper largely consists of aggregating a series of extremely unreli
able (and invalid) items into a reliable (and, at least sometimes, valid) scale. In contrast, 
scores from whole tests are often combined linearly into composite measures, e.g., dif
ferences between pre- and posttest scores used to measure change. The principles gov
erning the formation and reliability of these composite measures are considered. 

Chapter 6 illustrated how to obtain coefficient (l from the variances and covariances 
among items. We also consider an approach developed by Hoyt (1941) that is based 
upon the analysis of variance. This is computationally very useful because computer 
programs for performing the ANOYA are more widely available than programs for 
computing (l directly. However, the more important reason is that this apptoach leads 
to generalizabiUty theory, which allows one to infer what are in effect reliabilities from 
domains that are not homogeneous. This topic occupies the remainder of the chapter. 

SOURCES OF ERROR 

In practice, many factors prevent measurements from being exactly repeatable, the 
number and kinds of factors depending on the nature of the test and how the test is 
used. The following section describes some of these pt'incipal sources of measurement 
error. Stanley (1971) and Magnusson (l967) present very detailed lists. 

Variation within a Test 

It is important to distinguish between measurement errors that (1) cause performance 
to vary from item to item within a test and (2) appear only when different forms of a 
test are used, either at the same or at different times. The domain-sampling model can 
handle case l, but case 2 requires the model to be extended. 

The major source of error within a test is item sampling. According to the domain
sampling model, each person has a particular probability of correctly answering each 
item, depending on the person's true score and the difficulty of the item. Someone 
whose ability is average for a given population and who answers items having p val
ues of .5 has a probability of .5 of correctly answering any item chosen at random 
from the domain. That person should correctly answer half the items on any test drawn 
from the domain. However, that expected proportion of .5 is accompanied by error. 
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The more items on the test, the smaller that error wilt be. The same logic applies to 
items that have no "correct" responses, Le., sentiments. Each person has some proba
bility of agreeing with each statement, which in tum leads to an expected number of 
agreements in an item sample. In tum, there is some variability in scores from test to 
test depending on the number of items per sample. This error due to item sampling is 
entirely predictable from the average correlation. Consequently, coefficient alpha (a., 
Eq. 6-26) is the appropriate measure of reliability for any type of item. 

Guessing, discussed more fully in Chapters 9 and 10, is a second source of mea
surement error, as an individual might pass one item and fail a second purely because 
of blind luck. Guessing causes performance to vary from item to item, lowering corre
lations between items and therefore overall test reliability. Many other factors produce 
variation among item scores within a test besides guessing, such as (l) subjects Who 
intend to choose one answer but mark another by mistake, (2) clerical errors in hand
scored testS, (3) misreading a question because of confusing wording, (4) fatigue on 
long tests, and (5) random (but not systematic) grader errors on essay tests. 

The domain-sampling model can handle all the errors that occur within a test. Con
sequently, the sampling process should be thought of as including the many situational 
factors such as guessing that influence responses (and therefore reliability) and not just 
content. How a person responds to any given item is then a function of situational fac
tors as well as the chosen item. All such sources of error tend to lower the average cor
relation among items within the. test, but the average correlation is still sufficient to es-
timate the reliability. " , 

Variation between Tests 

The study of measurement error relating to variation between tests is performed most 
typically with alternative forms, which are intended to approximate randomly parallel 
tests. Chapter 6 noted that randomly parallel tests are random samples from a given 
domain of content and thus tend to have the same scores for any group of people. 
However, in many cases no actual sampling is done; rather, an individual constructs 
two tests which are intended to be similar in content. There is no guarantee that all the 
characteristics of randomly parallel tests are present, and so these are called alternative 
forms rather than randomly parallel forms. Having two such tests is widely useful, es
pecially when a measure needs to be repeated. One way to construct such alternative 
forms is to combine the sets of items and randomly assign them to the two forms. 

Scores derived from alternative forms administered after a time lapse will almost 
never correlate perfectly. The domain-sampling model can be used to predict this cor
relation. As was shown in the previous section. this prediction takes account of the 
many sources of error within each testing session as well as the sampling of content. 
There are, however, three major sources of error intervening between administrations 
of different tests that are not reflected in the average correlation of items within each 
test (Stanley, 1971). These sources of error cause the domain-sampling model to over
estimate the actual correlation between forms. 

The first is due to systematic differences in content of the two tests. We have 
stressed that items are usually composed rather than randomly sampled as assumed 



CHAPTER 7: THE ASSESSMENT OF RELIABILITY 251 

formally, especially outside the abilities domain. Di.fferences in the way two tests are 
composed produce systematic differences not incorporated by the model. For eltlUllple, 
different people might emphasize different kinds of words On spelling tests. This 
would make the correlation between the two tests less than predicted from the average 
correlation among the items within each test The same is true of surveys constructed 
by different pollsters. 

Systematic effects arising from subjectivity of scoring are a second potential cause 
of variation in scores on alternative fonus. This is most easily seen when subjects are 
rated by different judges over occasions; the judges might have different standards. 
For example, one clinical psychologist might be behaviorally oriented, and a second 
PSYchoanalytically oriented. This would clearly lead them to look for different things 
in the behaviors of patients. This has nothing to do with differences in leniency. The 
two raters could have identical distributions of ratings yet differ in what they rated. 

A third source of VariatiOB in test perfonnance over occasions is an actual change in 
the subject in the attribute being measured. i.e.. temporal instability. A person might 
feel much better on one occasion than on another, might study in the domain of con~ 
tent, or might change attitudes toward providing shelte.rs for the homeless. Changes 
over time are especially important with mood-related measures and, to a lesser extent, 
other personality variables, but they are not necessarily trivial even with ability 
me~ures. 

Systematic differences in test content, judgmental criteria, and temporal instability 
cannot adequately be handled by a model tiased solely on the random sampUng of 
items. The model must also consider the random sampling of whole tests to handle 
these factors adequately. Consequently, tests should be thought of as randomly sam
pled over occasions, and correlations among tests may well be lower than predicted 
simply from the correlations among items within tests. In that case the average corre~ 
ladon among alternative forms administered on two or more occasions may estimate 
reliability more meaningfully than coefficient (l obtained within tests. (Recall also 
from the end of the previous chapter that tests with a very low coefficient CL may be 
temporally stable. so that alternative-form correlations may also be higher than within
test estimates of reliability.) 

ESTIMATION OF RELIABILITY 

Because reliability is important to any measurement method, investigations of reliabil~ 
ity should be made when new measures are developed. The following are some rec
ommendations regarding how such investigations should be undertaken. 

Internal Consistency 

Internal consistency describes estimates of reliability based on the average correlation 
among items within a test. 11rls is partly a misnomer because coefficient (l reflects 
both the number of items and their average correlation (which may be thought of as 
the internal consistency per se). Coefficient IX, including special cases like KR-20 for 
dichotomous items, should be applied to all new measurement methods even if other 
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estimates of reliability are also necessary. However, the results of any internal Consis
tency approach such as Il or the split-half method (discussed later in this chapter) will 
be misleading on speed tests. as discussed in Chapter 9. 

Coefficient CL sets an upper limit for the reliability of tests constructed in terms of 
the domain-sampling model based upon observed correlations. a point we will return 
to later in this chapter. If CJ. is very low, the test is either too sho~ or the items have 
very little in common. In that case there is no point in obtaining other reliability esti
mates such as the correlation between alternative-forms because they will be even 
lower. [f. for example. coefficient CL for a 40-item test is only .30. the experimenter 
should reconsider the measurement problem. perhaps by choosing different types of 
items. 

Even though coefficient CL ignores certain potentially important sources of measure
ment error. it is surprising how little difference these sources of measurement error 
usually make. This is particularly true if the test instructions are easily understood and 
scoring is objective. Coefficient CL based upon a sample of 300 or more subjects will 
usually be very similar to the alternative-forms correlation. The former might be .85 
and the latter might be .80-it will rarely be as low. as .60. Some exceptions will be 
discussed in the next section. Coefficient a usually provides a good estimate of relia
bility because sampling of content is usually the major source of measurement error 
for static constructs and also because it is sensitive to the "sampling" of situational 
factors as well as item content. 

It is also informative to obtain both coefficient CL and alternative form correlations with 
most measures when possible. These alternative forms should ideally be parallel 
forms; but they often cannot be constructed in this way. especially with personality 
measures, for previously discussed reasons. The two forms should be administered 
about 2 weeks apart to allow variation in the traits to occur over time. If the correlation 
between alternative forms is markedly lower than coefficient CL, say .20 or more, con
siderable measurement error is present from the three previously mentioned sources of 
error: systematic differences in content. subjectivity of scoring, and variation in the 
trait over time. Further investigation can determine the relative contributions of these 
factors. Also look for possible changes in level as well as correlation by evaluating 
possible mean differences over occasions. 

The correlation obtained when the two forms are administered on the same day can 
be compared with the correlation obtained with a 2-week interval to investigate varia
tion in scores over short periods of time. If the correlation between forms administered 
on the same day is much higher than the correlation obtained with a 2-week delay, 
variation in the trait over time is a major source of unreliability; i.e.. the measure is 
state like rather than traitlike in the sense of Chapter 6. This is not measurement error 
in the sense of a lack of internal consistency. since such ~hanges are often both mean
ingful and desirable. For example, a mood measure should change over time because 
of normal mood swings. Regardless, trait variation over time will attenuate correla
tions with variables that are not measured at the same time. Conversely. if the correIa-
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tions between alternative forms administered 2 weeks apart and on the same day are 
both low, people may be stable over time, but the two forms will differ in content. One 
form may be more reliable than the other, which will be reflected in a difference in 
their average correlation between items. This suggests that something went wrong in 
constructing one of the forms. It might be best to replace the less reliable form with a 
new form and correlate the new form with the more reliabLe form. 

If the average correlation within the two test forms is substantial (e.g., .20) but the 
average cross correlation between items on the two forms is low (e.g., .10), the two 
forms probably reliably differ in content and thus measure somewhat different traits. 
This should lead the investigator to rethink the intended domain of content. Inspecting 
the content might reveal why the forms differ. This could lead either to emphasizing 
the content of one of the forms or to seeking items that bridge the gap in content. This 
circumstance will not arise if alternative forms are constructed by the previously men
tioned method of randomly dividing a larger collection of items in half to form two 
randomly parallel tests. 

It is somewhat more complicated to determine measurement error due to subjectivi
ty of scoring. Assume that trait variation and content differences have both been ruled 
ou[ as major sources of unreliability by the above methods. A separate set ofcompar
isons are needed for each rater: If possible, have each score responses to alternative 
forms given (1) 2 weeks apart to one group of subjects and (2) on the same day to an
other group of subjects. 

If correlations between raters are high for both groups, there is little unreliability 
from any source. including that due to subjectivity of scoring. If the correlation over 
the 2-week interval is substantially less than the correlation for tests taken on the same 
day. scoring is probably reliable but the trait is temporally unstable, which may be as 
desired. If both correlations are consistently low in various studies that use different 
racers, it is difficult to determine what went wrong since the rater is in essence part of 
the item. 

Unreliability of scoring may indicate that the trait does not exist in any manner that is 
consistent over judges, or it may indicate that the raters are inconsistent, perhaps be
cause of lack of training. Sometimes, judgmental unreliability can be overcome by 
using a more objective form of measurement. If the measurement problem is meaning
ful and one must employ subjective scoring methods, the rules for scoring should be im
proved. If this increases the rellabi] ity, unreliability of scoring contributed to the earlier 
measurement error. Sometimes a criterion exists to establish the accuracy of each rater. 
In other cases, one can only correlate each rater wim the average rater. If one is clearly 
better than the others by either standard, have that individual train other raters. 

If raters tend to agree with themselves when scoring the same subjects on alterna
tive forms. one should ask whether or not there is measurement error because of dif
ferences among raters. This can be easily detennined by correlating scores obtained 
from different raters on the same and alternative forms of the measure. Raters some
times develop their own idiosyncratic methods of scoring and may not agree with one 
another even though each behaves consistently with his or her own rules. This works 
like other sources of measurement error to attenuate relations found between variables 
in research. 
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The need to investigate alternative forms of a measure depends very much on the 
type of measure. [f the domain of content is easily specified, there is little subjectivity 
of scoring, and people tend to be stable over time, coefficient 0. provides an ex.cellent 
estimate of reliability. This is true, for example, for most aptitude and achievement 
tests. Alternative forms are needed if the trait is suspected to vary considerably over 
relatively short periods of time, as is true for statelike measures such as moods and 
some attitudes. . 

Sometimes the experimenter must compose alternative forms to demonstrate that 
there is a definable domain of content. This occurs with some projective techniques, 
such as the Rorschach, where there is some question as to whether or not it is pOSSible 
to construct an alternative form. If an alternative form cannot be constructed. the do
main of content cannot be defined, and one cannot accurately communicate what is 
being measured, it is doubtful that anything of importance is being measured. 

Other Estimates of Reliability 

Coefficient IX and correlations between alternative forms (under the various conditions 
mentioned previously) are the basic estimates of reliability. There are other ways to es
timate reliability which were once encountered in research reports, but most are not 
presently recommended for most measurement problems. 

The split-half approach was once the dominant way to estimate reliability. In this 
method, test items are divided in half. usually by placing the even-numbered it~ms in 
one group and the odd-numbered items in the other group. Scores On the two balf-tests 
are then correlated. Equation 6-19 is then applied to the correlation between the half
tests to estimate the reliability of the whole test. This method was popufar before com
puters became available because split-half correlations are easier to compute by hand 
than 0. (0. can be shown to equal the average of all possible correlations obtainable by 
splitting the test in half different ways). The availability of computer pcograms makes 
this method generally obsolete, but it still has some applications (see Chapter 9). We 
have noted that any method based upon internal consistency is difficult to use with 
speed tests. In addition, split-half methods are likely to provide misleading estimates 
when items are ocdered in terms of difficulty, as is often the case. Even if you do not 
have access to a program to compute coefficient 0. directly, it is very simple to obtain 
the required variance of the test as a whole and the sum of the item variances. An al
ternative approach, based upon the repeated measures, ANOVA (Hoyt's method), ap
pears later in the chapter. 

The retest method, in which the same people are retested by the same test after a 
period of time, is often used instead of the alternative-form method to determine relia
bility. However. the retest method often has serious problems. the most obvious being 
that memory for the first test usually influences the retest. Subjects tend to repeat their 
responses to the extent that they remember them. They also tend toward repeated work 
habits and similar guesses. All of these tendencies make the correlation between tests 
spuriously high. 

Another difficulty with the retest method is that it does not fit very well into the do
main-sampling model because it is only partly dependent on the interitem correlations. 
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In the model, the reliability of any fixed-length test is strictly u function of the uverucre 
'" correlation among items. However. correlations between different items might be zero. 

but each item might correlate highly with itself over the two testings, even ignoring 
the role of memory. This is another way of saying that a measure that has no internal 
consistency may be quite stable over time. 

Thus, a relatively high retest correlation can arise with low internal consistency. As 
we have stressed, a test should "hang together" in that the items should correlate high
ly with one another. Otherwise, it makes little sense to add scores over items and speak 
of the total score as measuring any attribute. The major information suppHed by the 
retest method is negative: If the retest correlation is low, the alternative form correla
tion will be even lower. Logically, a measure which has low temporal stability wi1l not 
be a good predictor of future behavior, by definition. 

We recommend that the retest method generally not be used to estimate reliability, 
but there are some ex.ceptions. Retests are sometimes relatively unaffected by a prior 
testing. Suppose, for example, an individual is required to rate the attractiveness of a 
large number of designs. It would be very difficult to remember individual ratings be
cause of the sheer number of ratings and the nature of the stimuli, and so retest ratings 
would be relatively independent of the earlier test. Scores also tend to be more nearly 
independent as the time between testings increases. 

Long-Range StabilitY 

We previously suggested a 2-week interval between administration of alternative 
forms. This is largely a matter of convenience to pennit short-range fluctuations in 
abilities and personality characteristics to be manifest while minimizing subject attri
tion. It is often important to assess the stability of scores over longer periods of time-
6 months or more. If, for example, alternative forms given 6 months apart correlate 
less than those given 2 weeks apart, the difference reflects the dynamic nature of the 
trait. As mentioned previously, what is considered error and what is considered sys
tematic depend on the way measurement tools are used, Le., the scientific generaliza
tions that are desired. 

If a measure is to represent the relatively enduring status of a trait, it must remain 
stable over the period in which scores were employed for that purpose. The IQ is a 
good example of a relatively enduring characteristic of adults. It might change gradu
ally over a period of years but not markedly within a year unless some unusual cir
cumstance such as trauma intervenes. If a temporally unstable measure 1S used either 
to make practical decisions about people or in research, measurement error will reduce 
the validity of the decisions. The previous chapter introduced some of the psychomet
ric issues related to measuring change. Collins and Hom (1991) present the views of 
many investigators who have been involved in this issue. Psychometricians have been 
accused bf assuming that psychological traits remain largely stable throughout life and 
thus that very little can be done to improve people. It is in fact true that most past psy
chometric models assumed static traits for convenience. However, this property is not 
inherent in the concept of measurement error, and much current research is directed to
ward developing better models to describe change. 



256 PART 3: CONSTAUCTIO~I OF MULTI-ITEM MEASURES 

USES OF THE RELIABILITY COEFFICIENT 

The previous section showed that it is meaningful to think of a test as having a number 
of different reliability coefficients, depending on which sources of me.asurement error 
are considered. In particular, internal consistency needs to be separated from temporal 
stability. [n practice, however, investigators tend to speak of a reliability coefficient for 
a test which summarizes the amount of measurement error expected from using the in
strument in a given population aod reflecting its iotemal consistency. 

This striving for simplicity is understandable, but at least two types of reliability 
coefficients should be computed and reported for any [est that will be employed wide
ly. First, coefficient 0'. (Eq. 6-26) should be reponed for all forms of the test. Second, 
correlations should be reported among alternative forms. Alternative forms are not 
available for many tests employed in basic research in the behavioral sciences, bUt 
they are available for many commercially distributed instruments. 

We previously said why correlations among alternative forms potentially reveal 
some sources of measurement error not detected by coefficient tl even though the dif
ference is usually small. The alternative forms should be administered at least 2 weeks 
apart in order to assess the measurement error due to temporal instabiHty. Correlations 
between alternative forms administered on the same day contain important supplemen
tary information about reliability when it is possible to obtain them. 

Alternative forms should be independently scored by different persons if scoring is 
subjective. If, for example. five persons score the first form and five other persons 
score the second, coefficients can be obtained from the two sets of ratings. It is impor
tant to remember that coefficient ex can be obtained from ratings as well as convention
al test questions. : 

To the extent that different approaches to obtaining the reliability coefficient pro
duce somewhat different results, the appropriate coefficient for gauging the stability of 
traits and in making statistical corrections depends upon the measurement method to 
be employed. If. for example. the measurement method requires raters, the reliability 
coefficient should take measurement error due to raters into account (see the section ti
tled "Generalizability Theory" below for some specific procedures). The lowest relia
bility estimate obtained by a sensible approach is preferred in order to be on the con
servative side when in doubt. One can then say that the reliability is no smaller than 
"so much," at the very least. Fortunately, most well-standardized tests usually provide 
similar reliability estimates, allowing these differences to be ignored. 

The major use of reliability coefficients is to communicate the repeatability of the 
results. The reliability coefficient is one index of the effectiveness of an instrument, as 
at least some reliability is necessary for any type of validity. The reliability coefficient 
has several uses which are discussed in the following sections. 

Corrections for Attenuation 

One of the most important uses of the reliability coefficient is to estimate the extent to 
which obtained correlations between variables are attenuated by measurement error. 
Previously, Eq. 6-36 was derived as the correction for attenuation: 
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The rl2 is the ex.pected cOlTelation between two perfectly reliable variables. If the cor
rection is to be made for only one of the two variables, only that variable's reliability 
coefficient appears under the radical in the denominator. 

There is some controversy about when the correction for attenuation should be ap
plied. One could argue that it fools one into believing that a better correlation has been 
found than was actually obtained. Another justifiable criticism of many uses of the 
correction for attenuation is that it sometimes provides a very poor estimate of the cor
relation really obtained between variables when they are actually made more reliable. 
This can occur if the reliability estimate is poor; e.g., the sample is small. That poor 
estimates are often obtained is illustrated by the fact that corrected correlations some
times are greater than 1.oo! However, there are some appropriate uses of the correc
tion for attenuation given good reliability estimates. One such use is in personality re
search to estimate the correlation between two traits from imperfect indicators of these 
traits. Determining the correlation between traits is typically essential in this area of 
research, but if the relevant measures are only modestly reliable, the observed correla
tion will underestimate the correlations among the traits. 

Another important but often misleading use of the correction for attenuation is in 
applied predictive validity settings. If, as often happens, the criterion is unreliable, a 
correction on tbe criterion side may be misleading since you mayor may not be able 
to improve its reliability. Sometimes improvement is possible, as by using multiple 
raters of performance instead of one. However, this is often not the case, as when an 
employee is known well by only one supervisor. A correction on the predictor side is 
justified only if one could actually improve its reliability, as by adding new items. By 
definition, a double correction is appropriate only when changes are actually contem-
plated in both the predictor and criterion. . 

Since perfect reliability is only a handy fiction, results from applying the foregoing 
formula for the correction for attenuation are always hypotheticaL It is more important 
to estimate the increase in the correlation between two variables when the reliability is 
increased to a particular amount, which may be done using Eq. 7-1: 

(7-t) 

where r~ = estimated correlation between variables x and y if their reliabilities are 
changed 

r.~t = changed reliability for variable x 
r;y = changed reliabllity for variable y 
r.~t = obtained reliability for variable x 
ryy = obtained reliability for variable y 

Equation 7-1 can be illustrated where two tests correlate .30 and each test has a reli-
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ability of .60. If the reliabiHty of each test is increased to .90, the eJ(pected correlation 
between the more reliable tests will be 

I ~ 
r xy =.3 V (.6)(.6) =.45 

Although r.a = ryy and r~ = I,y in the example, Eq. 7- L works equally well if all four 
reliability coefficients differ from one another, if both reliabilities are lowered (as 
when one contemplates shortening a test), or if the reliability of one test is increased 
and the reliability of the other is decreased. It is particularly useful to employ Eq. 7-2 
in conjunction with Eq. 6-18, the Spearman-Brown prophecy fonnula. For example, 
use the prophecy fomuia to estimate the effects of tripling a test's length upon its reli
ability and then use this new reliability to estimate the new validity. 

[f only one of the two reliabilities is to be changed, Eq. 7-1 simplifies to: 

(7-2) 

This version of the fonnula is useful in estimating how much a predictor's validity 
will change if its reliability is changed. 

It should be evident from inspecting Eqs. 7-1 and 7-2 that corrected correlations are 
seldom dramatically different from the observed correlations. Thus, a dramatic in
crease in each test's reliability from .60 to .90 in the above example only increased 
their correlation from .30 to .45. This increase may well be important, but it is much 
less than intuition suggests. Furthermore, if only one variable's reliability was in
creased to .80, the original correlation of .30 would only increase to .35. 

It is common to hear that some low correlations would probably have been much 
higher if the measures were more reliable. In one case, the average correlation was 
about .15, and the average reliability was about .60. Even if the average reliability of 
the tests were increased to .90, the average correlation could be less than .25. The in
vestigator in this case was probably thinking about average correlations of .40 or .50, 
but these could not possibly occur. Two measures usually correlate poorly because 
they measure different things, not because they are plagued by measurement error. 

Confidence Intervals 

The reliability coefficient may also be used to establish confidence intervals for ob
tained scores. Equation 6-34 showed that the standard error of measurement for vari
able x is 

The standard error of measurement is the estimated standard deviation of obtained 
scores if any individual is given a large number of tests from a domain. The concept 
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will be expanded upon later in this chapter to take different SOurces of eITor inca 
account. 

The O"meas is useful in establishing confidence intervals for scores to be expected on 
many alternative forms of a test. Chapter 6 noted, however, that one should establish 
such confidence intervals symmetrically about the person's true score and not the actu
al score. If, for example, an individual has an IQ of 130 on a particular test and the 
O'meQ is 5, it is incorrect to say that the 95 percent confidence interval for that person 
extends from 120 to 140 (130 - 20'meas to 130 + 20'm" ... J Even though the practice in 
most applied testing has been to center confidence intervals about obtained scores, this 
is incorrect because obtained scores are biased, high scores tending to be biased up
ward and low scores downward (see Table 4-2 and Chapter 6). A related point is that 
this bias is due to unreliability affects averages of extreme groups: The means of ex
treme groups will always be less disparate on a retest than they were on the original 
measure because of regression toward the mean. 

Before establishing confidence intervals, one must obtain estimates of unbiased 
scores. Unbiased scores are the average scores people would obtain if they were ad
ministered all possible tests with a constant number of items from a domain. These 
true scores are estimated as follows: 

t'=r,aX (7-3) 

The individual in the previous example with an IQ of 130 has a deviation score x of 
30. If the reliability was .90, the estimated true score t' would be 27. in deviation-score 
units. Adding back the mean IQ of 100 gives an estimated uue score of 127 in IQ 
units. This approach allows One to establish confidence intervals for deviation Scores 
or their raw-score equivalents. The correct procedure is to set the 95 percent confi
dence interval as extending from two standard errors of measurement below 127 to 
two standard errors above 127. If O'meas is 5, the interval then would extend from 117 
to 137. If a person were administered a large number of alternative forms of the test, 
95 percent of the obtained scores would be expected to fall in that interval; the average 
of the obtained scores would be 127 and not 130. A person with an IQ of 70 on that 
same test would have a 95 percent confidence interval extending from 63 to 83. 

Equation 6-34 dealt with describing the probable range of observed scores for a 
fixed true score. Using the notation of Chapter 4, it would be appropriate to symbolize 
the standard error of measurement (O'mcas) as 0' . .., because the intent is to predict SCoreS 
on an observed variable (x) from a given true score (t). However, it is at least as possi
ble that you may be interested in describing the probable range of true scores consis
tent with a given observed score. This requires Eq. 7-4 (Dudek, 1979), which provides 
the standard error of measurement in predicting true scores from observed scores: 

(7-4) 

The difference between Eq. 6-34 and 7-4 was noted as far back as Guilford (1936) 
who referred to the resulting quantities as the "standard error of a raw score" and the 
"standard error of a true score," respectively. Lord and Novick (1968) used the terms 
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"standard error of measurement" and "standard error of estimation." Note that there is 
less error in estimating true scores from an observed score than the converse by a fac
tor of the square root of /'.u (i.e., r.rr), the reliability index.. Regardless of which is used, 
the confidence interval should be centered around the estimated (regressed) observed 
score (Eq. 7-3). 

Yet a third possibility discussed by Dudek (1979) i:; to estimate the probable range 
of scores on one form of a test (y) given a score on an alternative form (x). This in
volves estimating fallible scores from a given fallible score and leads to 

O'y .. , ::: 0';"; I - r'l.t( 

(It is assumed that ryy::: 1'." since rhese are alternative forms). 
Note that the results of using Eq. 7-5 will be numerically larger than the result of 

using Eq. 6-34 and therefore Eq. 7-4, but also keep in mind that different quantities are 
being estimated in the three cases. Lord and Novick (1968) term the result of Eq. 7-5 
the "standard error of prediction." 

One rarely estimates true scores in the applied assessment of static constructs ex
cept to center a confidence interval. The asymmetric confidence intervals relative to 
obtained scores are useful as a reminder that any obtained score is biased "outward" 
relative to the mean. In fact. estimated true scores correlate perfectly with obtained 
scores and have little practical utillty in this context It is easier to interpret the indi
vidual's obtained score. Most commercially distributed test manuals do an extremely 
poor job of reporting estimated true scores and confidence intervals for expected ob
tained scores on alternative forms. For example. intervals are often erroneously cen
tered about obtained scores rather than estimated true scores. Often, the topic is not 
even discussed. 

Unlike estimated true scores, confidence intervals are important to keep in mind 
when making decisions about individuals. [t is perhaps sobering that obtained z scores 
for an individual on a test whose value of (l is .9, generally a more rhan acceptable 
value, win have an O'm .. n.~ of approximately .3. This value is almost one-third the size of 
the distribution of scores in general and illustrates the fallibility of individual scores. 
This snould not deter accepting the rank ordering of individuals. since this is the best 
bet of the true rank ordering. 

There seldom is a need to estimate true scores or establish confidence intervals 
when comparing groups. The major concerns in such research are with how much the 
measurement error towers correlations and how much it contributes to the error com
ponents in statistical treatments. However. the estimated true scores may be used to 
measure cbange over time, as noted in the last chapter. The main problem with using 
Eq. 7-3 to estimate true baseline and retest scores is that it does not take the possible 
correlation of errors into account. More complex methods of regression (e.g., general
ized least squares) can overcome this problem. For a further discussion of the mea
surement of change, see Cronbach and Furby (1970), Nesselroade. Stigler, and Baltes 
(1980), Labouvie (982), and Rogosa, Brandt, and Zlmowski (1982). Donaldson 
(1983) discusses this problem in application co factor analysis. 
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Effect of Dispersion on Reliability 

The size of the reliability coefficient is directly related to the standard deviation of ob
tained scores for any sample of subjects since the reliability coefficient is a correlation 
coefficient. Equation 7-6 is a variant of Eq. 6-12 with slightly changed noto.tion, re
flecting the fact that total variance equals true score variance plus the variance of the 
errors of measurement: 

2 
(j mIllIS 

r.cr:= 1-~ .. (7-6) 

The variance of the errors of measurement is approximately independent of the 
standard deviation of obtained scores. In other words, the standard error of measure
ment is considered to be a fixed characteristic of any measure, regardless of the sample 
of subjects under investigation. This is a relatively safe assumption unless one deals 
with persons at the extremes of the distribution, e.g., the upper and lower 10 percent of 
individuals. It should be clear that the reliability coefficient will be larger in more vari
able samples. 

For example, Bernstein and Garbin (1985) obtainec;l scores on scale 2 of the Min
nesota Multiphasic Personality Inventory, a depression measure. The scores were ob
tained from both job applicants and patients undergoing psychotherapy. The job appli
cants consistently "put their best foot forward" and did not' admit to depressi ve 
symptoms. In contrast, some therapy patientS had problems with depression, but others 
did not, and so that this group was quite varied. The respective standard deviations 
were 3.3 and 5.7. Consequently the coefficients (l for the two groups were .31 and .63. 
At best, the former value only allows one to make statements about extreme sCOres 
(which is all it was used for). More detailed statements about level are possible in the 
therapy group. 

Equation 7-6 estimates how much the reliability changes when the variance of ob
tained scores changes. If the error variance for one sample was 2.0 and the total vari
ance was 8.0, the reliability would be .75. If a new sample had a total variance of 10.0, 
the error variance should remain at 2.0. Consequently, the reliability would be .80. 
After the standard error of measurement is found for one sample, it is thus easy to esti
mate what the reliability would be in another sample with a different standard devia
tion of scores. The accuracy of this estimate depends on the assumption of equal stan
dard errors of measurement. This assumption is usually, but not necessarily, safe. 

Even though the reliability varies with the dispersion of scores, this does not alter 
the meaning of.the reliability coefficient in any particular sample of people. The relia
bility coefficient is the ratio of true~score variance to obtained-score variance. If that 
ratio is small, measurement error will attenuate correlations with other variables. If the 
total group of subjects in a study has a standard deviation of scores which is not much 
larger than the standard error of measurement, it is hopeless to investigate the variable 
in correlational studies. One situation where this is lik~ly to happen is in studies of 
creativity. Subjects in these studies typically have an 1Q of at least 120. The standard 
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deviation of their fQs will not be much larger than the standard error of measurement, 
which severely limits correlution of IQ with the creativity measure. 

In principle, this can be paradoxically welcome in experiments because it causes 
the observed variability of criterion scores to reflect measurement error rather than 
systematic individual differences in response co the treatment effects. This is most 
likely when subjects were homogeneous with respect to the depend~nt variable before 
the experiment was conducted. However, this is a very rare circumstance in practice. 
One usually finds substantial, reliable variance in individual differences relating to the 
dependem variable both before and after the experiment. 

Keep in mind therefore that a reliability coefficient has numerical meaning only in 
reference to a specified population. The standard error of measurement (Eq. 6-34) 
should be relatively stable across populations which differ in variability because the 
resulting changes in the reliability coefficient and standard deviation are partially off
setting, at least in principle. Regardless, one can be misled (or misleading) by estimat
ing coefficient IX in one population and then assuming it will have the same value in a 
popUlation whose variance is different. 

MAKING MEASURES RELIABLE 

Test Length 

Of course, doing everything feasible to prevent measurement error from occurring is 
far better than assessing its effects after it has occurred. One reduces measurement 
error by (1) writing items clearly, (2) making test instructions easily understood, (3) 
adhering closely to the prescribed conditions for administering an instrument, (4) mak
ing subjective scoring rules as explicit as possible, and (5) training raters to do their 
jobs. Rules for scoring better individual intelligence tests are so ex.plicit and clinicians 
usually so well trained that relatively little measurement error is present, even though 
clinicians can be a source of measurement error. 

The ideal always is to remove subjectivity in scoring completely, which is generally 
impossible. For example, students of discrimination learning have long been interested 
in animals' "observing responses"-their tendency to look back and forth before re
sponding. Conceivably, the number of such observing responses could be objectively 
recorded with a complex. set of instruments, but if different raters, perhaps using 
videotapes, agree reasonably well in their scoring of observing responses, some sub-
jectivity in scoring may be preferable to the expense and awkwardness of employing 
objective instruments, especially since they may tap the trait less well. Of course, there 
is a tradeoff with the additional goal of having measures that are unaffected by errors 
of human judgment. 

A major way to make tests more reliable is to make them longer. For this and numer
ous other reasons in classical psychometrics, the maxim holds that a long test is a good 
test, other things being equal. This is true of both number of items in the usual sense 
and raters used in subjective scoring. If the reliability is known for a test with a given 
number of items, the Spearman-Brown prophecy formula can be used to estimate how 
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much the reliability would increase if the number of items were increased by any 
factor k: 

krll 
rklc=-----

1 + (k-l)rll 
(6-18) 

If. for example, the reliability of a 20-item test is .70 and 40 items from the same 
domain are added to the test (making the final test three times as long as the original), 
the estimated reliability of the 60-item test will be 

(3)(.7) 
rkJc = -1-+-(3---1-)(-.7-) = .88 

The only assumption made in employing Eq. 6-18 is that the average correlation 
among the 20 items in the shorter test is the same as the average correlation among the 
60 items in the augmented test. The assumption is violated if old items and new items 
differ systematically in content, as when they are drawn from different domains, or in 
reliability, as when the average correlation in the CWo sets differs. Either or both viola
tions may occur when one selects the best items from the initial form. Under these 
conditions. the new reliability may be overestimated. Otherwise, Eq. 6-18 generally 
leads to fairly accurate predictions. This is particularly true when the shorter test con
tains at least 20 items. As noted in Eq. 6-13, the precision of the reliabi.lity estimate is 
directly related to the number of test items. 

Equation 6-18 also can be used to estimate the effects of shortening a test on relia
bility. In this case k equals the number of items on the shorter test divided by the num
ber of items on the longer test, rkJc is the estimated reliability of the shortened test, and 
rll is the reliability of the longer test. In the previous ex.ample, one could work back
ward from the reliability of .88 for the 60-item test and estimate the reliability of a 20-
item test. By placing .88 as rll in Eq. 6-18 and making k :: V:!, one recovers the origi
nal reliability of .70 for the 20-item test. Regardless of whether a test is lengthened or 
shortened, the precision of the estimate obtained from Eq. 6-18 depends mainly on the 
number of items on the shorter test. One would not expect a very precise reliability es
timate using a 5-item test to estimate a 40-item test, or vice versa. 

Equation 6-18 show~ that reliability is a direct function of the number of test items 
and only this number for a given initial reliability. One might wonder how it could be 
accurate when there are other sources of measurement error in tests, e.g., temporal in
stability. As argued previously, the domain-sampling model considers many such 
sources of error. Coefficient a is sensitive to sources of measurement error that are 
present within the testing session as well as in the sampling of items. Alternative·fonn 
reliabilities can be made sensitive to all sources of error, including subjectivity of scor
ing and variations in abilities and personality characteristics over short periods of time. 

If coefficient a is used in Eq. 6-18, the estimated reliability for a longer or shorter 
test takes the sources of error within the session and the sampling of content into ac
count. If the alternative-forms correlation is used instead, the estimate also takes tem
poral instability and any other factors that may vary systematically between the two 
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testings into account, e.g., the effects of using different raters in the two tests. This 
provides a good estimate of the alternative-form reliability for a longer or shorter test 
over the same period of time and with the same factors systematically varied. 

Equation 6-18 also shows that the reliability necessarily approaches 1.0 as test 
length increases as long as the average correlation among items in a domain is posi
tive. lfthe numerator and denominator ofEq. 6-18 are divided by k and k is allowed to 
approach infinity, 'Irk approaches 1.0. A positive average correlation means that the 
correlation between any two item samples (rll) will also be positive. This might seem 
to be an easy way to obtain highly reliable tests, but the estimated number of required 
items may be prohibitively high when the average correlation is very small. 

Equation 6-18 can also be modified to estimate the number of items required to ob
tain a particular reliability: 

(7-7) 

where 'Ide = desired reliability 

'11 = reliability of existing test 

k = number of times test wouid have to be lengthened to obtain a reliability of'a 

The estimated lengthening of a 20-item test with a reliability of .50 required to ob
tain a reliability of .80 is 

(.8)(1 - .j) .4 
k= ::::-=4 

(.5)(1 - .8) .1 

Thus 80 items are required to achieve an estimated reliability of .80. A test of that 
length may be feasible, but see what happens when a 40-item test has a reliability of 
only .20 and a reliability of .80 is desired: 

(.8)(1 - .2) .64 
k = (.2)(1 _ .8) ::: .04 = 16 

A total of 640 items would be required to reach a reliability of .80. A 640-item test 
would almost always be impractical unless the items could be constructed very easily 
and administered very quickly. One can therefore see that if the average correlation 
among items in a domain is very low (e.g., only .05), the correlations between samples 
of items win be small and the number of items needed to achieve acceptable reliability 
will be prohibitively large. 

Standards of Reliability 

A satisfactory level of reliability depends on how a measure is being used. In the early 
stages of predictive or construct validation research, time and energy can be saved 
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using instruments that have only modest reliability, e.g., .70. If significant correlations 
are found, correc[ions for attenuation will estimate how much the correlmions will in
crease when reliabilities of measures are increased. If these corrected values look 
promising, it will be worth the time and effort to increase the number of items and re
duce measurement error in other ways. It can be argued that increasing reliabilities 
much beyond .80 in basic research is often wasteful of time and money. Measurement 
error attenuates correlations very little at that level. Strenuous and unnecessary efforts 
at standardization in addition to increasing the number of items might be required to 
obtain a reliability of, say, .90. 

In contrast to the standards used to compare groups, a reliability of .80 may not be 
nearly high enough in making decisions about individuals. Group research is often 
concerned with the size of correlations and with mean differences among experimental 
treatments, for which a reliability of .80 is adequate. However, a great deal hinges on 
the exact test scores when decisions are made about individuals. If, for example, chil
dren with lQs below 70 are to be placed in special classes, it may make a great deal of 
difference whether a child has an IQ of 65 or 7S on a particular test. When selection 
standards are quite rigorous, decisions depend on very small score differences, and so 
it is difficult to accept any measurement error. We have noted that the standard error of 
measurement is almost one-third as large as the overall standard deviation of test 
scores even when the reliability is .90. If important decisions are made with respect to 
specific test scores, a reliability of .90 is the bare minimum, and a reliability of .95 
should be considered the desirable standard. However, never switch to a less valid 
measure simply because it is more reliable. 

Limitations on the Reliability Coefficient's Utility 

As noted in various points of this book. reliability estimates are usually based upon 
observed correlations and are thus affected by the similarities of the item distributions 
(p values for dichotomously scored tests.) Assume, for example. that a test consists of 
a series of symptom descriptions. Most of the symptoms are rare, perhaps being en
dorsed 5 percent of the time, but One exceptional symptom occurs SO percent of the 
time. Eliminating this exceptional item might actually improve coefficient CG. The 
same situation holds for abilities items (Loevinger, 1954). Should such items be elimi
nated? 

From a strict domain-sampling framework. one would be strongly tempted to do so. 
After all, the domain-sampling model assumes equality of p values within sampling 
error. However, suppose this disparity arose from the way the question was worded. It 
might be advantageous to include this item since it would help discriminate at the low 
end of the scale. The converse holds wben an item has a disproportiqnately low p 
value (see the section titled "Equidiscrirninating Tests" in the next chapter). 

One should be careful about thinking that an item is unrelated to a trait. Its low ob
served correlation may reflect statistical differences in its distribution relative to other 
items rather than differences in its content. Item selection based only upon the correla
tions between items and the total score can lead one to discard an item spuriously, es
pecially if the process is stepwise like SPSS RELIABILITY. Such procedures do not 
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take these statistical effects into account. Tbe problem can be minimized considerably 
by looking at the item's distributional properties (e.g., i[S p value) along with its corre. 
lation with eotal test score (discussed in more detail in the next chapter). If your sam
ple is very large, biserial r, which attempts to control for the items's distributional 
properties, might be examined, but its large sampling error offsets its utility in samples 
of practical size. Finding useful items to construct a good scale is too difficult to allow 
these spurious influences to cause measures to be discarded prematurely. 

Whereas heterogeneneities in item distributions may cause one to underestimate the 
worth of an item, a somewhat different problem may cause the sample estimate of Il to 
be too high. As we have noted with regard to the multiple correlation (see Chapter 5), 
sampUng error frequently causes statistics based upon sample correlations to be biased 
upward. In principle, CJ. is a lower bound on the population reliability (the ratio of true 
variance to total variance). If it is based upon population correLations or covariances, it 
will equal the reliability when the items all relate linearly to the true scores and have 
equal variance (Lord & Novick, 1968. p. 88). However, a test with items that intercor
relate zero within the population, and therefore have zero population reliability, will 
probably produce a nonzero value of CI.. Woodward and Bentler (1978) provide an esti
mate of the population lower bound for CJ. that compensates for this blas. 

(7-8) 

where ex = sample value of coefficient (X; 

Fa = value obtained from a table of the F distribution at a desired level of signifi
cance, e.g., .0 L with N - 1 and (N - l)(k - 1) degrees of freedom 

N = number of subjects 
k = number of measures 

a" = estimated true lower limit of the test's reliability 

This correction will have minimal impact upon tests of at least moderate reliability 
and length if CJ. is based upon 200 or more subjects. 

RELIABILITY OF LINEAR COMBINATIONS 

So far, the discussion of reliability has been most concerned with the reliability of in
dividual traits such as spelling ability, as manifested in the average correlation among 
items. Frequently, scale scores are linearly combined into composite measures, and it 
is usually desirable to evaluate the reliability of the composite. This is a separate issue 
from the reliability of the individual measures upon which it is based. One frequently 
used linear combination is the sum of the verbal and quantitative scores on the Gradu
ate Record Examination. Simple Linear combination based upon raw scores can be de
picted as 

(5-1a) 

(Capital letters are used since raw scores are typically combined). 
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Similar linear combinations are employed very frequently in basic research. One 
example might be to derive a measure of social participation (1") as a linear combIna
tion of traits such as introversion-e:<troversion, social presence, and social anxiety (XI, 
Xz, and X3). The issue is to estimate the reliability of Y from a knowledge of the relia
bilities of the X variables and their covariances. 

One may be tempted to use Eq. 6-26 for coefficient CJ. to estimate the reliability of 
Y. The result would be quite misleading unless the X variables were all measures of 
the same trait, e.g., altemative forms of a test of spelling ability. The reliability of sam
ples of items from the same domain depends entirely on the average correlation among 
the samples, but this is not true of samples of items from different domains. 

Suppose that each test had a respectable reliability, but all three were mutually un
correlated. Coefficient CJ. would be zero, but it would be wrong to assume that the lin
ear combination has a reliability of zero. The methods which will be developed extend 
the domain-sampling model to correlations among items from different domains of 
content and the reliability of linear combinations of these domains. The formulas to be 
developed for the reliability of linear combinations are analogous to those developed 
from the domain-sampling model and are really extensions of those for the one
domain case. 

One proper approach to detenrrlning the reliability of a linear combination is to cor
relate alternative forms of the linear combinations. Thus alternative versions of XI> X2, 

and X'j, etc. (assuming they exist) could be administered on two different occas~ons. 
The correlation between total scores on the two occasions defines the reliability of the 
linear combination, assuming the traits are stable over the chosen time interval. 

If alternative fonns cannot be administered, the alternative-fonn reliability can be 
estimated as follows. The basic definition of the reliability of any variable is the ratio 
of true-score variance to total variance, e.g., Eq. 6-9. Thus the reliability of the linear 
combination is 

0 1 
Iy 

ryy=-., 
Oy 

where o7r == variance of true scores for linear combination 

o~= variance of obtained scores for linear combination 

(7-9) 

In the example of a simple sum of three variables, the denominator was the vari
ance of that sum, which equals E 1" the sum of aU elements in the covariance matrix for 
the three variables. The numerator can be expressed as 

By definition the true-score variance of Y is the variance of the sum of the true 
scores for the X variables, th t2, and t3' Chapter 5 noted how the variance of a linear 
combination could be obtained by placing the variables in the sum on the sides of a 
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square [uble, mUltiplying corresponding elements, and dividing each product by the 
number of people being srudied (N), This results in a covariance matrk'( of true scores 
for the three variables. Eacn off-diagonal element is the covariance between two sets 
of true scores. Chapter 6 showed that the covariance of true scores for any two vari
ables is identical to the covariance of obtained scores for these two variabl.es. Thus the 
off-diagonal elements in the covariance matrix for true scores are identical to the off-
diagonal elements in the covariance matrix for obtained scores. . 

The only difference between the two matrices is in the diagonal elements. Each di
agonal element in the covariance matrix of obtained scores is a variance of obtained 
scores. Each diagonal element in the covariance matrix of true scores is the sum of the 
squares of true scores for that variable divided by N, Le., the variance of true scores 
for that variable. Since the reliability of any variable in the linear combination equals 
the true-score yariance divided by the obtained variance, the true-score variance 
equals the obtained score variance multiplied by the reliability. Thus the covariance 
matrix of true scores for the sum of three variables is 

f1 fa 13 

f, 
, 

'11 (ji all a l3 , 
tJ all rnOj an , 
13 (j13 a'l:] rl3aj 

Since the covariance matrix of true scores in the numerator of the equation diff~rs 
from the covariance matrix in the denominator only in tenns of diagonal elements, the 
former can be el<pressed in terms of the latter, as follows. To obtain the sum of the ele
ments in the matrix of true scores, first subtract the sum of variances (the sum of diag~ 
anal elements) from the covariance matrix for obtained scores. Add to the remainder 
the sum of producIS of reliability coefficients and variances (the sum of diagonal ele
ments in the covariance matrix for true scores). The reliability of the sum of variables 
will then be 

I.cr~ - tr'IO'~ = 1- • I I 

Cy 
(7-11) 

Since C is identical to crt, Eq. 7-11 can be rewritten as 

2 ., Lcr 1- I:rjjcrj 
rry= 1 - ~ cry 

This version of the formula requires only the variance of the linear combination 
(1"), the variance of the individual variables in the linear combination, and estimates 
of each variable's reliability. For example, let (1) the variance of the sum of the 
three variables be t2, (2) the individual variances be 1, 2, and 3, respectively, and 
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(3) the individual reliabilities be 0.60, 0.70, and 0.80, respectively. The reliability 
of the sum is 

ryy = 1 _ (1 + 2 + 3) - [(.6)(1) + (.7)(2) + (.8)(3)] 

12 

= 1 _ (1 + 2 + 3) - (.6 + 1.4 + 2.4) 

12 

= 1- 6 -4.4 
12 

= .87 

If, as is often the case, variables were standardized before being summed, the co· 
variance of the sum of obtained scores would equal the sum of the elements in the cor
relation matrix for the variables being summed (R y). The diagonal elements in the ma· 
true would be Is, and the off·diagonal elements would be cOlTelations between 
variables in the sum. The covariance matrix for true scores would have off-diagonal 
elements equal to those in the correlation matrix for obtained scores, but the diagonal 
elements would be reliability coefficients rather than 15. Equations 7-13 to 7-15 apply 
to the special case of standard scores: 

_ Ry-k+1:.rll ryy- _ 
Ry 

-1 k-1:.rjj 
- - Ry 

= 1- k - 1:.r/l 

(j~ 

(7-13) 

(7-14) 

(7-15) 

The z·score versions of the formula for the reliability of a sum can be illustrated 
when the three variables being summed each have reliabilities of .60 and each pair 
correlates .50. Then k = 3, and the sum of reliabilities equals 1.8. The variance of y 
(lowercase is used because a linear combination of z scores has a mean of .0 even 
though it rarely has a standard deviation of 1) equals 3 + (6)(.50) = 6 (there being six 
off-diagonal elements in the correlation matrix), and so the result is 

3 -1.8 
ryy= 1- =.8 

6 .... 

Going back to Eq. 7-15 one can see that in the special case where only two sets of 
standard scores are summed, the following special formula can be used: 

2 - ru-rn 
ryy= 1- ? 

Oy 
(7-16) 
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The computations are as follows if each variable being summed has a reliability of 
.60 and their correlation is .50: 

? - 6- 6 -1 - . . - 73 ryy- - -. 
J 

The variance of y equals the sum of the elements in the two-variable correlation 
matrix, which equals 2.0 plus twice their correlation. This makes the denominator of 
the fraction on the right equal 3.0. 

It has been thus far assumed that scores are being added, but the logic of Eq. 7-l2 
applies equally well when some variables are subtracted (bave negative weights), as 
with the following linear combination: 

The fact that X3 is subtracted does not affect the logic. There are still k (three) vari
ables, and the reliabilities of the three variables are not affected. The only term affect
ed is the denominator (O'~J-the variance of· the linear combination which is obtain
able by the methods of Chapter 5. Furthermore, Eq. 7-15 could be applied if the three 
vanables were standardized. 

If variable X3 correlates positively with the other two variables, placing a minus 
sign before it in the linear combination reverses the signs of the correlations of X3 with 
the other two variables. It would also reduce cr~ compared to what it would have been 
had it been added rather than subtracted. Conversely, if X3 correlated negatively with 
Xl and Xl, the minus sign in the linear combination would increase O'~ over what it 
would have been had it been added. The larger the variance of the linear combination, 
the greater the reliability. Consequently, the pattern of positive and negative signs in 
the linear combination directly affects the reliability of the combination. 

The above method can be extended to weighted sums. The following is a weighted 
sum of standardized variables: 

The variance of y equals the sum of all elements in the weighted correlation matrix. 
As noted in Chapter 5, the diagonal elements contain squared weights, and each off-di
agonal element contains the correlation between two variables multiplied by the prod
ucts of the weights of the two variables. The sum of elements in this matrix that pro
vides the variance of the observed weighted sums is divided into the sum of elements 
in the matrix that provides the variance of the true weighted sums. The off-diagonal 
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elements are the same in the two matrices, but the diagonal elements in the latter are 
squared weights multiplied by reliability coefficients. Equation 7-15 can then be modi
fied to obtain the following formula for the reliability of a weighted sum of standard
ized variables: 

where bj = weight for variable Zj 

'Ii = reliability of variable Zj 

(7-17) 

To apply Eq. 7-17, one first obtains the variance of the sum of weighted standard 
scores (Y), which is the denominator of the right-hand term. in the equation. The sum of 
squared weights is obtained for the numerator. The square of each weight is multiplied 
by the corresponding reliability, these products are summed, and the sum is subtracted 
from the Sum of squared weights. The remaining algebra is simple. 

When variables are expressed as deviation scores rather than as standard scores, Eq. 
7-17 can be modified as follows to obtain the reliability of the weighted sum: 

(7-18) 

Equations 7·17 and 7-18 apply equally well when some of the weighted variables 
have minus signs in the linear combination. 

Principles Concerning the Reliability of LInear Combinations 

Linear combinations of variables are frequently encountered in practice. We have al-
. ready shown that a regression equation is a weighted linear combination of variables, 

weighted to correlate as highly as possible with a criterion variable. Chapters 11 
through 13 will show that factors are also linear combinations of variables. Most other 
methods of multivariate analysis [e.g., discriminant analysis (Chapter 14)], involve 
linear combinations. Consequently the reliability of a linear combination of variables 
is an omnipresent issue in psychological measurement. 

Although we previously said that the reliability of a sum cannot be estimated by co
efficient !X (Eq. 6-26), a close look at the basic formula for the reliability of a linear 
combination (Eq. 7-12) will show that the two formulas are very similar. The fonner 
contains a multiplier in which the number of test items is divided by the number of test 
items minus 1, but otherwise the two equations look much alike. 

The main difference is that the sum of reliabilities multiplied by variances is sub
tracted from the sum of the variances in the numerator of the ratio to determine the re
liability of a linear combination. Thus the reliabilities of the variables tend to increase 
the reliability of a linear combination over that predicted from coefficient !X. As men
tioned previously, the similarity of these two equations is no accident: The formula for 
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the reliability of a linear combination is an extension of the basic domain-sampling 
model to a multiple domain-sampling model. This is further evidence of the impor
tance and e;(treme generality of the domain-sampling principle modeL 

Coefficient ex is necessarily zero when all items are uncorrelated. A look at the stan
dard-score version of the reliability of a sum of variables (Eq. 7-l2) will show what 
happens when the correlations among variables are all zero. In that case R = k, the 
number of variables, reducing Eq. 7-12 to 

Er/i 
ry=-

k 
(7-l9) 

Equation 7-19 leads to the important deduction that the reliability of the sum is the 
average reliability of the variables when the variables are independent of one another. 
Thus if three standardized and uncorrelated variables had reliabilities of .60, .70, and 
.80, the reliability of their sum would equal .70. This would hold even if some of the 
variables were negatively weighted. Obviously, Eq. 7-20 also applies when the aver
age correlation between measures is zero. 

Another look at Eq. 7-15 shows what happens when the average correlation is not 
zero. The average correlation may be negative, which would occur if one computed 
the weighted difference between cwo variables. There is, however, a severe limit to the 
possible average negative correlation obtainable among the variables of a linear com
bination-two variables that each correlate negatively with a third probably correlate 

. positively with each other. 
One can readily determine this limit. Since the sum of all elements in a correlation 

matrix (including the diagonal elements) is the variance of their sum in standardized 
fonn and since a variance cannot be negative, a negative sum of off-diagonal correla
tions cannot be greater than the sum of diagonal values (k). By expressing tbe denomi
nator of the ratio in Eq. 7-13 as k plus the sum of off-diagonal correlations, one can 
see that the reliability approaches zero as the sum of off-diagonal correlations ap
proaches minus the sum of rellabilities. 

The higher the average correlation (assuming it is positive, as it usually is), the 
higher the reliability of the linear combination. To understand this rule, distinguish be
tween correlations among variables before and after they are placed in linear combina
tions. This distinction is important because the correlation between two variables 
placed in a linear combination reverses sign if they are given different signs in the lin
ear combination. In the simplest case, if two variables are positively correlated, the 
correlation will be negative for their difference, Le., in the correlation matrix corre
sponding to the variance of the combination. 

So far aU the discussion of the reliability of linear combinations has concerned cor
relations after linear combinations are formed. To prevent confusion in that regard, all 
formulas were developed so that sums or averages of correlations did not explicitly ap
pear. Instead, the correlations among variables in the linear combination were '·hid
den" in the variance of the linear combination. Of course, one would add or subtract 
variables depending on their signs in the combination when actually computing the 
variance of a linear combination. When that is done, the correct value is obtained for 
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the variance of y. The remaining teons in the computing formLilas are reliabilities 
when variables are standardized or both reliabilities and variances when they are devi~ 
ntion scores. Since reliabilities and variances are always positive, regardless of the 
signs variables are given, there is no way to become confused about the proper use of 
the formulas. 

There is, however, consi.derable value in looking at correlations among variables 
before they are placed in linear combinations to show how much reliability may be ex
pected from a particular linear combination. Here is nn e:meme case. If two Variables 
correlate .60 and each has a reliability of .60, the reliability of their difference will be 
zero from Eq. 7-16. Obviously such a linear combination is worthless. Less extreme 
cases occur frequently in practice. If the two reliabilities are each .80 and the correla
tion between the two variables is .60, the reliability of the difference between the two 
variables wjll be only .50. III both cases the same reliability would have resulted if the 
correlations had been negative and the sums of the two variables computed. 

Since the reliability of a sum increases with the size of the average correlation 
among variables, any set of signs in a linear combination that ma;timizes the posicive 
sum of correlations will maximize the reliability. The problem is illustrated in the fol
lowing correlation matrix for six variables: 

X1 X2 

X1 1.0 + 
X2 + 1.0 
X3 + + 
x~ 

Xs 

X5 

'X3 

+ 
+ 

1.0 
1.0 
+ 
+ 

X5 

+ 
1.0 
+ 

+ 
+ 

1.0 

The matrix contains correlations among variables before tbey are placed in a linear 
combination. Variables x .. X2. and X3 form a set whose members all correlate positive
ly, and the same is true for variables ..t'4. X~h and X6' All correlations between members 
of the two sets are negative. If all variables were given positive signs, there would be 
more negative correlations than positive correlations. Consequently the sum of corre~ 
lations might be near zero or even negative. 

In this case, one could obtain the maximum reliability for any possible linear com
bination by giving negative signs to all three variables in either set (but not both). If 
one chose to give negative signs to variables '\'4. x" and X6' all correlations among the 
three would remain positive and would not change in size. They would remain posi
tive because all three variables would still have the same sign. The important differ
ence would be that the signs of all correlations between the two sets of variables. and 
therefore all correlations in the matrix, would become positive. This would maximize 
the variance of the linear combination and the reliability of the linear combination. 

The problem is seldom as neat as this example suggests, however. An inspection of 
correlations among variables before they are placed in a linear combination often indi
cates that a planned linear combination of variables is not very reliable and that a 
different linear combination might be much more reliable. Of course. maximizing 
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reliability is seldom the mast important goal either in basic research or in applied 
work. For example. if a research hypothesis concerns how much better people do on 
the sum of three measures than they do on the sum of three other measures, there is no 
choice but to give posirive signs to the first three variables and negative signs to the 
other three variables. Inspecting the correlations among the variables might show, 
however. that such a linear combination bas a very low reliability, and so the study 
might be doomed before it is started. 

AN ANALYSIS OF VARIANCE APPROACH TO RELIABILITY 

Any method which allows one to estimate true variance can be used to obtain a relia
bility coefficient. This inciudes methods for estimating error variance since the true 
variance can be obtained from the observed variance by subtraction. The reliability co
efficient then follows as the ratio of true variance to total. variance, Eq. 6-9. 

Hoyt (1941) showed how the analysis of variance can be used to this end. This ap
proach serves as the basis for generalizability theory (Cronbach, GIeser, & Rajarat
nam, 1963; Cronbach, GIeser, Nanda. & Rajaratnam, 1972; Rajaratnam, Cronbach, & 
Gieser, 1963; Gieser, Cronbach. & Rajaratnam, 1965; for other antecedents see, 
Lindquist, 1953, and Medley & Mitzel, 1963, and for recent treatments see Brennan, 
1983; Shavelson & Webb, 1991), considered in the nex.t section. 

Some Basic Concept~ 

Although the ANOVA is usually taught in basic statistics as a means of testing group 
differences by means of the F statistic, the emphasis here is upon estimating the mag
nitude of different sources of variance, and so we will consider some basic concepts. 
Standard sources such as Hays (1988) and Winer, Brown, and Michels (1991) treat the 
topic in depth. 

The ANOVA, as noted in Chapter 5, is a special. case of multiple regression. Cate
gorical predictors (see Chapter 5) that reflect one or more treatments, which may be 
experimental manipulations or classificatory variables, are used. In the simple 
ANOVA, individual subjects fall in one, and only one. of several treatment groups 
which are considered different levels of a single factor (called a "facet" in generaliz
ability theory). It is immaterial here whether the levels of the factor are fixed (the lev
els are specifically chosen because they are of interest to the researcher) or chosen at 
random, but it does matter in more complex designs. There Is no intent to make state
ments about possible levels of a fixed factor that are not included for study. For ex.am
pIe, an experiment may evaluate the effects of several different drugs. Other theoreti
cally relevant drugs may exist. but the experiment is not applicable to them. In 
contrast, one seeks to generalize the results obtained from a random factor to levels 
that could have been included in the study but were not. The individuals chosen in an 
experiment are normally a random factor because one seeks to apply any conclusions 
beyond those actually studied. 

We will let the first subscript for each scare identify [he individual within the 
group, and the second subscript denote the group, so that Xjj is the ith individual within 
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the jth group. In this case. there is 00 relation between the ith individual in one group 
and the ith individual in any other group. Because of this independence. individuals 
are said to be "nested" within groups. In the next design to be considered, individuals. 
in contrast, are crossed with another variable in that the ith individual is the same for 
the various levels of j. In some applications called "matched" or "blocked" designs, 
not considered here, the individual is not the same but is related in Some way, e.g., in 
tenns of comparable ability. The linear combination assumed to define Xij is the sum 
of (1) a constant or universal effect that applies equally to all individuals, (2) a treat
ment effect specific to the group [0 which the individual belongs, and (3) random error 
unique to each observation. 

1 The constant represents the population mean of all individuals. Its value (IJ.) re
flects how the stimuli are scaled and is usually not of interest. It is estimated from the 
sample grand mean of observations (XJ (in this commonly used dot notation, the dots 
denote the variables over which averaging is performed, in this case both individuals 
and groups). 

2 The treatment effect for a given treatment level is the deviation between the pop
ulation mean for the group to which the observation belongs (lJ.j) and 1-1. It is estimated 
from the deviation between the sample group mean (X;) and X .. ' This is usually of 
greatest interest because the null hypothesis in most inferential studies is that IJ.J -jJ. ;; 

o for all groups, Le., there are no group mean differences. 
3 The random error, denoted elJ. reflects variation among individuals within groups 

(differences among individuals for whom the treatment is the same). It is assumed to 
be nonnally distributed when F statistics are obtained in conventional applications of 
the ANOVA, but this is not necessary in generalizability theory when it is simply used 
descriptively. It is estimated as the deviation of Xu from the sum of the sample con
stant and treatment effects or, equi valenUy, as a deviation from XJ• 

Subtracting X" (the estimator of J.l.) from each observation produces deviation 
scores. Squaring each deviation score, summing the squared scores over all observaJ 

tions to produce a sum of squares, and dividing by 1 less than the number of observa~ 
tions. the degrees of freedom for this effect, estimates the variance of all scores known 
as the total mean square (NIStoIal). This may be shown to be equal to (l) the variance of 
sample group means about the sample grand mean or mean square between groups 
(MSbetwdl!n)' and (2) the variance of individual scores about their sample group mean 
pooled over groups or mean square within groups (MSwithi.J. These mean squares are 
simply special cases of the total. between-group, and within~group variance
covariance matrices discussed in Chapter 5. Calculations relevant to the ANOVA 
models used in psychometrics will be described in the following section. 

We are presently interested in estimating variation in popUlation treatment effects 
(O'~) which cannot be observed directly. The MSbelween describes variation in sample 
treatment effects, but this value is also influenced by random error (a;) as well as 0';. 
and so it is a biased estimator, it will undoubtedly exceed zero even when the popula~ 
tion means are all the same. However, MSwithin can be shown to be an unbiased esti
mator of a;. The expected mean square (EMS) corresponding to any observed mean 
square describes the population sources of variance that are assumed to underlie it. 
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The major point is that one can obtain a least-squares estimate of O'~ given MSbc'wt:cn 

and MSwllhin' Cn particular. if there are exactly n subjects in each group (the equul-n 
case), MS"",ween == n0'7 + a; and MSwlchin == a;. As a result, a; == (MSIx:II.~."n - MSwilhin/n. 

It is possible for estimates of 0'; to be negative even though 0'7. a variance, itself must 
be positive, a shortcoming of the method of moment'l used in this estimation (see 
Chapter 4); treat 0'7 as zero if this is the case. We stress that we are not presently inter
ested in the otherwise important fact that F :::: MS""cwc~iMSwilhln' The present issue is 
one of estimating population sources of variance from sample data. 

Applioatlon to the Study of Reliability 

More complicated ANOYA models are llsuaUy necessary for psychometric applica
tions because the. same individual typically responds to each item or may be judged by 
each of several judges ("treatment" in the previous section now corresponds to "item" 
or '"judge"), and so individuals are crossed with items or judges. Responses to test 
items and/or judges' ratings form a basic data matrix (Fig. 2- t) with individuals (sub
jects, examinees. ratees) represented along rows and items or judges represented along 
columns. We will assume that the data are judges' ratings to make discussion compa
rable to that in the nex:t section. but they could just as well be test items. The enrries 
may be 1 or 0 (correct versus incorrect, pass versus fail, etc.). or they may fall along a 
multicategory continuum. One other reason for phrasing discussion in terms of judges' 
ratings is that it is easy to remember that i denotes in~ividuals and} denotes judges. A 
third reason is to illustrate that ratings may be subject to the same analyses as item re
sponses on an ordinary test. 

These data fonn a repeated measures or treatment by subjects ANOVA design. 
Whereas the simple ANOYA contains only three effects (total, between-groups, and 
within-groups), the present design contains four: (1) toeal, as before, (2) variation 
among individuals, (3) variation among judges, and (4) residual variation due to the 
interaction of judges and individuals. This interaction reflects the fact that score X/j 
may not be exactly predicrable from characteristics of the individual and judge alone 
and is error. [t denotes that an individual rated relatively highly by one judge may be 
rated relatively poorly by another. In accord with the general principle that reliable 
tests produce a large variation in individuals' tocal test scores, we are most interested 
in maximizing variation among individuals (2) because this term directly reflects this 
desired variation. The somewhat complex role played by variation among judges. 
which also appears as variation in the difficulty of test items, will be considered in this 
chapter and the next. 

Associated with each mean square is a sum of squares and degrees of freedom. The 
degrees of freedom ror the total, individual, judge, and residual effects are the total 
number of observations minus 1, the total number of individuals minus 1, the total 
number of judges minus 1, and the product of the number of judges and the number of 
individuals minus 1, respectively. Each mean square is defined by the ratio of the cor
responding sum of square to its degrees of freedom. Table 7-1 describes the partition
ing process in terms of the observed scores (Xi). the mean for each individual across 
judges (X;,), the mean for each judge across individuals (X.i), and the grand mean over 
judges and individuals (XJ. Computacional formulas appear below. 
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TABLE 7-1 SOURCES OF VARIANCE, SUMS OF SQUARES, DEGREES OF FREEDOM, AND EXPECTED 
MEAN SQUARES IN A REPEATED MEASURES ANALYSIS OF VARIANce DESIGN 

TABLE 7-2 

Source Sum of squares Degrees of freedom Expected mean square 

Individuals, (I) 
Judges, U) 
Residual 
Total 

jE.(Xf - x;i 
i'!.(Xrx,i 

I(Xq- XL - x',- xf 
t(Xq_x,.>2 

1-1 
J - 1 

(I-1)(j-1) 
ij - 1 

Note: Xf Is the score lor the dh Individual made by the Jlh judge. X~ is that indlvldual's mean, X/ is that judge's 
mean. and x.. is the mean of all observations. The observed mean squares, not presented here, ara simply the 
corresponding sums of squares divided by the degrees of freedom. 

The reliability coefficient may be computed from these data using 

(7-20) 

In effect, the numerator of Eq. 7-20 estimates the product of the number of judges 
and true variance among individuals, and the denominator estimates the product of the 
number of judges and the observed variance among individuals. The terms for the 
number of judges cancel, leaving the expression as the ratio of true variance [0 total 
variance. This is the basic definition of any reliability coefficient. 

The bypo~etical results of having three judges rate eight people as pass versus fail 
are contained in Table 7-2. 

The resulting variance-covariance matrix appears in Table 7-3. The sum of the ele
ments of this matrix is 1.68, and the sum of the diagonal entries (variances) is .77. 
Using Eq. 6-26 for coefficient ex with k = 3 measures (judges) results in 

3 (1.68 - .77) 
'II = '2 1.68 

=.81 

HYPOTHETICAL RATINGS OF EIGHT INDIVIDUALS BY THREE JUDGES 

Judge 
Individual 

Individual 2 3 Total 

1 1 1 1 :3 
2 1 1 1 :3 
3 0 0 0 0 
4 0 1 0 1 
5 a 0 0 0 
6 0 1 1 2 
7 a 0 0 0 
6 0 1 1 2 

Judge total 2 5 4 11 
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TABLE 7-3 VARIANCE-COVARIANCE MATRIX AMONG 
JUDGES' RATINGS DERIVED FROM TABLE 7-2 

Item 

x, xa Xa 

Xl .21 .11 .14 
Item )(2 .11 .2.7 .21 

Xs .14 .21 .28 

In contrast, the computations needed for Hoyt's approach are as follows. 

1 Total sum a/squares. Although the conceptual formula is given in Table 7-1, the 
computational fomula is :EX~ - (:EXij)2IN. The expression {J:J(jj)2IN is known as the 
correction term. Square each observation, add the squares, and subtract the correction 
term. Thus, 11 + 12 + 02 + ... + 12 - 1[2/24. Since 12 = 1 and 02 = D, the present compu
tation is simply 11 - 112/24 or 5.96. 

2 Sum o/squares/or individuals. The computational formula is ('J:X7.)/j - (IXij)'l·/N. 
Obtain the sum of squared sums for individuals, divide by the number of judges, and 
subtract the correction tenn. Thus, (32 + 32 + 02 + . ., + 22)/3 - 112124 or 3.96. 

3 Sum of squares for judges. The computat.ional formula is (:EX~)/i - (LXii·IN. 
Obtain the sum of the squared sums for judges, divide by the number of individuals, 
and subtract the correction term. Thus, i? + 52 + 42 - 112/24 or .58. 

4 Residual (error) sum of sqllQres. The residual sum of squares is the total sum 
of squares minus the sums of squares for individuals and judges: 5.96 - 3.96 - .58 
::; 1.42. 

5 There are 7 df (i - 1) for individuals, 2 df U - 1) for judges, and 14 df ((i - 1) 
(j - 1)) for the residual. The 23 total degrees of freedom (ij - 1 or sum of the individ
ual, judge, and residual degrees of freedom) is not needed. 

6 Divide each sum of squares by irs associated degrees of freedom: ea) MSlnd = 
3.96n = .57. (b) MSresidual = 1.41/14 = .10. (c) MSjUdges is not needed here but will be 
employed in a subsequent example and = .58n = .29). Hoyt's method therefore yields 

Til = 
.57 - .10 

.57 
= .82 

The two estimates of Tll would agree precisely if the results were carried to a 
greater degree of precision. You may be able to compute coefficient Ct. directly (as in 
SPSS RELIABIUTY, which is based upon Hoyt's approach) or fairly simply from the 
readily obtained item and total-score variances using a procedure like SAS PROe 
:MEANS (choosing the option to obtain variances) and not need to use Hoyt's method. 
However, you may have conducted an ANOVA for other reasons and may find Eq. 
7-20 easier. Either may be called coefficient Ct. despite the difference in computational 
procedure, and the result links reliability theory and the familiar ANOVA. 
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IfNEAALlZA81L1TY THEORY 

eas1c concepts 

Generalizability theory is an extension of classical measurement theory in which dif
ferent measures of the same individual may vary because what is measured differs as 
well as because of random e11'Or of measurement. It is an extension of domain-sam
pling theory to situations in which sampling proceeds factorially from more than one 
domain. Logically, it is closely related to issues in experimental design (Winer, Brown, 
& Michels, 1991), and so it might not appear relevant to clinicians and others doing 
field research. However, one of its major uses is when one or more judges (raters) 
evaluate a series of individuals with respect to multiple attributes, and so it is most 
useful in field studies. Two judges may disagree with each other because their judg
ments contain random measurement error in the sense previously described. However, 
they may also differ because they respond to different attributes. 

For exampJe, suppose two judges each rate a series of adolescents for aggressive
ness. One judge may be more concerned with verbal aggression than the other, per
haps because of the unclear instructions they were given. The more they differ in what 
they consider "aggression," the less weJI they will agree and, in a more general sense, 
the more poorly both their ratings generalize to other possible judges. Although this 
causes their ratings to differ, it is not classical unreliability because it is nonrandom. In 
addition, specific judges are considered random samples from a universe or population 
of judges. An individual's trait score is the sum of an infinitely farge number of judg
ments. Generalizability theory is essentially domain sampUng in which one considers 
issues such as how well the ratings of a particular judge g!'lneralize to the domain of 
judges in general. One is usually not interested in a particular judge per se but rather 'in 
that judge as a representative of other potential judges. 

To illustrate the difference between a classical analysis of a single judge's behavior 
(which is appropriate in certain contexts, but not here) and generalizability theory, 
consider Eq. 7-21 as a model for that judge's behavior: 

where xi) = observed rating of individual i by judge j as a deviation score 
tij = judge's systematic (true) component 
eij = judge's measurement error 

(7-21) 

The ratio of true variance (variance in tij over individuals for a given judge) to the 
total variance (variance in Xij over individuals for a single judge) defines the extent to 
which that judge's ratings are influenced by random error and is a reliability coeffi
cient (rll) in the sense of sampling error as previously defined by Eq. 6-9. This reLia
bility coefficient is directly related to the variance of tij and inversely related to the 
variability of ejj. 

However, the reliability coefficient tells nothing about how that particular judge's 
ratings relate to other judge's ratings, which is at the heart of generalizability theory. A 
particular judge might be perfectly reliable yet differ systematically from the other 
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judges, e.g., by rating an irrelevant attribute, such as the appearance of the individuals 
rather than their behavior. In order to consider differences among judges, assume that 
more than one judge evaluates the individual. Even when two judges evaluate the 
same attributes, one may be consistently more lenient or stringent than the other. Con
sider any given individual. The ex.tent to which tij varies across judges describes varia
tion in how they conceptualize the trait. As noted above, variation in tij over judges is 
not the same measurement error arising from simple domain sampling since it may 
also reflect systematic factors. 

A generalizability coefficient or generic reliability coefficient (Lord & Novick, 
1968) is a form of intraclass correlation (Hays, 1988, pp. 485-486) and is symbolized 
pi.. It describes how well the average judgments from a sample of one or more judges 
correlate with the average judgments from a population or universe of potential 
judges. A pi. value, like an rll value, is defined as the ratio of true variance among in
dividuals (symbolized cr~d) to the sum of true variance plus random error variance 
(cr~rror)' which is in the spirit of the classical concept of reliability. However, what con
stitutes error variance depends upon how the ratings are structured in the sense of 
whether they reflect a single rating or a composite and whether the same or different 
raters rate the various individuals. It mayor may not equal the MSresidual as defined in 
Hoyt's method. Symbolically, p2 may be expressed as 

., 
'J crind 

P-= 2 2 
cr ind + CJ' ~rror 

(7-22) 

Generalizability Studies and Decision Studies 

Assume that judgments of aggressiveness are obtained from a study comparing the rel
ative effectiveness of two or more forms of treatment. This type of study is known as a 
"decision (D) study" for the obvious reason that it is intended to make a decision, e.g., 
about the best form of treatment. Several considerations enter into designing a D study 
properly. These include how many judges will evaluate each individual and whether or 
not a given judge will rate all individuals or not. Choice of strategy will be influenced 
by the extent to which eij and tif vary. One rarely has this knowledge at the beginning 
stages of inquiry, and it is wise to conduct a preliminary study to estimate these quan
tities. A study directed toward these issues or, more broadly, the degree to which an 
observed sample of measures generalizes to a population or universe, is called a "gen
eralizability (G) study." Although a G study is often a precursor of a D study, it may 
be of interest in its own righe. 

Unfortunately, it is typical that no G study is employed before conducting a D 
study, and the jUdgmental strategy is made intuitively or upon the availability of 
judges. In other cases, generalizability data are obtained in parallel with the decision 
data. For example, one judge might evaluate all individuals, and a second judge may 
evaluate a subset of the individuals in conjunction with the primary judge as a check. 
Individuals seen by both judges contribute generalizability data. However, in both 
cases, the generalizabUity data cannot be used to select an optimal design for the main 



CHAPTER 7: THE ASSESSMENT OF RELIABILITY 281 

CD) study. Clearly. the availability of a previous G study. perhaps conducted by some
one else, is important to an optimal outcome. 

A Single Facet Design 

Hoyt's method is the simplest example of generalizability theory. It may be applied di
rectly to what is called a single-facet G study. We will apply the data from Tables 7-2 
and 7-3 to perform a hypothetical evaluation of adolescent aggressiveness. A real 
study would employ many more subjects. of course. Even though the eventual D study 
may use a single judge or have different judges evaluate different indi viduals, the most 
useful G study crosses judges with individuals-each judge evaluates each individual. 
The minimum requirements for the study are two judges who each evaluate two indi
viduals, but the stability of the resulting estimates improves as the square root of the 
sample size. It is difficult to state the precise numbers of individuals and judges need
ed for the D study without the G study. Both the individuals and judges should be rep
resentative of those to be employed later: One should not conduct a G study with high
ly trained judges if the D study will use inexperienced judges, for example. 

Theoretical Considerations 

The analysis is an extens~on of Eq. 7-21. One assumes that the systematic component 
of a rating (tlJ) is the sum of three components: (1) a universal effect (J...I.) describing the 
mean rating of all individuals by all judges in the domain, (2) the deviation of a partic
ular individual's mean rating (Ili) from Il (I!i -Il), and (3) the deviation of a prirticular 
judge's mean rating (J.l.j) from Il (I!j - I!). When eij (which reflects both classical mea
surement error plus systematic disagreement among judges) is also considered, the 
model simply states that a particular rating may be high because that individual is high 
on that trait, because the judge tends to give high ratings, or because of error: 

(7-23) 

Subtracting the scaling factor (J.I.) from both sides of the equation !Uld expressing 
the resulting term on the left-hand side, XIJ - I!, as Xi} provides 

(7-24) 

Recall that the corresponding sample sums of squares were 3.96 •. 58, and 1.42; the 
degrees of freedom were 7, 2, and 14, and so the mean squares were .57, .29, and .10, 
for individuals, judges, and error, respectively. As in the cases described above, appro
priate computations can estimate three population variances from the sample mean 
squares using the expectations provided in Table 7-1. 

1 Residual error variance (variance in eij) (O';"sidual) 

2 The variance of individuals over judges (0';) 
3 The variance of judges over individuals (0']) 



282 PAAT 3: CONSTRUCTION OF MULTI-ITEM MEASURES 

These population variance estimates are obtained as follows: The cr nosidual repre
sents the error associated with a single average judge and is given simply by 

However. the present case involves the sum (or average) of j independent judges. 
Equation 7-26 describes the mean square for the composite enor (a~) using the cen
tra! limit theorem: 

., 
1 0' miduaJ 

O'error= • 
J 

Equation 7-27 estimates O'~: 

1 MSind - MSrulduai 
0' Iud = j 

Equation 7-28 estimates O'judps: 

1 _ MSjudpa - MSresldual 
O'Judps - • 

J 

Applying Eqs. 7-26 to 1-28 to the data yields 

O'~idual = .10 

0'1 - .10 - 03 
-- 3 -. 

O'~ - .57-.10 - 16 
11111- 3 -. 

2 _ .29-.10 - 02 
0' jud!"S - 8 - . 

The conceptual form of the generalizabllity coefficient for these data is 

1 
1 O'ind 

P = l l . 
a ind + cr resldu.h 

Substituting the corresponding mean squares leads to 

1 (MSlnd - MSresiGuaVlj 
P = (MSlnd - MS_iduaJ Ij + MSmiduali 

This simplifies in tum to a computationa! fonn: 

(7-26) 

(7-27) 

(7-28) 

(7-29) 

(7-30) 



CHAPTER 7: THE ASSESSMENT OF RELIABILITY 

MSind - MSresidual 

MSind 

283 

(7-3 I) 

Equation 7-31 is Hoyt's formula for the reliability, .82 in the present case, as it 
should be because '~udges" play the same functional roLe as "items" (Lord & Novick's 
(1968) analysis is phrased in terms of "items".) 

The standard error of measurement, which is the square root of the O';rrllf = 
V dl'residual1j = Y.10/3 = .18, may also be extracted from these data. A two-sided 95 
percent confidence interval can be determined as ±1.96 times this standard error, and a 
99 percent confidence interval can be determined as ±2.58 times this standard error. 
This assumes that the composite is expressed as the average of the three ratings. If the 
sum is used., mUltiply the resulting value by j. 

The hypothetical data involve dichotomies, and so the concepts of standard error 
and confidence interval are strained. However. if these were ratings along a continu
um. the confidence interval could be used to make absolute judgments about a SCore 
relative to a criterion or other reference point. For example, if the observed score is 3 
± .8 and the criterion for passing is a score of 2 or higher, the individual's score will be 
significantly higher than the cutoff. Likewise, the standard error of the difference be
tween two scores can be estimated as V2 times the standard .error of measurement A 
confidence interval about this value can be used to determine whether two scores dif
fer significantly fro~ one another. 

Applying the Results of a Single-Facet G Study to a D Study 

The power of the G study comes into play in choosing from some of the designs one 
might employ in a D study based upon preliminary data. Four possible designs are as 
follows: 

lOne judge may rate every individual. 
2 Multiple judges (not necessarily the same number as in the G study) may rate 

every individual. 
3 Raters and individuals may be paired so that each judge rates one and only one 

individual. 
4 Multiple judges may rate each indi vidual, but each judge rates only one individual. 

In each case, the appropriate generali2abiHty coefficient follows from the general 
definition, Eq. 7-22. The individual component (O'Tnd) does not change, but the error 
(o!m,r) depends upon the design. For example. Eq. 7-32 describes the computation of 
p2 conceptually if only one judge is selected at random from the domain of judges (op
tion 1), 

2 
~ 0' ind 

P- = 2 2 
cr ind + 0' residual 

(b 22) ecause 0' error = 0' =idual (7-32) 

Substituting the mean squares used as estimators. 
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This reduces to the computational form 

In the present case, 

., MSind - MSfl.!RiduaJ 
P-= . 

MSlnd + (j - l)MSreaidual 

p2: .l6 
.16+.10 

.57 - .to 
= 

.57 + (2)(.10) 

=.61 

(from Eq. 7-32) 

(from Eq. 7-34) 

(7-33) 

(7-34) 

Usirtg a singJe judge instead of the average of three has the obvious effect of reduc
ing the generalizability of the ratings. The standard error of measurement increases to 
aresldUIII = .32. 

Suppose you were planning to employ a particular judge in the D study that you 
had used in the G study, and further suppose that you used at least three judges in 
the original G study. Equation 7-34 may underestimate or overestimate this judge's 
generalizability coefficient, depending upon whether he or she is better or poorer 
than the average judge. One index of a judge's "goodness" is that judge's correlation 
with the average rating. In the present case, the correlations for the three judges are 
.77 •. 87. and .92. Item-total correlations based upon a small number of variables 
(three in the present case) build in a substantial correlation between each of these 
variables and the total, but they do so for each variable so that the relative magni
tudes are meaningful. 

Recognizing that these correlations are based upon an unrealistically small number 
of observations (eight), the data suggest that the first rater is the most idiosyncratic and 
that the third rater is the least idiosyncratic. One may criticize the criterion of correlat
ing a judge's ratings with the consensus (whether derived from a sample or from the 
popuLation) as rewarding mediocrity. but unless there is a better yardstick. such as a 
physical definition of what is to be measured, this definition is most in keeplng with 
the spirit of the model. 

Equation 7-35 (Lord & Novick, 1968. p. 210, Eq. 9.8.4) may be used to estimate 
the generalizability coefficient for a specified judge. It assumes that at least three 
judges were used in the G study, including the one designated. 

(7-35) 
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where j = number of judges 
(tali = square of the sum of the covariances between the designated judge Uudge l) 

and each of the other judges Uudges i) . 
a ~ = variance of the designated judges ratings 

to'/i = sum of the covariances between all pairs of judges other than pairs that in
clude the designated judge (judges i and)). 

Recall from Chapter 4 that the covariance between two variables equals the product 
of their respective standard deviations and their correlation (O'ij = a/ajrlj). 

When there are only three judges, where judge 1 is the designated judge and judges 
2 and 3 are the two remaining. the formula simplifies to 

1 (O'l2 + 0'13i 

p = 40'IO'13 (7-36) 

Since Table 7-2 already contains the relevant data, one may estimate the generaliz
ability expected from designating the first judge: 

., (.11 + .14)2 
p- = (4)(.21)(.21) 

=.35 

Likewise, the generalizability coefficient for the second rater is 

.., (.11 + .21)2 
p- = (4)(.27)(.14) 

=.68 

And the generalizability coefficient for the third rater is 

(.14 + .21)2 

p = (4)(.29)(.11) 

=.96 

Notice that 1n this atypical, but possible. example the third rater individually is 
more reliable than the sum of aU three. 

Now, assume that we are free to average the ratings of k judges in the D study. 
where k may be a larger or smaller number than the j used in the G study (design 2). 
Again using the central limit theorem, O'!rror = O'~idualk. Equation 7-37 describes the 
appropriate process: 

2 
2 0'100 

P =2 1 
0' ind+ cr resiclua" k 

(7-37) 
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Again substituting the mean squares used us estimators, 

(7-38) 

which reduces to the computational form 

p2 = MSh1d. - MSrcsidual 
MSind + (j - k)MSresidUIIlk 

(7·39) 

Consequently. if two jUdges are chosen at random from the domain (k = 2), the esti
mated generalizability coefficient is 

~ .57 - .10 
p- = .57 + (3 - 2)(. LO/2) 

=.76 

The estimated generalizability coefficient using four judges is 

') .57-.10 
p-= .57+(3-4)(.LO/4) 

=.84 

In this example, the differences in the generalizability expected using more than 
two judges is so small that it wUl not affect any validities in a noticeable manner. In
deed, you would be better off using a single judge who is known to be reliable. Your 
planning of the D study should consider its personnel costs. 

The standard error of the mean rating is the square root of O'~sidualk. These are .22 • 
. IS. and .16 for two, three, and four judges, respectively. If the score is to be expressed 
as a sum of the k judges, mUltiply these results by k. 

Another approach to using G data to estimate p2 under either design 1 or design 2 is 
to apply the Spearman-Brown prophecy formula, Eq. 6-18, to the value of p2 obtained 
in the G study where k/j Is the factor by which the length of the test is altered. For ex
ample, if three judges were used in the G study and you are planning to use si."( in the 
D study, then simply determine the effect of making the test twice as long. 

Design 3 assumes that a different judge rates each and every individual. For exam
ple, assume that a male and a female interact for a period of time and that each rates 
the other's sociability. The study provides two generalizability coefficients (men rating 
women and women rating men), but only one needs to be considered here. Variation 
among judges now becomes part of the error since judges are nested within individu
als. A particular judge's tendency to give high or low ratings is canceled out in a 
crossed design because it applies equaUy to aU individuals. However, part of the varia
tion in an individual's rating is now determined by the "luck of the draw" in getting a 
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high or a low rater. Ratings will vary more widely over individuals than in a crossed 
design because of the judges' idiosyncracies. 

The design becomes a simple ANOYA. The total sum of squares now contains only 
two sources: (1) the individual effect, as before, and (2) the variation within each indi
vidual among judges pooled over individuals or the residual effect. The underlying 
sources of variation differ radically from the crossed design. The expected mean 
square for individuals equals jcr7nd + crTUdgeS + cr~sifJuah and the expected mean square 
for the residual is crludge5 + cr~idual' The presence of crTUd8.:s in both [erms is the basis 
for the greater error variance. Equation 7-40 describes the generalizability coefficient: 

2 
2 cr ind 

P = 2 2 :l 
cr ind + cr judges + cr miduo.l 

(7-40) 

Equation 7-41 is a computational formula: 

., MSind - MSresidual 

P- = MSind + (},MSjudgesli + (ij - i - J)MSn:giduaI/i 
(7-41) 

In.the present case, this produces 

2 .57 - .10 
P = .57+(3)(.57/8+(8·3-8-3)(.10/8) 

=.55 

This demonstrates how variation among judges in the error tenn affects generaliz
ability substantially even though it may sometimes be unavoidable. The standard error 
of the mean judgments is the square root of crludges + cr~asiduai = V.02 + .10 = .35. In 
this artificial example, the judges are rather homogeneous (crlud8es = .02), which is not 
generally true. 

Finally, consider design 4 where k judges rate each individual, but each judge rates 
only one individual. Perhaps members of each of a series of committees rate their 
chair's effectiveness where no one serves on more than one committee. Because each 
individual (chair) is judged by several individuals, the generalizability coefficients will 
generally be higher than under design 3, just as they will generally be higher under de
sign 2 than under design 1. Equation 7-42 describes the generalizability coefficient: 

2 
? cr ind 

P- = 2 2 2 k 
cr ind + {cr judges + a residual)1 

(7-42) 

so that 

2 2 
., cr juds"" + cr residual 

cr-;rror = 
k 
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The formula defined in terms of mean squares is 

, MSlnd - MSre'iduul 

P- = MSind + j-MSjuuge.,/i.k (11- H - j).MSresiduul(i·k) 
(7-43) 

Note that the ~rror in Eq. 7-40 for design 3, O'TUdgBS + O'~idUlli' is replaced by 
(O'ludge5 + O'~esidulll)lk, which will be smaner. This is why one ex.pects greater generaliz
ability under design 4 than under design 3. Nonetheless, with k = 2 judges in the pre
sent case, the estimated generalizability is 

2 .57 - .10 
p. = .57 + (3)(.57/8) + (8·3 - 8 - 3){.101(8·2) 

= .7l 

. With k == 3 judges, the estimated generalizability is 

p2= .57 - .lO 
.57 + (3)(.57/8) + (8·3) - 8 - 3)(.10/(8·3) 

=.79 

If addi.ng judges has such a small effect, primary effort should be devoted to reduc
ing variation among judges, as by devoting more effort to training. The standard errors 
for two, three, and four judges are, respectively, .24, .20, and .17, when scores are ex.
pressed as a mean. As above, multiply by k if you ex.press the score as a sum. 

One can estimate generalizability coefficients for all four designs because the origi
nal G study was conducted as a crossed design with mUltiple raters (design 2). As a re
sult, variation among judges can be estimated separately from individual measurement 
error. Had design 1 been used, its data would have been useful only in a design-l D 
study because there is no way to estimate variation among judges. A design-3 G study 
would have furnished data useful only in a design-3 or design-4 D study, and a design-
4 G study would have furnished data useful only in a design-4 D study. Variation 
among judges affects generalizability in a design~3 or a design-4 study, but it is com
pletely confounded with measurement error . 

. In perhaps most cases, you can conduct a design~2 G study by having a series of 
judges all rate a sample of individuals even if they cannot rate all the subjects in tbe D 
study. This procedure is highly recommended because it allows you to explore all op
tions. Of course, some problems inherently require different judges for each individual 
(design 3 or design 4). 

It is common for judges to be assigned on the basis of scbeduling convenience. One 
judge may be available at certain times, and another available at other times. This can 
be deadly if availability is confounded with a critical manipulation. For ex.ample, if 
one judge evaluates all the subjects in one treatment condition and another judge eval
uates all the subjects in another condition, differences in the ratings of the two judges 
are completely confounded with treatment conditions. If there is a random relation-
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ship, there would be no confounding, but it is still difficult to infer the generaHzability 
present in the study because it is neither a pure crossed or a pure nested design. One 
possibility is to present the generalizability coefficients one would estimate for the 
crossed and nested possibilities and note that the actual generalizability is at some in
tennediate point. To repeat, all of this is possible when a G study has been conducted 
in advance. 

A FIXed-Facet Design 

Judges in the above G study were considered to be a random facet in the sense that 
they were initially considered to have been sampled at random. This meant that inter
est was directed toward their variability (aJudgeJ rather than toward their individual 
properties as judges, save for analyses of individual judges. 

Sometimes G data are used as a basis for selecting judges in a subsequent D study, 
creating a fixed facet. Suppose one is interested in a given individual as a potential 
judge. The facet of judges (actually "judge") is a fixed factor because the domain sim
ply consists of this designated judge. The generalizability coefficient reduces to the 
ratio of this judge's true variance divided by his or her total variance, but this is an or
dinary reliability coefficient (rll). i.e., coefficient Ct. The problem is how to estimate 
this quantity. 

Each individual needs be judged more than once to infer the error in the judge's rat
ings. Assuming that the resulting correlation(s) are not inflated through memory of 
previous judgments and that the traits are temporally stable, coefficient Ct may be ap
plied to the matrix of individuals by occasions of ratings (the result reduces to a test
retest correlation with only two occasions). 

One may correlate the judgments with a physical criterion if one exists. For exam
ple, one may correlate a stockbroker'S predictions about the future value of stocks 
with the value they actually obtain ("individuals" in this context are the different 
stocks). Likewise, one may correlate the judgments with the consensus of an expert 
panel. These examples, especially the first, are really validities rather than reliabilities, 
but they do address the general issue of how well the judge is performing. 

Higher-Order Designs 

In a single-facet design, the total sum of squares reflects three sources-individuals. 
judges, and the residual. Now suppose that there are two facets. A and B, e.g., aggres
siveness in school and at play. These may be crossed in the universe in that all combi
nations of levels A and B may potentially be obtainable. For example, in principle, if A 
were ratings made by a given judge when the individual was at play and B were rat
ings made by the same judge when the individual was in the classroom, all combina
tions of levels could occur even if different samples of judges were used in actual re
search. In contrast, if the study was concerned with how teachers and peers rated the 
aggressiveness of individuals, the various levels of teacher and the various levels of 
peers would be inherently nested-teachers and peers would necessarily be distinct 
judges. 
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Seven soUrces of variation are present in a crossed design: 

1 Overall differences among individuals 
2 Differences among levels of A 
3 Differences among level;.; of B 
4 Differences among combinations of A and B-the A-by-B interaction 
5 Differences among individuals across levels of A-the A-by indivi.dual interaction 
6 Differences among individuals across levels of B-the B-by individual interac-

tion 
7 The residual. which reflects differences among individuals across combinations 

of A andB. 

Whether or not each of these terms can be estimated and how to estimate them de
pends upon the specifics of the design-whether the sample facets are crossed or nest
ed and whether a given facet is fixed or random. Analysis of variance considerations 
apply to these determinations. Rather than consider the specifics of the many possible 
cases. the reader is referred to the above sources on the topic of the analysis of vari
ance and to Brennan (1983), Cronbach et al. (1972), and Shavelson and Webb (1991) 
for details. 

Any given analysis may be highly complex. and produce several different generali:z;
ability coefficients. Each one. though. can be used as a conventional reliability coeffi
cient, e.g., to disattenuate correlations. In addition, results from a well-designed G 
study can be used to dictate a wide range of D studies, perhaps suggesting that some 
be avoided because of the lack of suitable generalizability. Most of the major develop
ments concerning measurement over the last quarter-century have been in the domain 
of modem psychometrics. but generalizability theory illustrates an important extension 
based upon quite classical methods. Many studies use ratings, and it i.s essential to as
sess the ablllty of the ratet·s through a procedure like generalizability theory (which. of 
course, is not limited to studies based upon ratings). 

Measurement error may emerge from several sources. but these fall into two main 
headings: (1) variation within a test produced by such factors as heterogeneity of item 
content and guessing and (2) variation between tests as produced by temporal instabil
ity. Alternative forms. in conjunction with a measure of internal consistency (ex) can 
be used to evaluate these influences. Conversely. flo' by itself may be inadequate. This 
is especially true for speeded tests. It is particularly useful to compare the results of 
adritinistering alternative forms with a short time between them (e.g., at the same ses
sion) with alternative forms given with a longer time separation (e.g .• 2 weeks). The 
basic outcomes are (1) CL is substantial on both forms and the correlation between the 
two forms is high. implying a stable trait has been measured reliably, (2) CL is substan
tial on both forms but the correlation between the two fonns is low, implying the mea
sure is more statelike; (3) ex is Iowan both fOnDS, implying the need to redefine the 
measures; arid (4) CL is high on one form but Iowan the other. implying the need to re
place the latter form. There are additional considerations when raters provide the mea-
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sures since one must assess the extent to which the raters are consistent with one an
other as well as over time. 

Two other methods of estimating internal consistency were also cons-idered. The 
split-half method, which involves correlating two separate sets of items on the test 
(usually odd versus even) is basically of historic interest and has an additional problem 
when items are ordered in tenns of difficulty. The retest method involves giv-ing the 
same test twice and suffers from the problem of subjects remembering their past re
sponses and trying to respond consistently with these recollections. The section con
cluded with the issue of long-range stability: Many, but not all, traits are stable over 
time. Problems exist with regard to measuring dynamic traits. 

We then considered some practical uses of the reliability coefficient. These include: 
(1) the estimated correction for attenuation, which deals with detennining what the 
correlation between two variables would be as their reliabilities change; (2) confidence 
intervals; (3) estimation of true scores; and (4) the effects of changing the sample vari
ance. Although neither confidence intervals nor true score estimation is necessary in 
most situations because obtained scores correlate perfectly with estimated true scores, 
it is important to recogni2e that any· obtained score is only one in a probable range of 
scores whose size is inversely related to the test's reliability. In addition. three types of 
confidence intervals need to be distinguished: (1) the distribution of probable obtained 
scores for a given true score, (2) the distribution of probable true scores for a given ob
tained score, and (3) the distribution of probable obtained scores for a given obtained 
score on an alternative fonn. 

The next topic was the practical matter of making measures more reliable. The 
most important concept is clarity, both as it applies to the logic of the measurement 
and the questions asked of those being tested. The Spearman-Brown prophecy formula 
is useful in estimating the effects of changing the test's length upon its reliability. Im
portant cautions were noted about stressing any reliability estimate too much. One is 
that differences in item distribution may spuriously lower measures like ex and suggest 
that items with deviant distributions do not belong as a part of the scale. In the next 
chapter we will show how deleting such items may be counterproductive. ConverselY, 
sample estimates of IX are biased upward. A correction that prov-ides a better estimate 
of the lower limit of the population reliab.ility (ratio of true variance to error variance) 
is introduced. However, this correction has a relatively small effect upon measures 
consisting of a large number of items and whose sample values of a are high and de
rived from a large sample. 

Measures are often derived as composites of scale scores, Le., as (perhaps weight
ed) linear combinations of whole tests. Some formulas and principles governing the 
reliabilities of these composites were discussed. In particular, assuming that the mea
sures are not negatively correlated. the reliability of the composite will be higher than 
the individual reliabilities when the measures are added, but difference scores based 
upon positively correlated measures can be very unreliable. 

There is a close linkage between the analysis of variance (ANOVA) and reliability 
coefficients. Consequently, some principles governing the ANOVA were presented. 
Unlike its most popular application, the determination of the F statistic, the present 
emphasis is upon estimating mean squares from various sources. The variance in pop-
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ulation means can be inferred from the difference between the mean square between 
groups (i.e., observed variance among means) and the mean square within groups. Elt
tending this principle to an ANOYA design where all individuals answer a common 
series of items, (1) true variance is estimated from this difference in mean squares and 
(2) error variance is inferred from the mean square within groups. Consequently the 
!'atio of the estimated true variance to the sum of the true variance and error variance is 
mathematically identical to ct. 

This principle forms the basis of (and is a simple 'case of) generalizabllity theory. 
This theory allows one to evaluate both random sampling error that arises within a do
main and systematic error that might arise because different judges evaluate different 
attributes. A generalizability study (0 study) evaluates the generalizabilities (effective
ly, reliabilities) obtainable under given measurement conditions. These results may 
then be used to choose the measurement conditions in a study whose purpose it 1s to 
apply these measures, a decision study (D study). It is particularly useful to have sev~ 
eral judges evaluate all individuals on all attributes being measured (a completely 
crossed set of measurement conditions or facets) in the G study as opposed, for exam
ple, to having some judges evaluate certain individuals and other judges evaluate other 
individuals or to have some judges evaluate some attributes and other judges evaluate 
other attributes. The latter involves one or more nested facets. Using a completely 
crossed 0 study allows one to estimate generaiizability coefficients when the subse
quent D study (1) uses a single judge selected either at random or on a pilot rating per
formance, (2) uses multiple judges, each rating all individuals (as in the G study), (3) 
raters and judges are paired (as when husbands and wives rate one another), or (4) 
groups of individuals are nested within particular judges. Generalizability theory is 
one of the most significant extensions of classical measurement theory and should be 
used more often. especially when data are in the form of ratings. . 
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CHAPTER OVERVIEW 

CONSTRUCTION OF 
CONVENTIONAL TESTS 

This chapter considers the construction of general-purpose instruments, as opposed to 
those that are designed for specialized purposes. General-purpose instruments are in
tended to be employed very widely with diverse samples of subjects in either assess
ment or research. We assume that the intent is to maximize relevant individual differ
ences among subjects. Ordinary classroom tests are included in this chapter even 
though they are usually applied to restricted samples because they employ the princi
ples that are discussed. We will further assume that the measuring instrument is not 
highly speeded. Speeded tests will be discussed in Chapter 9. Except as noted, we will 
also generally assume that the underlying distribution of the trait to be measured .is ap
proximately normal even though an observed score distribution will not be truly nor
mal (see Chapter 5, especially Fig. 5-2). 

The measurement principles discussed in this book are not limited to pencil-and
paper measures. They therefore include psychophysiological indices of arousal, be
havioral activity rates, and behavioral measures used to study memory, among others. 
The principles apply to measures of ability, achievement, personality, and attitudes; to 
both dichotomous and multicategory items; and to both judgments and sentiments. 
Some slight differences among different types of items will be noted, however. 

Even though we stress constructing new measures, the principles are also applica
ble. to selecting a preexisting measure. A good literature review will identify measures 
that are already available. Sources like the Tenth Mental Measurements Yearbook 
(Mitchell, 1989), which provides critical reviews of standardized tests, are invaluable. 
You may find a test which precisely fits your needs. It is more likely that you will find 
one that has fallen short. but you may be able to revise it successfully rather than start 
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over from the beginning. For example, you may correct a poorly worded inventory. 
The total number of measures proposed in the literature (which is far larger than the 
published tests included in the Yearbook) has increased enormously since the last edi
tion of this book. Unfortunately, this has not increased the number of good measures 
appreciably. Most measures are essentially unknown, because they have not been used 
enough to make a determination, rather than bad. Such unknown measures can often 
be profitably and simply modified for incorporation in your research. One could well 
argue that there are too many tests because not enough care has been given to deter
mining what others with similar needs have attempted in earlier research. You should 
also become faroHiar with the various standards published by such groups as the 
American Psychological Association (1985, 1986a, 1986b, 1992). 

Perhaps three-fourths of the time, simple, understandable, acceptable, and general 
methods exist to develop a measure based upon the linear model of classical psycho
metrics. Modern methods, involving use of response patterns as discussed in Chapter 
lO, may be equally suitable, but choice between various alternative methods will make 
little initial difference. This is particularly true when the measure is not designed for 
repeated testing. Since classical methods are much simpler, it is reasonable to consider 
whether someone who is unfamiliar with modem methods should spend time leaming 
their details at the outset. This time could alternatively be spent broadening the scope 
of the validation research or increasing the sample size. A well-developed classical 
measure can usually be transformed to a measure based upon modern methods at a 
later date, and modern methods will not magically make an ill-conceived measure into 
a good measure. 

Special methods of test construction are needed for about another 15 percent, such 
as speeded tests. Mixtures of various approaches are required or experts disagree about 
alternative approaches for the remainder of the cases, and these alternatives do make a 
real difference. Procedures relevant to this remaining one-fourth of the cases are dis
cussed in Chapters 9 and 10. 

Recall from Chapter 3 that tests may be evaluated by standards of content, con
struct, or predictive validity. The requirements for these three forms of validity are 
more similar than they are different, and most of what will be said about content vali
dation, which is discussed first, applies to the two other situations. Predictive and con
struct validation, which reflect the needs of most research and clinical assessments, are 
especially similar in that both involve correlating the measure with a criterion. 

Content validation begins with a domain of content that defines what is to be mea
sured, including to whom the test is applicable, and a test plan that defines how it IS to 
be measured. The resulting set of test items is then administered to a suitable group, 
usually after outside review. An item analysis defines each item's difficulty (e.g., what 
proportion of individuals answer it correctly) and discrimination (e.g., how highly it 
relates to the total test score). If the test is designed for repeated use in new samples, 
item selection provides a revised version of the test, which is readministered until a 
satisfactory version is obtained. Norms may be obtained in the process of obtaining a 
final version of the test. Although a content-validated test is not required to have any 
external correlates. such correlates are often useful. It is adctitionally important to as
sess possible bias, but that topic win be considered in the next chapter. 
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Construct validation begins wi.th a hypothesis that implies a domain of content. It is 
important that the scale's content be homogeneous, but homogeneity is not easily as
sessed, as it is desirable that the methods used to infer the trait be heterogeneous. A 
scale's content must be unidimensional and unifactor. Unfortunately, decisions as to 
whether the content is homogeneous cannot be made solely on the basis of statistical 
criteria if the resulting scale is to have the desired degree of breadth. The simplest ex
ample of methodological heterogeneity is to key some sentiment items "true" (or 
"agree," etc.) and others "false." A multivariate approach, which often involves factor 
analysis, is necessary to understand items and constructs. However. there is an impor
tant difference between factoring whole tests and individual items; the factor analysis 
of individual items is fraught with problems. Rational and criterion-oriented (empiri
cal) approaches to test construction, which were commonly used in the past, have been 
shown to be inadequate. Predictive validation really involves tittle that is new, but 
some differences between it and the other forms of validation are important. 

The last major section of the chapter deals with cornmon issues in testing. These 
are (1) how to reverse the direction of item keying; (2) unipolar versus bipolar attri
butes and items; (3) how to choose items to discriminate at a given point atong the 
score continuum; (4) the closely related principle of equidiscriminating test construc
tion, in which a slight amount of reliability 1s sacrificed in order [0 enhance overall 
discrimination; (5) weighting of items, and (6) the role of chance tn [tem selection. 

CONSTRUCTION OF TESTS DESIGNED FOR CONTENT VAll DATION 

Perhaps the most familiar testing situation is the classroom examination. Such tests are 
normally intended for one-time use. In contrast, other content-validated tests are de
signed for repeated use, such as tests used to license psychologists. The major differ
ence between these two cases is that the tests designed for repeated use ordinarily re
quire (1) greater potential legal scrutiny, (2) various nonpsychometric considerations 
like greater test security, and (3) several cycles of refinement before use. However, it is 
perhaps useful to ignore the first two cUfferences by assuming that any test may be 
challenged and requires security. Moreover. even though it is obviously unwise to 
reuse a test in toto, sampling from an available item pool is an excellent way to con
struct classroom tests so they are often reused in simllar form. 

We will use a'conventional definition of the term "achievement test" to denote mea
suring what a person has learned. As noted in Chapter 3, achievement tests are usually 
developed' through content validation. That is a major difference between them and 
ability tests, which are usually construct-validated. Achievement t,est5 may assess high
ly specialized knowledge, such as a classroom test on Shakespeare's Macbeth, or sam
ple information more broadly, as in standardized tests given primary school students. 

The Domain of Content and Test Plan 

Defining an appropriate domain of content or body of relevant material is essential 
to content validation (see Chapter 3). The domain includes both the material to be 
tested on and the population for whom the material is to be suitable. population 
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characteristics are e:<tremely important, as items must be written to take the age, abili
ty level (especially reuding comprehension). and culture of those tested into account. 
The other major consideration is the test plan which dictates the format of the test, 
Having a domain of content and test plan available before the test is constructed is 
vastly more meaningful than attempting to determine content validity after construc_ 
tion. If potential users of the test agree in advance on the appropriateness of the con
tent and test plan, arriving at an acceptable instrument is mainly a matter of technical 
skill and application. 

Specifying the domain of content for an ordinary classroom examination can be as 
simple as stating which text chapters are to be covered. Sampling of assigned material 
need not be uniform (e.g., by constructing one question per page) nor parallel class
room emphasis, but it should reflect the more important materiaL Likewise, students 
need not be told explicitly what will be emphasized, but they should not be misled. 
People who are not skilled at making up tests often ask obscure questions in an at
tempt to create individual di.fferences, but this is unnecessary. It is far more likely that 
questions will prove roo difficult than too easy. 

Defining the domain of content in tests designed for employment is often more di.f
ficult than it would seem. Most positions employing sufficient numbers to warrant 
standardized testing usually have a job description, but this may poorly reflect what 
the individual actually does on the job. A job analysis is us~d to make this determina
tion. Ideally, one would actually observe employees, but it is more common to have 
them respond via questionnaire, which can lead to obvious distortions. Still, either pro
cedure is better than making the detennination in ignorance. For example, the average 
civilian, psychologists included, probably overestimates the frequency of armed Con
frontations police officers encounter and underestimates their need for interpersonal 
skills to mediate verbal disputes. In addition to the outline of content. the plan should 
describe (1) the types of items to be employed with examples, (2) the approximate 
number of items to be employed in each section and each subsection of the test, (3) 
how long the test will take to administer, (4) how it will be administered, (5) how it 
will be scored, and (6) the types of nonns or other referencing that will be obtained. 

The more widely a test is to be used and the greater its importance, the more thor
oughly the completed plan needs be reviewed. The reviewers should be chosen broad
ly to include end users (e.g., personnel managers or teachers), subject-matter experts, 
psychometricians, and representatives of those who will be taking the test. The last
mentiond obviously can provide pilot data, but they also often provide v.aluable other 
commentary. Suggestions for changes are often made which require a revision of the 
test plan and a second review. Hopefully, the revised plan wilt receive general or near
general approval; the cycle is repeated if this is not the case. 

Item formats include (1) short-answer (completion or "fil1-in-the-blank"), (2) essay, 
(3) multiple-choice, (4) problem solving, and (5) other objective procedures such as 
matching or true-false. The nature of the material to be tested obviously plays an im
portant role in the choice-students who need to be tested on spoken fluency in a for-



CHAPTER 8: CONSTRUCTION OF CONVENTIONAL TESTS 297 

eign language cannot be properly evaluated by multiple-choice items. Such items are 
petfectly proper when one wishes to measure recognition of material, but circum
stances often suggest measuring recall, which is better assessed by short-answer ques
tions, andlor organizational ability, which implies the need for essay examinations or 
problems. All of these tests are adequate for measuring convergent thought about sllb~ 
ject matter, but various forms of term papers (e.g., research proposals) are better suited 
to measure divergent thought and creativity. Legitimate philosophical differences exist 
among instructors as wen, and the physical context of the class is important. An in
structor who attempts to give an essay examination to a class of several hundred stu
dents without any assistants quickly learns the meaning of measurement error in grad
ing. A given test may also combine formats, e.g., half short anSwer and half essay. 

If an objective format directed toward measuring recognition is appropriate, there is 
every reason to employ conventional four or five alternative multiple-choice items 
over alternative formats such as matching. The test can be optically read, and comput
er programs are widely available to perform item analyses and obtain scores. Both 
multiple-choice and short-answer formats allow a broad sampling of the domain of 
content wi thin reasonable time limits. Although essay examinations require subjects to 
use a broader range of skills (e.g .• sentence construction), the feedback that is neces
sary to strengthen these skills is often not given. If you use more than one fonnat. you 
may find it of interest to score the various formats separately, determine their reliabili
ties and correlate the scores. Scores on good multiple-choice items often correlate as 
highly with scores on essay items almost as highly as their respective reliabillties per
mit. High correlations between formats are especially likely when the class varies 
widely in academic ability. Moreover, scores on multiple-choice items usually are con
siderably more reliable. Alternative-form reliabilities are typically between .60 and .70 
for essay examinations and between .75 and .90 for multiple-choice examinations. The 
broader the range of student abilities, the larger the expected reliability. At the same 
time, multiple-choice tests require the most time to construct in the absence of a good 
test bank, which makes short-answer formats especiaUy attractive in classes of roughly 
IS to 75. Essay formats are especially appropriate for smaller classes. Despite the ap
plicability of the various formats to classroom testing and research, nearly aU large
scale achievement tests employ multiple-choice items. 

Of course, no test is better than the items of which it is composed. A good plan pro
vides an intention to construct a good test, but unless items are skillfully written, the 
plan never materializes. Although there are some rules for writing good items (Berk, 
1984, 1986; Flaugher, 1990; Thorndike, Cunningham, Thorndike, & Hagen, 1991), 
writing test items is an art that few people master. Nearly everything about item con
struction can be summed up by the word "clarity" as it applies to how well the item (1) 
is phrased, (2) relates to the domain, and (3) "points" the knowledgeable student to
ward what is demanded. For e;{ample, the question "What happened to art during the 
fifteenth century?" is so vague that respondents could legitimately take many different 
directions on an essay examination or select several different alternatives on a multi
ple-choice item. 

At the same time you seek to be clear, try to avoid trivial questions. Asking for 
dates, names, and simple facts is easy to do and can be unambiguous. These items can 
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be made "picky" enough to calm neophyte test constructor'~ fears about mak.ing item 
too easy. However. these details are rarely very important; it is usually more importanS 

to determine how well students reason with the subject matter. Similarly, as easy as j: 
is to make questions about statistics depend upon their memory fOl' the correct fonnU'~ 
la, such rote memory is rarely, if ever, necessary in actual applications. Unfortunately 
suitable items are often more difficult to construct than trivial ones. • 

The following principles. adapted from Thorndike et at. (1991), are useful for all 
forms of items. As obvious as some are, they are easily forgotten. 

1 Make the complexity of the items appropriate to the level of the students. Thi& 
includes, but is not limited to, item wording. It also applies to numbers used in mathe
matical questions. Unless you are interested in skill at manipulating large numbers 
small numbers. even single digits, are appropriate for most numerical problems. ' 

2 Define the task, including directions. as clearly as possible. 
3 Inform the students about grading standards, e.g .• poim assignments. 
4 Write the items as simply and in as straightforward a manner as possible. 
S Know what mental processes you want the student to use and ask questions ac

cordingly. Sometimes it is important to test factual knowledge (e.g .• on licensing ex
aminations). but in most academic situations. reasoning from facts is more important. 

6 Use novel material or organization to prevent students from merely reproducing 
lecture and text examples. 

7 Vary the complexity and difficulty of the items. This will improve your ability 
to discriminate at all knowledge levels for reasons considered later in the chapter. It is 
.also a good idea to place some easier "ice breaker" items at the beginning to let stu
dents "settle "in" to the examination, reduce their anxieties, and obtain practice at the 
specific type of item, if necessary. 

8 Make questions as independent as possible. In many mathematical problems. 
one miscalculation can make it nearly impossible for the student to demonstrate any 
knowledge they may possess. For example, it might be more useful to have students 
compute means, variances, and co variances in one problem and then compute a corre
lation with given variances and the covariance in another than to have them do both in 
one problem. 

9 Try to avoid negatively phrased items as much as possible. Use of a few is le
gitimate, such as multiple-choice questions that ask which alternative does not belong. 
Underscore the word "not" for clarity on such items. 

10 Never use double negatives. 

For essay items: 

1 Start the question with words that clearly define the task. e.g. "Compare and con
trast ... ". 

2 Phrase questions on controversial issues so that students are evaluated in tenns 
of the evidence they present rather than the specific position they take. 

3 If all students are tested on the same material. have them answer the same ques
tions and don't give choices. Although it is common to give students choices, they will 
then be compared against different standards. 
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For short-answer items: 

1 Omit only key words. 
2 Do not leave too many blanks. 
3 Put the blanks near the end of ilie question to make it more readable. 
4 Avoid specific detenniners such as "all" and "none." 
S Avoid ambiguous determiners such as "frequently" and "sometimes." 
6 Have each item express a single idea. 

For multiple-choice items: 

1 Be sure iliat ilie stem (lead-in) clearly formulates the problem. 
2 Include as much of the item's content in the stem as possible. This avoids reo 

peating material unnecessarily. 
3 Include only what is necessary in ilie stem. 
4 As in essay examinations, use novel material and examples to avoid having stu

dents reproduce the correct answer by rote. 
S Be Sure that distractors (incorrect alternatives) are plausible. 
6 Use "none of the above" or "all of the above" very sparingly, if at all. Multiple

choice items without these alternatives are comparative judgments of "which alterna
tive is truest," a principle all teachers use when explaining the correct answer since in
correct alternatives may be somewhat true. Adding in either of the two options rruses a 
second consideration: Are all (or any) of the alternatives "true enough to be true?" 
This problem is compounded when the correct answer is disproportionately "all (or 
none) of the above" because it then gives the uninformed student unnecessary infor
mation. Likewise, a student who is fairly sure that two alternatives are correct may 
choose "all of the above" without knowing whether additional alternatives are also 
correct. 

7 Make each alternative of approximately equal length and parallel grammatical 
construction. 

S Randomize the location of the correct alternative. 
9 Make sure each alternative agrees grammatically with the stem. e.g., if the stem 

calls for the singUlar, make sure each alternative is phrased in the singular. Use "a(an)" 
to avoid giving cues about whether the correct alternative begins with a consonant or 
voweL 

10 In general, try to eliminate any factor that makes the correct alternative stand 
out to an uninformed responder. The ideal is to make the alternatives look equally at
tractive to the uninformed. 

11 Try to formulate incorrect alternatives so that they detect common ways in 
which students may be misinformed. This often facilitates explaining to a student why 
a particular question was missed. For example, students in a course in abnormal psy
chology who are given a question describing the symptoms of a major depression 
should also be given the alternative of a bipolar disorder because they are often con
fused. 

Test items should be reviewed after they have been constructed. Good multiple
choice questions are especially difficult to write. Instructors who don't have a teaching 
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assistant will probably need to do their own reviewing, but several people should re
view a lurge-scaJe achievement test. These test construction experts should consider 
each item for its appropliateness, apparent difficulty, and clarity. [tems surviving the 
review should then be reviewed by teachers and other potential users of tbe test. 

The intended length of the test is another important consideration. This in turn reflects 
the time available and the desired reliability. The traditional 50-minute class obviously 
limits the number of items on a classroom examination, and the instructor's experience 
usually dictates the length appropriate to a given topic. Situational factors likewise 
enrer into the time available for tests used for personnel selection. We have noted that 
unreliability somewhat attenuates correlations wi.th other measures. Consequently a 
test may be too short, just it may be too long. It is difficult to estimate how many items 
should be used for a preliminary fonn unless one has had prior experience with similar 
tests. The correlations among the dichotomous items typically used on achievement 
tests tend to be lower than the correlations obtained with multicategory formats. This 
limits the reliability and requires the teSt to be longer in order to achieve the same de· 
gree of reliability. Finally, the more variable the target popUlation, the smaller the 
number of items needed to achieve a given reliability. 

Nothing is more informative than a good pilot study when a test is designed for re· 
peated use. If one knows that items of a particular type tend to have high internal con· 
sistency (e.g., vocabulary items). the pilot version might only require twice as many 
items as eventually desired. Consequently, if 30 items have previously been shown to 
produce a coefficient ex of .80 on a similar test and that reliability is acceptable, start 
with 60 initiaL items. If little is known about a given type of item or if it is known to be 
less internally consistent, be conservative and construct more items for the initial 
form, e.g., 100. As the Spearman-Brown prophecy fonnula indicates, adding items to 
increase reliability obeys a Law of diminishing returns, and it is especially difficult to im
prove the reliability of a test that is already reliable substantially by adding more items. 

An alternative strategy which is sometimes useful is to begin with a smaller number 
of items than is thought to be adequate, e.g., by constructing only 30 items when one 
suspects that 40 items wiU be eventually required to obtain a target coefficient ex of 
.80. Apply these items to a relatively small sample of subjects, e.g., 100. If either the 
total collection of items (30) or the most homogeneous subset (e.g., the best 15 items) 
has a coefficient a of at least .60, it is probably worth constnlcting more items, gather
ing responses from a much larger group of subjects, and perfornting a more complete 
item analysis. The eventual labor of constructing the test in stages is greater than in 
doing everything in one large step, but the project can be abandoned without further 
loss of time and effort if the pilot results are very discouraging. 

Items on tests designed for repeated use should be administered to a pilot sample. The 
pilot sample should be as similar to the eventual target population as possible in terms 
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of range and level of ability. College students obviously provide only limited informa~ 
ticn about primary school children. However, the convenience of college student pop~ 
ulations often makes them useful at preliminary stages. Tests that are poorly under~ 
stood by college students will obviously be even more poorly understood by the less 
educated. The students may also provide feedback about various shortcomings in the 
procedures. The utility of college students is enhanced when the target population is 
difficult to locate. The intended final form must be run on the target popu!ation(s). as 
the need for a precisely representative sample is much greater in content validation 
than in predictive or construct validation. 

The conditions of the pilot study should closely resemble the conditions of eventual 
use. If the test wUl require a severe time limit, use a time limit in the pilot study. Also, 
tests are often used with many different types of subjects. It may be difficult to ensure 
that the group of subjects used in test construction will be representative of all intend~ 
ed groups, but suitable efforts should be made. This applies especially to groups de
fined on the basis of ethnicity and gender. As in any pilot study. one cannot determine 
how many subjects should be used to obtain data for item analysis in advance without 
knowledge of results obtained in similar contex.ts. However, at least 200 normative 
subjects is a rule of thumb to provide sufficient stability to the analysis. Guadagnoli 
and Velicer (1988) have explored this "number of subjects" problem in detail. 

Although content validity primarily rests on rational rather than empirical grounds, an 
item analysis is extremely useful if not essential. This furnishes a variety of statistical 
data regarding how subjects responded to each item and how each item relates to over~ 
all performance. We will tirst describe results for a given test, such as a classroom ex~ 
amination, and discuss how these results may be used for itet'!). selection in the next 
section. The utility of any item analysis is closely related to the stability of the esti~ 
mates which in turn are closely related to sample size. However. much potential infor~ 
mation can be gained from analyzing test results of even a small class. Suitable pro~ 
grams are widely available. 

Any form of test can be subject to an item analysis, but multiple~choi.ce tests pro~ 
vide the most detailed results. The most basic results are the proportions of response to 
each alternative. Since these are proportions and not correlations, they are quite likely 
to be meaningful in samples as small as 50 and are useful in three distinct ways. The 
third cloes not require multiple-choice formats. 

-1 Be quite suspicious of any item if a distractor is chosen more often than the Cor
rect alternative. This suggests that either the instruction or the item" itself is misleading. 

2 Distractors that are hardly ever chosen are too transparently incorrect and can be 
omitted or, preferably. replaced. 

3 The proportion choosing the correct alternative or item p value is the classical 
index of item difficulty (a term that can also apply to sentiments, although "endorse
ment level" is more common). Items with extreme p values should generally be ex
cluded since they do not discriminate among individuals. An important excepti.on is 
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the use of a few simple ice-breaker items designed to reduce students' apprehension 
and to illustrate the remaining items. Chance is .0 on short-answer questions and 11k 
on k-altemative multiple-choice tests. However, even if a class correctly answers a 
four-alternative item one-fourth of the time, they need not be guessing; they could be 
systematically distracted by a particular alternative. The next chapter considers guess
ing in more detail. The p value contains all relevant information about item distribu
tions for dichotomous items typically found on abilities and achievement tests. How
ever, multicategory scoring is common on other tests, such as personality inventories 
designed for construct validation. In this case, the item mean is the extension of the p 
value, and the standard deviation furnisnes supplemental data about the elUent to 
which responses were spread among categories. 

Chapter 10 considers mastery learning, where individuals are intended to eventual
ly respond correctly to most items, thus removing individual differences. A driver's 
test is a common example of a test designed for mastery learning. Not only would it be 
proper to ascertain whether applicants know the speed limit in a school zone, but it 
would be helpful if everyone got the question correct. Tests producing highly skewed 
distributions because the average score is very high or very low cannot correlate well 
with ex.ternal criteria nor have much internal consistency, but this does not mean that 
they have not accomplished their intended purpose if that purpose is mastery learning 
of a domain of content. 

, " 

Content-validated tests need not correlate with any other measure nor have very 
high internal consistency. Tests designed for mastery learning will have especially low 
interna~ consistency when the instruction has the desired effect. The demands of the 
situation mayor may not dictate temporal stability, which is separate from both issues. 
If a content-validated measure is an achievement measure, which it usually is, its tem
poral stability will reflect the effects of any instructional manipulation. General 
achievement tests tend to be temporally stable because it is difficult to teach enough'in 
a short period of time to alter scores appreciably. On the other hand, classroom tests 
are designed to be temporally unstable-if they were not, the educational intervention 
would be useless. 

If the test begins with ice-breaker items, scores on these items might be psychomet
rically worthless because nearly everyone answers them correctly. However, it is often 
useful to score these items separately from the overall test to ensure that students have 
mastered the fundamentals of the test. Even though measures of psychopathology are 
usually developed by construct validation and for different purposes, similar logic is 
used to construct validity scales. For example, the F scale of the MMPI consists of 
an extremely bizarre set of items that are infrequently endorsed even by severely 
impaired individuals. People who do endorse these items may be malingering or 
illiterate. 

An item analysis must describe how each item relates to overall test performance 
and thereby provide discrimination indices, of which there are several. The best items 
on any test are the most discriminating. They probably are less ambiguous, they 
cannot be of ex.treme difficulty, and they tend to make individual differences on the 
final test more reliable. The simplest discrimination index: is the ordinary PM item
total correlation (r) between each item and the total test SCore. If the item is scored 
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dichotomously, it will be a point-biserial correlation (rpb), but the computer program 
perfonning the analysis does not "know" or "care" that this is a special case. If the test 
is divided into sections, such as reading and science, the appropriate index is the corre
lation with the subtest score instead of the total test score. 

One problem with this index of discrimination is that the item score is part of the 
total test score. This makes the correlation of an item with total scores higher than it 
would be if the item were correlated with the sum of the remaining items. Each item 
may correlate substantially with the total score on a test with 10 or fewer items even if 
it does not correlate with any of the other items, but the artifact is negligible on longer 
tests. This spurious source of item·total correlation, called "overlap," can be removed 
with the following fonnula: 

where fYI = correlation of item XI with total scores CY) 
O'y = standard deviation of total scores (Y) 
0'1 = standard deviation of item Xl 

(8-1) 

'ICY-I) = correlation of icem Xl with sum of scores on all items (Y) exclusive of item 
Xl 

For example, suppose a test has 80 items, item Xl correlates .24 with total score, the 
p value of this item is .5, and the variance of total scores is 191. In this case, 'ICY_I) is 
.22, which is only .02 less than the observed item-total correlation. The correction 
given in Eq. (8-1) is usually built into item analysis programs, and there is no reason 
not to use it even when its effects are slight. 

Both the uncorrected and corrected item-total correlations (r) are biased in favor 
of items with p values near .5. This bias causes tests to discriminate in the middle 
of the distribution rather than to be spread at all levels. We will later show why it 
is usually important to have a test discriminate at all levels by including relatively 
easy and difficult items. One possible way to overcome the effect of p is to com
pute the biserial correlation (rbis) between the item and total score. As discussed in 
Chapter 4, rbis assumes that the item score may be thought of as continuous, but 
unfortunately rbis has a very large sampling error which may offset any advantages 
it has in correcting for p. Moreover, the absolute magnitudes of rbLs are misleading
ly high since it makes more sense to think of the items as categorical rather than 
continuous. 

Unfortunately, the sum of item scores (Y) is not really the criterion of interest. It 
changes as items are deleted in the seiection process. Item response theory uses a com
plexly defined statistical estimate of trait magnitude. symbolized a (see Chapters 2 
and 10), and in effect correlates items with this estimate (though not in the sense of r). 
Another possibility is to correlate items with a set of "marker" items whose content is 
indisputably part of the domain rather than with the total test scores. 

Three other possible discrimination indices are (1) the covariance between an item 
and total score, (2) the average correlation between a given item and all other items 
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(the 'Ij of Chapter 6), and (3) the proportion of people passing the item in the top half 
of the class minus the proportion of people passing the item in the bottom half of the 
class. Several variants of index. 3 exist, e.g., the proportions passing in the top and bot
tom quarters. Measures like index 3 were popular as computational shortcuts before 
computer analyses were feasible. None of these three measures affords any particular 
advantage, and the rank orderings of items in terms of anyone discrimination criterion 
tend to be highly similar to any other. Consequently, we suggest using the corrected 
item-total correlation, which we will assume in further discussion. If you use do not 
make the correction on a test with 10 or more items; no harm will result as the correc
tion will have little effect. 

Any item that fails to correlate with a relevant total score other than deliberately 
easy items should be carefully inspected. Such items may be valid, but that rarely is 
the case. It is more Likely that the item is excessively difficult or easy, ambiguous, or 
has little to do with the domain. A cutoff of .3 is an arbitrary guide to defining a dis
criminating item. Most item-total correlations range from .0 to about .4. Negative val
ues suggest bad wording, sampling error, or miskeying. The most discriminating items 
should describe meaningful aspects of the situation. One might question a classroom 
test where the most discriminating items are the color of the textbook cover, the cor
rect spelling of the instructor's name, etc., even though these items probably do corre
late positively with overall performance. 

[tem analysis programs may also include empirical estimates of trace lines (see 
Chapter 2), also referred to as correct response curves or item characteristic curves. 
Classical (linear model) estimates are obtained by computing the proportion of sub
jects passing the item at various levels of overall performance, as inferred from total 
test score. These proportions should increase across the various skill levels; Le., the 
trace line should be monotonic as depicted in Fig. 2-7c. However, it need noc have the 
mathematically well-defined form of Fig. 2-7a or 2-7b. The program may also provide 
the breakdown of chosen alternatives within the performance levels. Poorer and better 
students often choose different alternatives when incorrec[, which in theory may pro
vide diagnostically useful information. Unfortunately, these data are typically unsta
ble. For el<ample, if subjects are divided into quintiles on the basis of overall score, 
each subgroup in a class of 100 will have only 20 students. 

Finally, the analysis should include coefficient ex, which is obviously essential. Re
lated statistics of somewhat lesser import may also be given, such as the value of ex 
projected to a lOO-item test or the average interitem correlation. Keep in mind, howev
er, that item analysis of most achievement tests is secondary to content validity. Most 
of the effort to ensure validity takes place before any data gathering. This is some
what, but not totany, different from construct and predictive validation. Thus, items 
are assumed to possess the desired content, so that the item analysis provides statisti
cal information about the discriminatory capacity of the items in the target population 
when that is important, but ability to discriminate is not always essential to the test's 
use. The 'final decision to include or reject an item in either the initial or final version 
of a test is based primarily on human judgment, regardless of what the item analysis 
shows. Item analyses playa somewhat more important role in construct and predictive 
validation. 
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If an item analysis is conducted on a preliminary form of a test, the next step is to se
lect the "best" items to be used on the "final" version of the test (quotes are used be
cause all tests need to be updated). This section is not directly necessary for classroom 
examinations and other tests that are intended to be used once. The primary criterion 
for including an item is the discrimination index, e.g., the corrected item-total r. Under 
all practical circumstances, items with high item-total r values have more variance reo 
lating to what the items have in common and add more to the test's reliability than 
items with low r values. How well this is done depends on the number of discriminat
ing items (r ~ .3). The word "practical" was inserted in this guideline because Lo
evinger (1954) pointed out that if items are very highly correlated, subjects will basi
cally divide into those who pass nearly all items and those who fail nearly aU items 
even though their ability may be distributed along a continuum. This can happen for 
both judgments and sentiments when essentially the same question is asked. It will not 
happen if the item distributions are diverse. 

A related consideration is that even though coefficient ex. is important to construct, 
content, and predictive validation (in that order), do not view maximizing it through 
item selection as an end in itself. As we will discuss later in the chapter, coefficient Ct. 

will be maximized when the test items have maximally similar distributions (p values 
for dichotomously scored items) and is therefore peaked (Lord, 1952a, 1952b), but 
that is not always the goal of test construction (Brogden. 1946; Loevinger, 1954). In 
fact, we will later show why it is desirable to- mix easy and difficult items even if it 
sacrifices a slight amount of reliability (also see the section titled "Limitations On the 
Reliability Coefficient's Utility" in Chapter 7). 

Thus, p values may serve as a secondary criterion for item inclusion. We have 
noted that both the corrected and uncorrected item-total r values are biased toward 
items with intermediate p values. If r were the only criterion, item difficulties might be 
concentrated in the .5 to .6 region. In turn, this would concentrate the ability of the test 
to discriminate in the middle of the attribute continuum. Having items of varied diffi~ 
culties may cause a marginal sacrifice in coefficient ex. However, they will increase the 
test's ability to discriminate at all levels of the continuum as long as they correlate at 
least moderately with the total score. Quite often, the most discriminating items will 
have a spread of p values. U so, fine. 

If a sufficient number of items discriminate satisfactorily. item selection can pro
ceed. If this number is limited and you cannot create an additional pool, you have no 
choice but to use the existing pool. Otherwise, repeat the preliminary testing with a 
new set of items and combine the new set with the initial set to construct the final 
form. Selection may proceed by investigating the reliability of successive item collec~ 
tions. First, rank the items in terms of their discrimination indices, e.g., item·total r 
values. The basic strategy is to apply coefficient ex to a set of items with the highest 
item-total correlations, replacing the least discriminating in this group with items hav~ 
iog more desirable p values if necessary. The size of this initial set can range from 5 to 
30. More items are needed in this initial set when the average item-total correlation is 
low and the intended reliability is high. If this set produces the desired reliability, stop 
adding items. If not, add the next 5 or to items in the series. again making substitu~ 
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tions based upon the secondary p value cliterion, and recompute coefficient a. Keep 
adding sets of 5 or 10 items until the desired reliability is reached. 

In princi.ple, it is possible to adopt a stepwise item selection procedure (see Chapter 
6), such as SPSS' RELIABiliTY. Both authors, as well as many other investigators, 
are opposed to the use of stepwise selection because of the extent to which it capital~ 
izes upon chance. This is especially true when a theory can dictate selection. The argu
ments against a stepwi.se algorithm are weaker here because the suggested alternatives 
are also data-driven, and there is usually no theoretical reason to prefer one item over 
another. The key to successful item selection is readministration of the test in a new 
sample. 

How many Hems need to be added depends on the item-total r values and on the re~ 
liability of the first set of items. Adding very poorly discriminating items (r < .05) will 
add little if anYthing to coefficient a. Conversely, sizable increments in the reliability 
can be achieved if there are numerous items which are at least moderately discriminat~ 
ing (r > .20). If the desired reliability is obtained, the item analysis is complete; if not., 
add more items. Much depends upon trial and error. If the reliability either fails to in~ 
crease or decreases at any point, there is no use trying out larger numbers of items 
since you have already started with the best items. 

One can plot coefficient (l for tests of different lengths. Figure 8-1. shows a typical 
curve. Also shown is the expected increase in reliability from lengthening a five-item 
test when the five items have a reliability of .40 based upon the Spearman~Brown 
prophecy formula (Eq. 6-18). The obtained reliabilities are lower than predicted relia
bilities because Eq. 6-18 assumes that the items added at each step have the same cor
relations with total scores as the original five items. The method of item analysis rec~ 
ommended here uses the most discriminating live items first so that later items 
correlate less with total scores. Consequently the obtained reliabilities will deviate 
progressively from the predicted reliabilities. Coefficient a may even decline as the 
least discriminating items are added. 

Because selecting items takes advantage of chance, continue adding items until C~ 
efficient a is comfortablY above the target reliability. For example, if a reliability of 
.80 is needed in the final test, it would be wise to keep selecting items until coefficient 
(l reaches at least .85. If there is no predefined target reliability. stop adding items 
when the curve levels off, as it does in Fig. 8-1 past 50 items. 

Assuming one can derive a set of items with the desired reliability, the next step is 
to plot the frequency distribution of total scores. Although there are legitimate excep· 
tions (see Chapter 5, especially Fig. 5-2), the usual desired shape is symmetric and ap· 
prox.imately nonna1 because there is usually as much interest in low scores as in high 
scores. If the distribution is satisfactory, item selection is complete. If the distribution 
of scores is undesirably skewed, add easier or more difficult items as the case may be. 
Some applications, considered in the next chapter, work best with skewed distribu~ 
tions. 

In principle, the standard error of ~e item-total r may be used as a guide to the 
minimum acceptable discrimination index, but there is usually no need co be highly 
concerned about the statistical significance of item~tota1 correlations, especially in 
large samples of people. Nearly all item-total correlations will be positive within 
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FIGURE 8·1 Predicted and obtained reliabilfties of tests varying In length from 5 to 60 items when the reliability 

of the lirst 5 items Is .40. 

sampling error, and so one is being unduly conservative in rejecting items when their 
correlations with total scores are not statistically significant. If you do use inferential 
tests, it is appropriate to make them one-sided. 

What should one do if this approach to test construction fails? The answer always 
involves going back and creating new items, perhaps oftotally different form, or aban
doning the issue entirely. It will probably fail if the reliability of the first 30 dichoto
mous items is no more than .40. One probably has already used the best items, and so 
there probably will not be enough good items to improve the reliability. The measure 
may fail for three basic reasons. 

1 The items may be from a poorly defined domain where correlations among items 
are uniformly low. The reliability will grow slowly as the number of items increases, 
but the curve will not flatten out altogether. Achieving a reliable test will require a 
very large number of items if it is possible at all. 

2 The items may be factorially complex (multidimensional), so that clusters of 
items have relatively bigh correlations with one another but very low correlations with 
members of other clusters. This situation is very difficult to distinguish from an ill
defined domain. In both cases correlations with total scores are low and coefficient CL 

tends to rise, but slowly, as more items are added. However, in this case, the range of 
interitem correlations will be relatively large. Unfortunately, "relatively large" depends 
upon the sample size and domain(s). 

3 Some items may have relatively high correlations with one another, but other 
items may have correlations near zero with all items. This implies that some good 



Norms 

308 PART 3: CONSTRUCTION OF MULTI-ITEM MEASURES 

items can form the nucleus of a test, but the reliability cannot be increased by adding 
items. This condition can be detected by a sudden drop-off in the size of item-total r 

values in the ranking, e.g., if the thirty-fifth item has an r of .21 but the thirty-sixth 
item has an r of only .09. 

How can one recognize which of the three circumstances prevail, and what should 
be done after the circumstance is recognized? It is somewhat easy to distinguish the 
third circumstance from the other two by a marked falloff in item-total correlations at 
some point in the list of items. If that occurs, study the good items and try to determine 
the nature of their content. Try to construct more items of the same kind, administer 
them along with the original good items to a new group of subjects, and submit all 
items to another item analysis. 

If the average item-tocal r value is low, it is very difficult to teU whether this is be
cause the domain'is poorly defined or factoriaUy complex. If the low value is caused 
by factorial complexity, it cannot be because of the presence of only two or three 
strong factors. Most investigators can probably guess that mUltiple factors are present 
and construct different tests to measure them. Moreover, item-total r values will not 
necessarily be low, for reasons noted in Chapter 6-high reliability does not necessari
ly imply that the items measure only a single factor. All things held equal such as the 
number of items, items that measure only one factor wilt intercorrelate more highly on 
average than items that measure more than one and therefore generate a higher value 
of coefficient Ct. However, the "all things" are not always "equal," and it is quite easy 
to find a set of items that measure mUltiple factors which produce a higher value of co
efficient Ct than another set of items that measure a single factor but which contain 
more random error. 

The bottom line is that you are most likely to find a sman to modest number of 
items in the initial set that correlate well with tota! score, a fairly large number that 
do not correlate at all, and a sizable block in the middle. Even those items that are 
most" discriminating do not correlate extremely well in an absolute sense. It is highly 
unlikely that you will find items which correlate more than .5 with total score. This 
means that 75 percent of the variance in even the best item is unrelated to total 
score. It illustrates the essential point that we stress throughout this book; test con
struction can be thought of as the process of making a reliable total score out of un
reliable items. This can be done in a surprisingly high proportion of cases, but one 
should never lose sight of the inherent unreliability of individual items. We will be 
critical of approaches that take an alternative point of view at several points in this 
chapter and elsewhere. 

Establishing norms is one of the most important steps in standardizing large-scale 
achievement tests. Broadly speaking, "norms" are any statistical data that provide a 
frame of reference to interpret an individual's scores relative to scores of others since 
an absolute number correct has little meaning in isolation. If the test is deSigned to 
measure academic progress, norms might relate the score to those of a national crosS 
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section of representative students. Local norms, reflecting the region (perhaps city) or 
particular schoo! are also useful. 

Norms are less essential when a measure is intended for use in group research 
rather than individual decisions, but content-validated measures are usually intended 
for individual decision making. The main use of nonns with measures of constructs 
and predictor tests is to indicate whether research results might have been different 
with different types of people, e.g., because of range restriction. Construction of nonns 
for important achievement tests is almost as much work as construction of the tests 
themselves. (For some of the particulars, see Angoff, 1971.) Great care must be taken 
to ensure the adequacy of sampling and usually requires the testing of thousands of 
students. It is vital that the normative population represent different genders, races, 
and socioeconomic statuses well. Statistical analyses then produce the final norms. 
One usually obtains separate norms for different parts of the test and the various de
mographic groups. 

Nonns usually are expressed both as percentiles and as standard (z) scores to expe
dite communication. A "percentile" indicates the percentage of persons in the norma
tive sample at or below a particular score. Thus if 80 percent of the students obtain a 
raw score of 122 or less, a person with a raw score of 122 is at the 80th percentile. De
tails for handling situations in which more than one individual obtains the same score 
are found in nearly all introductory and intermediate statistics textbooks, e.g., Hays 
(1988, pp. 183-185). The z scores in turn are often transformed. Some commonly used 
transformations are the following. 

1 The deviation IQ, used in measurements of intelligence, in which !-l = 100 and 
a = 15 

2 McCall T scores, used in the MMPI and in educational statistics, in which f.L = 50 
and a= 10 

3 Scores on sections of the Scholastic Aptitude Test and Graduate Record Exami
nation in which f.L = SOD and a= 100 

4 Stanine (standard nine) scores, used in the military, in which!J.= 5.5 and 0'= l. 

'These scores are sometimes normalized (as in the revised MMPn, but sometimes 
they are not (as in the original 'tv1MPI) even though, strictly speaking, any of these 
transformations implies normalization. If the original distribution is approximately 
nonnal, the effects of normalization will be slight. Because a percentile rank denotes a 
person's standing directly, it is usually easier to interpret to a layperson than to a trans
formed standard score. However, it is extremely easy to translate back and forth be
tween these measures, e.g., knowing someone has a z score of + 1 or a T score of 60 
denotes that they surpassed approximately 84 percent of the Ilormative population. 
Also, transformed scores are either approximately linear with respect to raw scores (if 
the data are normalized) or exactly so (if they are not). 

Classroom test norms are used to convert the numerical score on the test to what
ever the institution uses for grading. Sometimes grades are "absolute," so that 90 to 
100 is an A, 80 to 90 is a B, etc. This procedure is so standard in American primary 
and secondary education that it is difficult for those without a psychometric background 
to realize that it is an arbitrary outcome of the difficulties of the various measures 
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comprising the average. It is much more meaningful to think of grades as reflecting 
judgments based upon the instructor's conception of the various categories, which are 
hopefully equitable in informing students of the quality of their performance. 

Referencing a raw score to scores of others (e.g., as a percentile) is not the only 
way to make a score meaningful. A score may be criterion-referenced by describing its 
implications for relevant behaviors; e.g., a score of 50 on the admissions test means 
that the individual has a .75 probability of completing a given curriculum successfully. 
Alternatively, a score may be domain-referenced by relating it to the domain being 
measured, e.g., a score of 25 on a particular vocabulary test implies that the individual 
has a vocabulary of 150,000 words. 

The Role of External Correlates 

We have stressed that measures designed through content validation basically need not 
correlate with any external criterion to be valid. Even though instructors hope that 
final examination scores correlate posiei vely with whether or not students take addi
tional courses in the area, they are not designed for that purpose, and it is no reflection 
on the test if there is no correlation or even if it is negative. Lack of positive correla
tion may, of course, be diagnostic of problems in the course, such as the extent to 
which the instructor motivates the students. The only meaningful issue is how content
related the items are, and that is better addressed by judgment than by statistics. As we 
have also noted, a content·validated test certainly might correlate with some relevant 
criterion, but spurious factors like range restriction might well attenuate this correla
tion if the test is used for selection, as is commonly the ·case. 

A test need not have any construct or predictive validity to have content validity, 
but this does not mean that one should not ~orrelate the test with other measures. 
Seeking external correlations is especially valuable when the test might be challenged 
on legal grounds. If a clerical position requires only high school-level reading skills, it 
is inappropriate to require college-level reading skills to take the test. Correlating test 
scores with reading comprehension scores furnishes much of the information relevant 
to this issue. Gender and ethnicity are frequent correlates of test scores, which often 
leads to legal challenges of tests used for employment. We consider the topic of bias in 
the neltt chapter, but for the present note that the best single line of defense is to have 
tests clearly content-referenced. 

CONSTRUCTION OF TESTS DESIGNED FOR CONSTRUCT VALIDATION 

The domain of content for a content-validated achievement test can be rather arbitrary 
and heterogeneous, as it may be dictnted by a source external to the investigator such 
as a jab description. A classroom test may properly involve content sampled from a 
series of chapters chosen for scheduling convenience. In contrast, a test designed for 
construct validity cannot be developed without a theory that dictates the properties of 
that measure (see Chapter 3). This [00 muse lead to a domain of content. We will stress 
the importance of making that measure homogeneous with regard to content. 

We will further stress the many similarities between measuring personality traits 
and abilities. There are, of course, some differences between these situations. Person-
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ality tests are measures of typical performance, since most items ask what people usu
ally do in a situation. Items used on such tests usuaUy involve sentim~nts. [n comrasc, 
abilities tests are measures of optimum performance to determine what people can do 
at their best. Test items are usually judgments. However, we will focus on the more 
significant similarities, noting that historically personality measurement has borrowed 
more from abilities measurement than the reverse. Jackson (1971) provides a particu
larly thoughtful discussion of personality assessment. 

This section will present something of a paradox: A good construct is homoge
neous with respect to its content, but heterogeneous from the standpoint of the 
methods used to infer this content. Thus, a measure of numerical fluency should 
ask questions about the ability to manipulate numbers and be minimally sensitive to 
vocabulary. Likewise, a measure of depression should be minimally affected by 
anxiety. However, while seeking this homogeneity of what is measured, it is impor
tant that one define how it is measured broadly lest the same question be asked re
peatedly. The resulting specific piece of behavior is unlikely to be able to address 
general issues of behavior. Knowing how to add 2 + 2 is an indicator of numerical 
fluency, and a sad mood is an indicator of depression, but there is more to both 
constructs. 

The Hypothesis and Domain of Content 

Chapter 1 noted that some investigators are more formal than others in explicating a 
theory and that this diversity is healthy. However, it is important that an investigator at 
least be able to describe the properties of the attribute that is to be measured, regard
less of whether this attribute is a personality trait or an ability. Recall that construct 
validation simultaneously tests the theory at the same time that it tests the measure, a 
difficult process of "bootstrapping." This book focuses upon the properties of the mea
sure, but these include the ability to translate the deductions of the theory into mean
ingful correlates. In particular, the hypothesis should describe its domain of content, 
paralleling that required for content validation. The more properties the construct pos-

. sesses, the more broadly it can be measured. 
Any concept of numerical fluency thus implies questions that deal with simple op

erations upon numbers. Similarly, numerous investigators have been interested in mea
suring psychopathological traits like depression. The American Psychiatric Associa
tion's (1987) Diagnostic and Statistical Manual, (3d ed.) provides a listing of relevant 
symptoms for this and other conditions that can serve as starting point to define the do
main. Questions, such as asking individuals whether they feel sad or appear sad to oth
ers, are therefore implicit. Independent behaviors that are observed in conjunction are 
particularly important. For example, there is nothing inherent in a sad mood that 
would cause an eating disturbance, but the fact that these constitute part of the clinical 
syndrome of depression allows both types of items to follow from the domain. 

Once the domain has been defined, the creativity of the investigator is needed to 
formulate specific items that follow from the definition. Consequently, item pools 
should be regarded as samples of content, and they should be evaluated in terms of 
how well they sample the implied domain. In particular, earlier views of personality 
assessment (Meehl, 1945) stressed the importance of selecting items on the basis of 
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their correlation with relevant criteria. We will criticize empirically oriented approach
es to item selection later in this chapter although it is essential to validate scales. 

Subtle items are often needed for personality measures, as lack of such items may 
allow individuals to fake results in the desired direction. However, as Jackson (1971) 
has noted, well-developed domains often define items whose responses would not be 
known by someone attempting to fake the item. The ability to generate such items is a 
benefit of a well-specified domain, particularly one that has been based upon prior re
search. The presence of eating and sleep disturbances in depression exemplifies less 
obvious features of the construct. 

Content Homogeneity 

Chapter 3 contrasted the measurement (internal) and structural (external) properties of 
a test. The measurement properties include coefficient a. reliability and temporal sta
bility, which we have discussed, and homogeneity of content. A test's content is ho
mogeneous when it has little measurement error (a high coefficient IX) and measures 
only one attribute. Homogeneity implies that the measures are mathematically unidi
mensional (Le., that subjects vary along the scale measuring that trait in only one way) 
and unifactor in a sense to be specified in Chapters 11 through 13. Chapter 6 noted that 
a large value of coefficient IX does not imply that measures are unidimensional. A mea
sure of a construct may be heterogeneous either because it contains much random 
error or because its content is diverse. 

The content of a construct must be homogeneous for its correlates to be inter
pretable unequivocally. If a test confounds several attributes, one cannot readily deter
mine which or both are responsible for the correlation. The use of unnecessarily com
plex wording in measures designed to describe numerical fluency illustrates one form 
of this confounding in abilities measures. The California F scale (Adorno, Frenkel- ' 
Brunskwik, Levinson, & Sanford, 1950) was once a widely used personality measure 
designed to assess fascist beliefs. Unfortunately, all of its items were keyed ''yes,'' so 
that individual differences in the tendency to say yes were confounded with the trait in 
question. One of the dilemmas of construct validation is that the need for diverse cor
relates of a measure pushes investigators in one direction. and the need for homogene
ity pulls them in another. Both are essential. 

The heterogeneity of the content of these tests allows them to correlate with differ
ent measures for different reasons. A key point is that the confounding is not part of 
the definition of the construct. The term "numerical reasoning" implies nonverbal 
skills, and most conceptualizations of fascism do not include the simple tendency to 
say yes as part of the definition, though saying yes to authority figures could be. Peo
ple who are high in the trait would differ from people low in the trait for different rea
sons, but these different reasons are inherent in the definition. This heterogeneity 
would be a legitimate part of the test if it were part of the domain of content implied 
by the construct. For example, some items on the MMPl's hysteria (Hy) scale describe 
symptom complaints and others describe naivete. If these can be regarded as compo
nents of the concept (which is a legitimate topic of debate), the confounding would be 
proper. 
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The homogeneity of a test's content is reflected in, but not completely defined by, 
the average correlation among items and in the pattern of those correlations. If the av
erage correlation among items, and therefore the average item-total correlation. is low, 
the items are heterogeneous. This may be because of large amounts of random error or 
because a number of different factors are present in the items. The latter can produce 
clusters of relati vely homogeneous items which might have either near-zero or nega
tive correlations with one another. Despite the demands for breadth in a scale, it is nec
essary that (I) the average correlation with total scores be high and (2) the spread of 
correlations about this average be small. 

Thissen, Steinberg, and Wainer (1991) outline three fonnal approaches to deter
mining whether a set of items is unidimensional. These involve fitting the item re
sponses to (1) a factor analytic model, as discussed in Chapters 11 through L3, (2) an 
item response theory (IRT) model as described in Chapter to, and (3) a log-Linear 
model as considered in Chapter 15. All three proceed from formal mathematical defi
nitions that, while similar in an abstract sense, have somewhat different specific 
properties. However, measures designed to assess broad, useful traits may not fit any 
of these models, and the misfit may reflect desirable variation in method variance. 
Conversely, high average correlations, while important to content homogeneity, are 
not identical to it. 

Methodological Hetefogeneity 

Most attributes can be measured in several different ways. This implies methodologi
cal heterogeneity in the Campbell and Fiske (1959) sense of Chapter 3. Although the 
ability to add pairs of two-digit numbers quickly is germane to numerical fluency, 
defining numerical fluency solely in terms of such items wouLd exclude fluency in the 
other fundamental operations of subtraction, multiplication, and division which are at 
least implicit 1n the domain. (There may be reasons to limit the definition to fluency in 
addition, but this should be made explicit in defining the domain of content.) The sim
plest example for sentiments is to have some items keyed "yes" (or "agree," etc.) and 
the remaining items keyed "no." Thus, some depression items would imply that "yes" 
denotes depression (symptom admission items) and other depression items would 
imply that "no" denotes depression (symptom denial items). These can often be con
structed by suitable choice of wording, e.g., asking "1 sleep as often as I usually do" 
instead of "My sleep has been disturbed recently." Being depressed is not identical to 
being "not undepressed." The former involves affirmation of symptoms, and the latter 
involves denial of positive mood states, which are not identical. 

We will use the term "methodological heterogeneity" somewhat broadly to cover 
several different ways that measures purporting to reflect a given domain of content 
can be studied. These include, but are not limited to, systematic differences in (1) type 
of measure, e.g., self~description, observation; (2) situation, e.g., psychiatric evalua
tion, employee selection, etc.; (3) subject population, e.g., primary school students, 
college students, employees, retirees; and (4) item keying direction. Houts, Cook, and 
Shadish (1986) discuss their importance as part of what they term "critical multi
plism," which deals with establishing a broad perspective on psychological research. 
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In general, failure to provide methodological heterogeneity leads to traits that are de
fined in extremely narrow terms and whose properties are confounded with the chosen 
method. Their narrowness will limit correlations with variables of interest to the gen
eral trait, and the confounding will cause them to correlate with variabLes that are noc 
of interest. At the same time, it is not necessary that a measure apply to all possible 
methodological domains: A measure may require self-report and may be suitable only 
for use with adults, for example. Specifying the domain of methodology is as impor
tant as specifying the domain of content. 

It is quite probable that addition items would correlate more highly with other addi
tion items than with multiplication items on a test of numerical fluency and that symp
tom admission items would correlate more highly with other symptom admission 
items than with symptom denial items on a pathology measure. These are conditions 
which indicate that more than one factor is being measured, which in fact is the case. 
However, this multiplicity of factors may be an artifact of methodological heterogene
ity, which is desirable, rather than content heterogeneity. If so, it would violate parsi
mony to attempt to use the measures separately. In particular, we support the rather 
traditional point of view that one should attempt to approximately balance the number 
of sentiment items keyed "yes" and "no" (agree versus disagree, etc.). Failure to do so 
confounds the measure of the trait with individual differences j.n willingness to say yes 
(acquiescence). 

Methodological heterogeneity can therefore cause correlations among items to clus
ter, just as content heterogeneity can. If you have access to data'obtained from a short 
scale on which items are keyed in different directions, say agree versus disagree, per
form the fonowing simple experiment. Correlate all items with each other. Then, com
pare the average correlation between items keyed in (1) the same direction versus (2) 
different directions. Your will probably find that the average correlation between items 
keyed in the same direction is larger than the average correlation between items keyed 
in different directions. This is evidence that "agree" and "disagree" items form differ
ent clusters or factors in the sense of Chapters 11 through 13. However, the factors 
represent differences in method rather than content. There are several examples of 
how item keying can produce clustering. These go at least as far back as Jackson and 
Messick (1962). The second author presents some recent examples that illustrate how 
the distinction between content and meth9d variance is still often ignored (Bernstein & 
Eveland, 1982; Bernstein & Garbin, 1985; Bernstein, Teng, & Garbin, 1986). Decid
ing whether factors represent differences in method or content is not a statistical deci
sion. It is a matter of defining the domain. 

Correlations among clusters should first be corrected for attenuation since the ob
served scores are derived from very fallible parts of scales. The higher the correlation 
among clusters, the tess possible it is for the clusters to relate differentially to external 
criteria, a point that follows directly from the logic of multiple regression (Chapter 5) 
and is implicit in Campbell and Fiske's (1959) wark. There is no reason to separate 
groups of items whose average between-cluster correlation is high even if it is lower 
than the within-cluster correlation. Some recent methods of analysis easily provide 
statistically significant, but misleading, evidence that clusters are different. Two con
structs are unparsimonious compared to one, and the two scales will be less reliabLe 
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than the single composite scale. In addition, the regression weights in predictina a cri
terion will not differ from the equality implied by using a single scale. Howeve~ if the 
scales defined by different methods correlate very poorly with one another, say .7 or 
less, the construct needs refonnulation. 

We have used item keying as an ei{ampJe of method variance because it is very 
explicitly defined and easy to investigate. However, it is not the most important. The 
social desirability of response alternatives is perhaps the most important SOurce of 
method variance for sentiments since it always accounts for much of the variance in 
response distributions over items concerned with sentiments, if not the most. Know
ing the popularly chosen alternative for a given item will probably predict an indi
vidual's choice better than knowing the individual. In general, items should reflect a 
variety of situations. For example, measures of extraversion could ask whether the 
individual likes to go [0 parties with friends but should also include situations with 
strangers. 

It is still somewhat a matter of debate how much individual differences with regard 
to such variables as social desirability are responsible for individual differences on 
substantive measures, but two possible artifacts should be kept in mind. One is that so
cial desirability clearly varies over the context of testing-individuals seen in a psy
chotherapeutic setting find it more appropriate to endorse self-descriptive items about 
pathology than individuals seen in an employment setting. Indeed, it should not be 
very surprising that the second author noted that people seen in therapy for court-man
dated child custody rulings portrayed themselves as ''healthier'' than people who vol
untarily initiated therapy. Second, to the extent there are individual differences in ten
dency to respond on the basis of social desirability, tests may tend to correlate because 
they share social desirability variance. Ch8pter 9 considers additional incidental vari
ables such as acquiescence. 

This chapter is primarily concerned with scaling people rather tban stimuli, but so
cial desirability obviously plays a major role in both situations. Far more people claim 
they watch culturally approved events like the opera than actually do. The problem 
of eliminating social desirability in such areas as market research is actually more 
of a problem than it is in areas like personality assessment because the desirability is 
part of the stimulus. Chapter 9 illustrates the strategy of measuring the subject under 
conditions that provide differences in social desirability. 

Although it is not employed in any single assessment device, the most obvious 
form of methodological heterogeneity is to combine self-report with behavioral obser
vation or, alternatively, with a psychophysiological indicator. Raymond Cattell (1957. 
1978; Cattell, Eber. & Tatsuoka, 1970) was one of the first to stress the importance of 
converging operations in personality measurement. The success with which this can be 
done depends upon the characteristics of the trait. As noted in Chapter 3, some traits, 
like depression. lend themselves to this particular form of multimethod converging op
erations since they tend to be reported by the individual and are apparent to external 
observers. Conversely, others, like anxiety, do not. Using different types of observers 
is another way to explore different methods. For example, peers and supervisors might 
rate individuals in a work setting, perhaps incorporating a generalizability analysis as 
discussed in Chapter 7. 
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Relations among Measures and Constructs 

Jackson (1971), umong others. stresses the importance of a multivaria.te approach Con~' 
sidering the relations of items to scales and scales to each other. Personality assess
ment, in particular, has long been afflicted by a multiplicity of construct names that are 
ill-differentiated from each other and most likely overlap in various ways. One must 
assess what is important not to incorporate into a scale as well as what is important. [n 

a more general sense, numerical fluency needs to be considered at least in the conte;(t 
of verbal fluency, and depression needs to be considered in the concept of other 
pathologies. 

An investigation of a given measure should include variables defined by methods 
other than that used by the proposed measure. For example, if the proposed measure(s) 
is (are) based upon self-report, as is perhaps most common, it is wise to include ability 
measures and measures based upon observation. Data derived solely from self-reports 
tend to be of limited value because a common method variance is imposed upon all 
measures, inflating the apparent structure. 

Whereas many in the past took a narrow operationalist perspective ("Intelligence is 
what an IQ test measures"; also see Chapter 1), investigators now distinguish. between 
a measure as an indicator of a construct and the construct itself. Methods of factor 
analysis, next considered, allow this to be implemented, but these methods also con
tain many hazards. However, when properly used, they allow data from several fallible 
measures to be combined into a more meaningful index. "Fallible" in [his context 
means both imperrecrly defining and unreliable in the classical psychometric sense. 
For example, researchers using demographic data often need to define a variable like 
the nation's economy at a given time. Measures like the unemployment rate, retail 
sales, and number of housing starts are aU related to this concept, but no single mea
sure can be regarded as definitive. Similar considerations hold for performance mea
sures such as speed and accuracy of response. Linear combinations of indicators can 
provide the necessary breadth. 

The Role of Factor Analysis 

Many investigators automatically think of using factor analysis whenever questions of 
structure arise. We will discuss specific strategies in Chapters 11 through 13. For now, 
we will stress an important conceptual difference between the factor analysis of whole 
tests (scale-level analysis), which we heartily encourage, and the factor analysis of in
dividual items (item-level analyses), which we do not. There are defensible approach
es to item-level multivariate analyses, but they are complex and typically unnecessary. 
Given that a domain has been well thought out, the same basic procedures used in the 
item analysis for content-validated tests generally suffice. Ordinary approaches to fac
toring items (i.e., those which may be appropriately applied to scale-level analyses) 
are almost guaranteed to produce spurious results. Such spurious results may lead to 
inappropriate criticism of sound scales or, what is basically the same thing, lead an in
vestigator to falseJy believe that the scale he or she bas developed is inappropriately 
multidimensional when in fact it is not. 
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First. factor analytic results usually are clearest when correlations among measures 
vary considerably, especially when they faB in well-defined groups. For example, if 
some correlations are zero and others are .70, the measures will form strong factors. 
Two measures that each relate strongly to a factor will probably correlate substantially 
with each other and poorly with measures that relate strongly to other factors. Groups 
of measures will each then clearly define particular factors. This outcome is quite pos
sible in scale-level factoring but is improbable in item-level factoring. simply because 
of the huge difference in reliability of whole tests versus individual items. The average 
correlation among items that are not simple variants of one another is less than .20 on 
most tests, and the variance of these correlations is small. Typically. two-thirds of the 
correlations among items are between .10 and .30. A larger range is just as likely to 
have arisen from sampling error than true popUlation differences among correlations. 
This small variance of correlations makes it difficult to document different factors 
when they actually exist. 

Correlations among multi category items such as Likert scales and the variance of 
these correlations usually are higher than correlations among dichotomous items. Con
sequently. factor analyses of multicategory items have a slightly higher probability of 
not producing spurious outcomes, but correlations among multicategory items are still 
typically much lower than correlations among whole scales. Moreover, Bernstein and 
Teng (1989) found that multicategory items were actually more subject to artifact than 
dichotomous items with certain approaches to factoring. 

Second, traditional exploratory approacbes to factor analysis can encourage an un
bealthy and unnecessary form of "shotgun empiricism" because they are not designed 
to test structures defined in advance. This is not true of factor analysis in general since 
confinnatory approaches can test theoriC"'! of factor organization and exploratory 
approaches can be used properly. However, some investigators believe (thOUgh they 
may be loathe to admit it) that factor analyses and related methods automatically grind 
out the "true nature of things" in the absence of any theory. One can almost hear such 
individuals saying, "Give me a large enough collection of items to factor-analyze and 
a huge computer and I can completely determine the nature of human attributes." 
From a technical standpoint, modern computers allow such analyses to be conducted 
more easily, unfortunately. 

The reader surely has heard about the evils of shotgun empiricism before. Progress in 
science must be guided by theories rather than by random efforts to relate things to one 
another. Good theories greatly reduce the amount of trial-and-error effort, and people 
who explore theories stand at the vanguard of each field of science. It is just as important 
to formulate theories regarding attributes to be measured as it is to develop methods of 
analysis. This point applies with great force when factor analysis is applied to a polyglot 
collection of items in the hope of obtaining important measures of human attributes. 

A third problem is that conventions used in factor analysis evolved from the analy
sis of continuous variables and can be misleading when applied to item-level data 
which are inherently categorical (discrete). Conventional item-level factor analyses 
typically are plagued by two distinct problems, both of which lead, virtually without 
exception, one to conclude that a set of items are multidimensional when in fact they 
are unidimensional. Bernstein and Teng (1989) illustrate these problems and provide 
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references to the long history of this problem (e.g., Ferguson, 194L; Carroll, L945). 
The end result is that items with similar distributions will tend to correlate more highly 
with one another than with items with dissimilar distributions (see Chapter 4), assum
ing that there is any structure at all. Easy or commonly endorsed items will thus tend 
to form factors that are distinct from difficult or less commonly endorsed items even 
when they are simuLated from a model that assumes they measure the same underlying 
variable and are unidimensional in the Guttman scale sense. Gorsuch (1983) provides 
a relevant illustration. 

The results in short will bear more closely upon the univariate properties of items 
such as their direction of keying and response distributions rather than the multivariate 
structure. Not all journal reviewers are familiar with t!lese artifacts even though they 
were noted over 50 years ago. Spurious arguments that scales are multidimensional are 
perhaps the most common artifact in the multivariate literature. Unfortunately. some of 
the newer methods of factor analysis are even more likely to provide spurious results 
than are older methods because they are more sensitive to all differences in correlation 
magnitude, including ones that arise spuriously from differences in the univariate 
structure of items. 

Item Analysis and Selection 

The item analysis for tests designed for construct validation is very similar to the 
item analysis for tests designed for content validation. The item statistics (p values for 
dichotomously scored items, mean and standard deviation for multicategory items) 
.provide information about item difficulty for judgments and endorsement level for 
sentiments. 

Whereas the corrected item-total correlation is the preferred discrimination index 
for content-validated tests, Jackson (1971; Neill & Jackson, 1970) suggests a variant 
for use in construction validation. The measure adjusts total score for irrelevant vari
ables (his example involves social desirability) by using the difference between the 
squared item-total correlation and the squared correlation between the item and the .ir
relevant variable rather than the item-total correlation alone as the selection criterion. 
A variant is to look at the two correlations separately. One problem that may arise is 
that items that correlate highly with total score also correlate highly with the irrelevant 
variables. Jackson's procedure is not unlike the use of marker items in content valida
tion since the intent is to improve upon the criterion with which the item is correlated 
over a fallible total score. Indeed, methods of item analysis largely differ in terms of 
what is defined as the criterion against which individual items are correlated. 

In general, somewhat lower standards of reliability (coefficient a.) are tolerable for 
preliminary forms of construct-validated measures than for content-validated mea
sures. This is not because of any difference in the two types of measures, but because a 
construct is more likely to be used to obtain correlations and less likely to be used for 
making decisions about individuals. We have stressed bow the effects of measurement 
error, while not negligible, are usuaUy not the major reason one fails to find correla
tions with external criteria. Ultimately, however, a construct-validated measure should 
have a high coefficient cc given the need for content homogeneity and the likelihood 
that it will eventually be used for making decisions about individuals. 
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It is usually easier to modify a typical performance item used to measure senti
ments than it is to modify a maximum performance item used in assessing abilities 
when its response distribution is undesirable. For example, suppose subjects are asked 
to agree or disagree with the question "r get headaches very frequently." The group 
sampled might provide an undesirably high proportion of "no" responses, limiting the 
item-total correlation. However, you have at least two options to improve the item's 
distributional characteristics; (I) use a multicategory format, e.g., a S-point Likert 
scale-"very strongly agree" to "very strongly disagree"; and (2) change the modifier, 
perhaps dropping "very." It is usually difficult to make a judgment easier or harder 
without fundamentally changing its nature. 

The Inadequacy of Rational Approaches to Test Construction 

The earliest (pre-1940) personality tests were constructed by a rational approach; 
items were included because they appeared to relate to what was being measured. Peo
ple with no background in test construction often think in these terms. The lYlMPI 
evolved from the Bell Adjustment Inventory, which was developed in this way. For 
ex.ample, a depression item might have been included saying "I feel sad," and sad 
mood is a characteristic of depression. In a purely rational approach, no attempt is 
made to confirm that items correlate with the total score. Even though measures of re
liability had long been used in measures of abilities (Kuder & Richardson, 1937), per
sonality researchers paid less attention to the concept. One reason was that then, as 
now, many people who were interested in a measure did not consult with people 
knowledgeable about psychometric theory. Rational test construction is fundamentally 
inadequate (a better term than "incorrect" or "inappropriate") since it makes no at
tempt to confirm the hypothesis that gave rise to the item. Items on such scales may 
not correlate positively with total score or even correlate negatively. A depressive who 
is asked if be or she feels sad might well think, ''The way I feel goes beyond being 
sad," and answer in the negative. 

Earlier criticisms of rational approaches stressed that proposed items frequently 
were based upon incorrect assumptions and stressed the need to develop items that dif
ferentiated criterion groups, regardless of content. Meehl (1945) is probably the single 
most important reference for this empirical or criterion-oriented point of view. If more 
normals than depressives. or the reverse, stated that they ate lima beans, the question 
would be suitable on a depression scale. Content was irrelevant; indeed. the fact that 
an item bore no relation to the construct was viewed as a virtue. Empirical approaches 
led to many advances, the most important being the development of better methods of 
item analysiS. Exploratory factor analysis became widely used because of its empirical 
orientation with, as we have suggested, mixed results. Empiricism played a strong 
early role in the abilities literature; I. McK. Cattell gave up his interest in measuring 
general ability using measures of sensory acuity because Wissler (190 L; also see Cron
bach, 1990) showed how heterogeneous these measures were. 

The pendulum swung back from purely empirical approaches in the late 19605, and 
Jackson (1971) documents this shift well. In retrospect, the problem with the original 
rational approach was not that most investigators generally lacked the ability to define 
relevant item content, although, of course, there are numerous instances in which this 
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was true. The major problems were threefold: (I) the wording of individual questions 
was often flawed, (2) no methods of analysis were used to detect this, and (3) investi· 
gators paid insufficient attention to the similarity of their constructs to those of others 
(or, what leads to the same outcome, attempted to stress the unique aspects of theirs 
relative to others', thus ignoring the essential similarity). Anyone familiar with person· 
ality assessment is aware of how slight changes in wording can often ,make the differ
ence between a suitable and an unsuitable item. In sum, our criticism of rationally de
veloped tests is not based upon how items are constructed but the failure to evaluate 
the items after developing them. 

The Inadequacy of Empirical (Criterion-Oriented) Approaches 
to Test Construction 

We have noted that the undeniable and appropriate success of the MrvlPI led investi
gators toward an empirical (criterion-oriented) approach. For those unfamiliar with 
its development, the principles are simple. First, a large pool of items was generated 
that was felt to be of use or had been used in clinical interviews in order to standardize 
these interviews. Clinical scales were constructed by choosing items to differentiate 
target groups, such as depressives or schizophrenics, from normals. Validity scales 
were also developed. Specifically, the defensiveness scale (K) corrects certain of the 
clinical scales for reluctance to admit to problems. In addition, 16 items ~ete repeat
ed to provide the familiar 566 total items on the test, and numerous supplementary 
scales were proposed. See Dahlstrom. Welsh, and Dahlstrom (L975a. 1975b) for fur
ther details on the original MMPI, and Hathaway and McKinley (1989) for informa
tion about its recent revision. We will limit our discussion to the individual scales 
even though practitioners typically base their decisions upon configurations of scale 
scores (profiles). This discussion is of general value because the issues are broadly 
applicable. 

Even though the tvIMP[ was ostensibly an example of an empirically derived test, 
we suggest that its best features actually illustrate the importance of defining domains 
of content. Its less successful applications were those that more strongly reflected 
purely empirical biases. First and foremost, the item pool was not generated randomly. 
It clearly reflected the experiences of the clinicians at making precisely the diagnostic 
decisions at which the ?vI1vlPI has been most successful. Although much was (and is) 
unknown about the etiology and dynamics of major psychiatriC disorders, the symp
tomatology has generally been known. Clinicians have long observed guilt (particu
larly of a religiolls nature), eating and sleeping disturbances, and behavioral retarda
tion in addition to sad mood in depressives, for example. Moreover, depressives can 
be viewed as ex.treme points along a trait continuum. Similar considerations hold for 
the other diagnostic categories, such as schizophrenia, can version disorders, and af· 
fective disorders. In general, the original item pool sampled these domains rather 
wen. 

Another feature of the MMPI is that its items also fall into categories defined by 
content, such as general health, occupational problems, and morale, somewhat inde
pendently of their role on clinical scales. In fact, the reuse of these content scales be~ 
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came an important development in the late 1960s (Wiggins, 1966, 1968, 1969. 1973). 
For our purposes, these scales provide methodological heterogeneity. For example, 
some depressives develop religiosity without shOWing sleep disturbances, whereas 
others do the reverse. Including both [ypes of items increases the probability of correct 
diagnosis. 

Proponents of empirical approaches to testing often have noted how difficult it is to 
determine which items fall on which scales. One problem with this argument is thac an 
item analysis will reveal that many items on a given scale are invalid and that valid 
items were excluded because of sampling error, a major hazard in purely empirical 
methods. Even when an apparently relevant item correctly fails to appear on a scale, 
the failure may reflect details of wording. One could well argue that several items 
could be have been changed in the :MNlPI's recent revision. There was a legitimate 
issue of seeking optimal scales versus maintaining comparability of scales (which 
eventually dominated) that played a major role in this revision. Fortunately, lack of op
timal item selection is mitigated by the forgiving nature of the linear model used in 
scoring. Whatever else one may say that is critical about the major clinical scales, few 
would claim they are too short. Of course, the difference between the actual scales and 
possible "optimal" ones is more important to making individual decisions than it is to 
group research. 

MMPI scale items have long been classified as "subtle" and "obvious" based upon 
their relation to symptomatology (Wiener, 1948). Although one may debate the classi
fication of individual items, it would be a major point in favor of empirical approaches 
if subtle items were to even approach obvious ones in their discriminative capacity. 
However, as Gynther and Burkhart (19B3) note, this is clearly not the case. Subtle 
items were understandably sought after to help differentiate pathology from such re
sponse sets as "faking bad." The position taken here is that it is best to obtain separate 
measures for such purposes, which is, of course, precisely the role that the validity 
scales achieve. 

Another point in favor of the empirical approach is the success of several of the 
supplementary scales that was not anticipated at the time the MMPI was originally de
veloped. Ignoring issues of their construct validity, a few scales have gained apparent 
wide use, e.g., MacAndrew's (1965) alcoholism scale and Barron's (1953) ego 
strength scale. However, this number is an incredibly small fraction of those proposed, 
and both of these scales reflect rather traditional concems of practitioners that may 
have been reflected in the item pool. One might argue that little would be lost if at 
least one of the clinical scales (masculinity-femininity. MfJ was deleted. In a great 
many of the ultimately unsuccessful attempts to derive supplemental scales. a true 
empirical approach was attempted but the items failed to replicate because the under
lying traits (e.g., response to a particular drug or diagnostic subcategories) Were ill
defined. Although we certainly recognize the legjtimacy of debate on the issue, we 
conclude by noting that empirical methods did little to the MMPI that was not origi
nally furnished by the (partially implicit) theories of those who generated the original 
item pool. 

We have noted Raymond Cattell's early emphasis upon multiple methods to define 
constructs. The Sixteen Personality Factor (l6-PF) Test was among the results of this 
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approach. However, we must be critical of one facet of his test development proce
dures. His stress upon methodological beterogeneity led him to seek items that corre
tate well with an appropriate criterion but poorly with each other. The Logic fonows 
from the regression model (see Chapter 5), bllt the analogy to multiple regression is 
strained. Multiple regression assumes that predictors are highly reliable. This Logic can 
apply to whole tests but clearly does not apply to individual items. 

Moreover, it is difficult enough to find items outside the abilities domain which 
correlate with total score without imposing the additional burden of baYing them cor
relate with an external criterion. Catten's approach seeks items which are poorly cor
related with total test score since they will be poorly correlated with the other items 
that help determine the test score. However, items correlate with the criterion be
cause they measure what the criterion measures. This makes it quite likely that items 
that correlate with· the criterion will correlate with each other. In other words, if we 
were to take (1) the item4total correlation for each item, corrected or not, and (2) its 
correlation with the criterion, we would find the two sets of numbers correlated over 
items. Figure 8~2 illustrates this point. The desired items fall in the indicated upper
left region of the figure. Because of the correlation between the two indices, the den4 
sity of items in this region is relatively spuse. In this simulated example, the correla
tion was set at .5, and there are only three points in the somewhat arbitrarily chosen 
selection zone. 

We will also argue against this approach when constructing a predictor, but less ve
hemently because of the greater importance of content homogeneity in measuring corr 
structs. 

Scatter plot of item correlations with a criterion and with total test scores • 
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A construct is somewhat less likely to require norms than a content-validated measure 
because of differences in their probable use. Nearly all measures derived from content 
validation are used for making decisions about individuals, where norms are impor
tant; many positions in industry, for example, involve ad hoc requirements that are of 
pragmatic rather than theoretical import. In contrast, constructs are often employed 
primarily in research and may never be used in individual classification or selection. 

However, a well-developed measure that begins solely as a research tool may tum 
out to be of value in making individual decisions. At that point, norms may be re
quired, but the considerations are no different from those involved in developing 
norms for content-validated measures. The same is crue of measures derived under a 
predictive validity paradigm which, like content-validated measures, tend to be used 
for making decisions about indi viduals. 

Applying the Measure 

Which populations a content-validated measure is to be used with is often implicit in 
its intended use. This dictates the level at which questions are worded. However. it is 
not uncommon to develop constructs or predictive measures without a clear idea of 
their limits of applicability, and most normative samples are chosen for convenience. 
However. the intended population should be incorporated in the definition of the do
main. It is also desirable to evaluate the proposed measure in several populations 
which might also be targets of the measure. Although you will probably look at groups 
defined on the basis of gender and race in order to evaluate bias, the single most 
important starting point is generally reading level, assuming that the test requires the 
subjects to read, as in a self-descriptive inventory. Gorsuch, Henighan, and Barnard 
(1972) illustrate how a scale's properties may depend upon reading ability. 

The authors strongly feel that good measures are hard to come by even if they work 
. only in limited circumstances. A measure that has substantial validity in one popula
tion should not be dismissed for not working in others. It simply should not be used in 
that case. Failures to obtain desired correlations are quite common in the literature. 
Those who report a study might consider that such failures may represent real differ
ences between populations in correlation magnitude (moderation, see Chapter 5) in re
porting their results. 

Our discussion applies in very similar form to. behavioral observations and physio
logical measures. Reading skills (literacy) may not be an issue per se, but their socio
economic correlates probably are, especially to ratings. Judges may naturally be able 
to make valid discriminations within their own group. but other groups may "all look 
alike" in their behavior. Moreover, it is not uncommon to find differences among 
lower socioeconomic groups defined on the basis of ethnicity even when these are 
much smaller or absent in the middle class (Pritchard & Rosenblatt, 1980a, 1980b; but 
also see Gynther, 1972; Gynther & Green, 1980). This problem is best addressed by 
appropriate training with feedback from those who are demonstrably skilled at making 
relevant discriminations. 
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Some Examples of Constructs in the Abilities Area 

Our previous discussion of the MMPI illustrated several points generally relevunt to 
the measurement of sentiments. Turning briefly to examples involving the measure
ment of abilities, we have stressed that wmk in this area is more obviously relatable to 
the notion of domain sampling because abilities items, like adding four-digit numbers, 
often fall into well-defined classes. These classes in fact can be viewed as theories as
serting that the particular skill common to the class is important. Much work has been 
based upon the rather traditional tasks derived from such sources as the Thurstones 
(T. G. Thurstone, 1941). Guilford (l967) proposed a model of intelligence that makes 
an explicit distinction between content and method. In fact, his model is based upon 
the tripartite classification of operations (what is to be done-evaluation, convergent 
production, divergent production, etc.), content (the material on which the operations 
are to be performed-figural, semantic, behavioral, etc.), and products (outcomes
units, classes, relations, etc.). For example, adding numbers involves convergent pro
duction as an operation (there is a single correct answer) upon symbolic content and 
the product is a unit (number). Unfortunately, the number of combinations of the three 
basic elements has proven rather large and unparsimonious to many investigators. 

Several aspects of the abilities literature reflect this section's stress on having mea
sures flow from at least some theory. In particular, the traditional (but incorrect) view 
that intelligence is a unitary phenomenon gave rise to the notion of "g" or general in
telligence which in turn led to Spearman's (1904) development of factor analysis. At 
least two other theories follow from fairly conventional views of intelligence rather 
than highly elaborate models. Wechsler's extremely successful tests (see Mitchell, 
1985) are organized around the distinction between verbal and performance skills. 
Similarly, the view that some cognitive abilities involve facts, but other, higher-level 
demands involve abstractions, led Horn and Cattell (1966; Hom, Donaldson, & Eng
strom, 1981; Vernon, 1979) to contrast crystallized and fluid intelligence. Perhaps the 
example most familiar to college students is the distinction between verbal and quanti
tative ability on the SAT and ORE. In contrast, Earl Hunt, Robert Sternberg, and oth
ers whose roots are in cognitive psychology have developed highly elaborate informa
tion processing models of intelligence with attendant measures (e.g., Hunt, Pellegrino, 
Frick, Farr, & Alderson, 1988; Sternberg, t977, 1988). One question for research is 
whether those measures that were originally developed for studying group differences, 
as produced by e)(perimental manipUlations, where indivi.dual differences are undesir
able, will be as successful w.hen adapted to the study of individual differences (see 
Cronbach, 1957). 

CONSTRUCTION OF TESTS DESIGNED FOR PREDICTIVE VALIDATION 

A test designed sorely to predict a criterion arguably need not require a well-defined 
domain of content. This could be taken to imply a purely empirical approach to item 
generation and selection. However, we hope to show that this is a poor strategy that is 
unlikely to yield a valid scale. Moreover, legal and ethical considerations also dictate 
considering bias in any measure, which we will do in the next two chapters. 
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Having a good idea of what detennines the criterion is probably the single most i.m
portant aspect of predictive validation. Sometimes an individual familiar with the cask 
to be performed can furnish insights. Of course, these need not be correct. Chapter 5 
presented an example of how all variation in outcome could be attributed to intelli
gence rather than a large set of individual attributes, and Chapter 3 illustrated other 
problems associated with practical criteria. Having someone tell you that virtues like 
intelligence, initiative, and mental stability are important is a starting point, but don't 
be surprised if these are unreLated or even negatively related to the outcome. You may 
or may not be able to do anything about the problem. If the situation allows you the 
luxury of repeated pilot work, consider the use of whole tests designed to measure 
possible attribUtes at the beginning, even if you are eventually going to use items sam
pled from these tests. 

A typical situation that involves the development of a test for prediction is to antici
pate improvement in a drug rehabilitation program. It is assl.\med that the often diffi
cult problem of obtaining a suitable criterion measure (Chapter 3) has been resolved. 
The two essential ingredients in the development of a successful measure are (1) at 
least several hundred subjects to act as a normative pool for successive versions of the 
test and (2) a thorough literature review to suggest possible items or whole tests. 

What is done is very similar to what is done either in content or construct valida
tion. The major difference is that the focus is upon the single correlation between the 
scale and criterion (validity coefficient) rather than the suitability of the content, the 
scale's internal properties such as coefficient a, or its relation to a diversity of criteria. 
Since most real-life criteria are somewhat heterogeneous factorially (i.e., are not "pure 
measures"), the difference between construct and predictive validation can be thought 
of as trading off some homogeneity of content, and therefore reliability, with ability to 
predict a specified criterion. 

Requirement 1 can be relaxed somewhat if the goal is to test the utility of a pre
existing measure. The primary considerations are the anticipated validity and the sam
pling error. A typical expected validity is .3 to .4, but it can be in the .5 to .6 range 
when the criterion is heavily detenruned by cognitive ability and there is wide varia
'tion in the relevant pool of individuals (Hunter & Hunter, 1984; Hunter & Schmidt, 
1981; Schmidt, Hunter, & Pearlman, 1981). The sampling error in a single r is 
llYN - I, where N is the sample size. Clearly, the smaller the anticipated validity, the 
larger the sample required. A sample of 50 is clearly the lowest tolerable limit on N 
when the expected validity is .3 since I/-v5O=1' = .14 and (1.96)(.14) (the 95 percent 
confidence interval) = .28. Obviously, larger samples are really required. Moreover, if 
you are exploring the utility of several predictors, which is wise from the standpoint of 
economy, you need to take the resulting multiple comparisons into account. 

In general, you will want to fonn a confidence interval around r. If this interval 
contains both the anticipated Validity and zero, the experimer.t is inconclusive. Of 
course, having this confidence interval include zero denotes an inability to reject the 
null hypothesis, but a very low but nonzero validity (e.g., .1) also implies that the 
measure may not be useful. Higher standards should be imposed upon the validity 
for developing a measure than for testing a hypothesized measure because the devel
opment process capitalizes upon chance. The literature has nO shortage of tests 
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whose initial validity was simply due to chance. It is, of course, vital to cross
validate a test which has been developed through any form of empirically based item 
selection. The sample size required for cross validation is effectively the same as that 
needed for any other preexisdng test. In addition. even though some outstanding tests 
have been very empirically driven and items designed for use in a predictor need not 
have any apparent relevance to the criterion, we stress the need for at least some the
ory. One cannot see all of the unsuccessful attempts to develop scales along a given 
line that have been unreported. Although there are many apparent successes in the 
literature, many of these al;e not replicable or hold only for limited populations. 

Item Analysis, Item Selection, and Norms 

The principles of item analysis are similar to those used in developing other measures. 
Considerations of content homogeneity lead us to suggest using the total score or the 
score on marker variables rather than the criterion score. to select items, but our rea
sons are not as compelling as they were for developing measures of constructs. How
ever, correlations with a dichotomous criterion will be low, making it difficult to detect 
good items. There is less need to be concerned about item redundancy (correlations 
among items on the scale) unless it is so high as to suggest that the same item is being 
asked repeatedly. Even though internal consistency is relatively unimportant in predic
tive validation as compared to the development of construct measures, it is obviously 
not undesirable. 

Norms are generally required fa/; relevant populations. The principles required are 
the same as in developing a content-validated measure. 

PROBLEMS UNIQUE TO CERTAIN TESTING SITUATIONS 

Reversing the Direction of Keying 

Items are often scored so that a high number (e.g., a 5) is in the keyed direction for 
some items (e.g., denotes shyness) but is in the nonkeyed direction fo/; other items 
(e.g., denotes lack of shyness). "Flipping" item scores so that high scores on aU items 
denote the presence of the trait is quite simple. To make a high item response (X) de
note a low score on the key (X') when there are k categories, let X' = k - X + 1. Thus, a 
response of 2 on a 7-point scale becomes 7 - 2 + 1 = 6 when the direction of scoring is 
reversed. This is applicable to dichotomOUSly scored items where k = 2. Although 
methods of analysis can be used that do not require reversing the direction of leeying, 
looking at the results is much easier if this is done early in tbe analysis. In particular, 
large negative correlations involving one or more items suggest a problem exists 
(whicn can be as simple as miskeying). This is more difficult to detect in the unre
versed items. 

Unipolar versus Bipolar Attributes 

Nearly all abilities and achievement attributes and many personality attributes are 
unipolar. The continuum extends in one direction from a zero point; it is difficult to 
think of "negative" intelligence. However, constructs such as liberal-conservative and 
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introvel"sion~e:ttroversion are bipolar because they represent continuua with a neutral 
(zero) point and affinnative traits at the two poles. "Llberalism" does not denote the 
absence of "conservativism" any more than vice versa. 

The distinction between absolute and comparative sentiments and judgments was 
made in Chapter 2. Asking people whether they like going to the movies is absolute, 
and asking whether they like going to tbe movies better than they like gOing to parties 
is comparative. Multicategory response scales can be used in both cases. Comparative 
items tend to relate exemplars of bipolar attribute poles and, as we have noted, are 
more sensitive than absolute items. A unipolar attribute usually implies absolute items, 
but a bipolar attribute can be assessed with either absolute or comparative items. 
Whether an attribute is assumed to be unipolar or bipolar is a function of the theory. 
The one key consideration is to be sure not to commit the logical fallacy of the "ex~ 
eluded middle" in which a person is both (e.g., liberal on some specific issues and con~ 
servative on others) because the attribute is multidimensional. If this is possible. re
place the bipolar continuum with two separate continuua. The "neither" possibility is 
no problem since it is represented by the zero point(s). 

Comparative items have an important use. Many scales are essentially checklists on 
which the score is a count of the number of absolute endorsements and the person's 
overall tendency to endorse items is a potential confounding factor. Suppose a measure 
of introversion-extroversion consists of a number of activities engaged in by intro~ 
vertS, such as reading books, and a number of other activities engaged in by extroverts, 
such as going to parties. The total score is the cli:fference between the number of items 
endorsed in the two categories. However, this difference is a function of the willing
ness to endorse items-at the extreme, if no activities are endorsed, the difference 
must be zero. It may prove more useful to employ a forced choice comllaring activities 
front each category. By not providing a neutral category, differences among numbers 
of endorsements are controlled. Be sure to choose alternatives within items that have 
approximately the same social desirability. 

Discrimination at a Point 

Although most measurement problems involve discriminating over the entire continu~ 
urn, the goal of construction is sometimes to most effectively discriminate persons 
from one another at a particular point in the distribution. Screening the top 10 percent 
of scholarship aplllicants for intel"View from the remaining 90 percent is one example. 
Mastery learning also involves selection at a point. but the intent is to discriminate the 
lowest scorers from the rest of the distribution. The lVlMPI is perhaps the best known 
test which was basically designed to discriminate at a point by detecting pathology. 
Although there are exceptions, most clinical scale items are infrequently endorsed 
symptoms. The distributions of raw scores on these scales thus tend to be ~ositively 
skewed in the general population. This is a most appropriate strategy, although it is 
also responsible for the traditional difficulties of interpreting low scores. 

Lord (1952a, 1952b) suggested that the most effective way to discriminate at a 
point is to control the p values of items. He concluded that one should not choose 
items with p values as e:ttreme as the desired "split" Thus, to discriminate the upper 
70 percent from the lower 30 percent, choose items with p values closer on the .5 
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side of .7. Interesting as the point is, it is really secondary to the purpose of selecting 
valid items. The most discriminating item in the linear model for split is the one. 
that correlates highest with that split. Thus, to discriminate at a point, select items as 
follows. 

1 Construct a test by previously described methods but have at least twice as many 
items in this test as eventually needed. 

2 Split subjects into the necessary divisions on the basis of total scores, e.g., the 
upper 70 percent from the lower 30 percent. Assign a 1 to subjects in the top group 
and a 0 to those in the bottom group. 

3 Compute the correlations between each dichotomous item and each di
chotomized total test Score (r). Note that these are phi coefficients (cI», unlike the cor. 
relations with total score, which are point-biserial correlations (rpb)' 

4 Rank. the items from highest to lowest in terms of r. The items highest in r are 
the most discriminating items at the particular point. 

S The final test is obtained by selecting enough items high in r to obtain the de
sired level of reliability. 

Use the continuous scoreS rather than dichotomous scores in subsequent adminis
trations of the test, of course. 

This method of test construction can be improved by an iterative process. After se
lecting the first set of items on the basis of r, split subjects into the desired proportions 
on the revised test scores and recompute r using the new split of high and low scores. 
The best items form a new test and repeat the procedure if required. However, itera
tions are seldom necessary. The items which initially had high values of r will usually 
also have high values of r after iteration. 

Even though the items that individually have the highest values of r with any split 
in terms of total scoreS will be the most discriminating items, there is no guarantee that 
the sum of scores on such items will be more discriminating than the sum of scores on 
some other set of items. The most discriminating set of k items is the set that has the 
highest multiple correlation with dichotomized total scores. However, we do not rec
ommend llsing the differential item weights produced by multiple regression because 
item unreliability violates the important assumption that the predictors (items) be reli
able. The above method usually provides better discrimination at a point than any 
other feasible method. With or without iteration, it tends to select items that have p 
values falling between .5 and the split One therefore tends to select more items with p 
values between .5 and .8 than between .5 and .2 in discriminating the upper 70 percent 
of people, and vice versa in discriminating the top 30 percent. The crucial considera
tion is the value of r between dichotomous scores on the item and dichotomized total 
scores. One typically finds items with p values near the split that have low values of r 
and other items with p values far removed from the split that have relatively high val
ues of r, so p by itself provides limited information. Similar considerations apply to 
multicategory items. 

Tests should ordinarily not be constructed to discriminate at a particular point on 
the score continuum unless the situation specifically demands it. Such tests are useful 
for only a narrow range of purposes. Different points of discrimination may be impor-
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tant in different situations. A test constructed f'lpecifically to discriminate the top 80 
percent of the people in one situation will probably be too easy when it has to di:;crim~ 
inate the top 20 percent. In addition, the score at a particular percentile in one situation 
might correspond to a very different percentile in another situation. For example, if 70 
percent of the people in one population exceed a raw score of 65, only 30 percent of 
the people in a less able population might exceed a score of 65. One usuully wants to 
construct a general~ptlrpose test that is discriminating at all levels of the attribute and 
hence can be used for different purposes in different situations. If, as is typically the 
case, a content~homogeneous test is desired, items should be selected in terms of their 
item~total correlations rather than their correlations with dichotomized scores. The re~ 
finement described in the next section will help ensure approximately equal reliability 
at different points on the continuum of scores on the eventual test. 

Equidiscriminating Tests 

Items selected to discriminate most effectively at a particular point in the distribution 
tend to produce a test that is roost reliable at that point We have thus far been con~ 
cerned with the overall reliability of a test in terms of coefficient a. or, perhaps, the al~ 
ternative forms correlation. This overall reliability is in effect an average of the relia~ 
bUities at different levels of the attribute. Instead of examining the overall reliability, 
consider the reliabilities at different levels of the a~tribute, as by computing coeffi~ 
dents a. for subjects within each quintile (one~fifth of the distribution in terms of pro
portions of cases). Each of these five reliabilities Will, of course, be lower than the 
overall reliability because the subjects within each quintile must vary less than su~ 
jects in general, but the error variance will be essentially the same (the standard error 
of measurement, Eq. 6~34, is more infonnative about the absolute level of measure~ 
ment error in this case). However, we are most interested in the differences among 
these within~groups reliabilities and so a. will suffice as a measure. 

A test constructed to discriminate maximally at the 30th percentile by methods de~ 
scribed previously would provide good reliability (discrimination) from the 20th to the 
40th percentile but would provide poorer discrimination from the 60th to the 80th per~ 
centile. The rank order of individuals in the lower range would tend to change less 
than the rank order of those in the higher range on an alternative fonn constructed by 
the same standards. One can minimize these differences by constructing an equidis~ 
criminating (EQD) test to equalize discrimination at different levels of the attribute. 
An EQD test is useful whenever (t) important practical decisions are made about pe~ 
pie with regard to their particular test scores and (2) highly reliable distinctions are 
needed at all levels of the attribute. These circumstances tend to be the norm. 

Observed item~total correlations. whether or not they are corrected for overlap, tend 
to favor the selection of items with p values Dear .5, as we have noted. Consequently 
the test will tend to make its most reliable discriminations in the middle' of the score 
range relative to either extreme. Similarly. the approximately normal nature of most 
score distributions causes most people to fall in the middle of the distribution. This 
bias toward selecting items of intermediate difficulty can be overcome somewhat by 
using rbis. but this procedure requires very large samples. If one has the resources and 
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can afford to use a relatively long test, a modification of the previously discussed 
method of developing general-purpose tests leads to the construction of an EQD test 
that has approximately the same reliability at ail levels of the score continuum. 

There are a number of approaches to constructing an EQD test; we recommend 
simply selecting items at multiple cutoff levels. For example. select one-third of the 
items to differentiate the top 25 percent of the people from the bottom 75 percent, an
other third to differentiate the top half of the people from the lower half, and a final 
third to discriminate the bottom 25 percent of the people from the top 75 percent. Each 
subgroup of items is obtained by the method discussed previously for maximizing dis
crimination at a particular point. However. select several subsets of items to discrimi
nate at different levels of the score continuum to produce an EQD test. 

Divisions are made where it is most important to make discriminations, and the 
number of divisions that are made depends on the resources available for constructing 
and employing the test. An EQD test requires from three to six divi.sions of the score 
continuum for which separate sets of items are selected. EQD tests are usually longer 
than conventional tests because they must discriminate well at all levels of the at
tribute. Since more room is required to select items than when items are selected pure
ly in tenns of item-total correlations: (1) the initial item pool must also be larger, (2) 
these items must vary greatly in their distributions, and (3) these items should corre
late highly with total scores expressed as continuous numbers. 

When all items are administered to a sample of subjects, the total sample is split at 
the desired percentile levels (e.g .• 25. 50, and 75) and values of r are computed be
tween all items and dichotomized total scores in each case. Thus, first divide the total 
distribution of people at the 25th percentile, giving everyone above that point a score 
of 1 and everyone below a score of 0 and correlate each item with the dichotomized 
score. Rank [he items in tenns of r and select items based upon the ranking. Repeat 
this process but divide subjects at the 50th percentile (median) and then at the 75th 
percentile. This produces two more rank orderings in terms of r. 

After the three sets of item-dichotomy correlations are obtained, select an approxi
mately equal number of items at each dichotomy to obtain the same average value of r 
at each level. One might therefore wind up with 20 items at each of the three per
centile Levels whose average values of r might. respectively, be .19 •. 21, and .18. Trial
and-error methods will probably be required to obtain such a result, as the r obtained 
from dividing the distribution at the median will probably be higher than the r ob
tained from dividing the distribution at the 25th or 75th percentile. Also, items that 
correlate well with one split are likely to correlate well with other splits, and items that 
correlate poorly with one split are likely to correlate poorly with others. One can, how
ever, approximate the desired properties by shifting items from dichotomy to dichoto
my. Because one should not attempt to construct an EQD test without reliable items, 
the final fonn should have at least a modestly high reliability. The fact that large num
bers of items will be used also tends to produce a reliable result, but this final coeffi
cient (l must be computed. 

Figure 8-3 describes the hypothetical results of an EQD test. Curve a shows what 
might be found for a 40-item test constructed by selecting items only in terms of their 
item-total correlations. It illustrates that the reliabUity declines as one moves away 
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FIGURE 8-3 Hypothetical comparisons of (a) a 40-ltem homogeneous lest, (b) a 4O-ilem ECD test, and (e) a 
1OD-item EQD test. 

from the Soth percentile in either direction. In particular, the reliability falls off below 
the 25th percentile and above the 75th percentile. 

Curve b shows the approximate results of a 4O-item EQD test with eight items 
being selected specifically to discriminate at'the 10th, 30th, 50th, 70th. and 90th per
centiles. The function relating coefficient a to percentile is clearly flatter. This test 
tends to have a slightly lower overall reliability than a test using ordinary item selec~ 
tion procedures for the same number of items: The total area under curve b is smaller 
than the total area under curve a. However. an EQD test tends to be more reliable at 
the extremes. 

Curve c estimates what might be obtained from a EQD test longer than that repre
sented by curve b. The difference is that 20 rather than 8 items appear at each per~ 
centile level. This longer test should have higher overall reliability tban b, substantial
ly more reliability and better overall discrimination than a, except perhaps at the 50th 
percentile. Figure 8-3 also illustrates that the reliability of an EQD test tends to be 
somewhat bigher near the 50th percentile than at either extreme even when maximum 
effort is given to equal discrimination. However, sufficiently long tests can provide el(~ 
cellent discrimination at the higher and lower levels of the percentile distribution using 
'the EQD logic. 

Dichotomies couId be formed at 8 or 10 percentile levels rather than at 4 or 5, but 
trus probably will have little effect upon the final test. One could improve the results at 
each stage by forming new distributions of total scores iteratively and recomputing r 
after items have been selected on the fust go-around. Also, new items could be con
structed and correlated with dichotomized scores at different levels of the existing test. 
A final refinement could be to adjust the average r value at each level. The ideal would 
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be to obtain u collection of items whose average r value with the dichotomy is the 
same at different splits. Thus if the test has 100 items with 20 at each of five splits, the 
ideal is for the average of the 100 values of r at each split to be approximately the 
same since coefficient a is a function of these averages. One usually approximates this 
ideal by focusing on the average value of r for the items selected specifically at each 
level. Since the values of r for all items at each level have been obtained, it is simple 
to determine the degree of approximation to the ideal. If the average values of r differ 
across percentile levels, add items of appropriate difficulty, if possible, to increase the 
average correlation where needed. 

The concept of an EQD test was introduced in the first edition of this book 
(Nunnally, 1967) in passing as a largely hypoilietical ideal rather than as a practica
ble solution to equating reliabilities across the score continuum. However, the 
need for instruments that have the properties of an EQD test has been spurred subse
quently by recent advances (see Chapter 10), the growing realization that many 
otherwise reliable tests are not highly reliable on the extremes, and the availability 
of computers to perform the necessary statistical analyses. Although one may elabo
rate upon the general methods discussed here and there is room to develop some 
technical details, the overall logic for constructing an EQD test is simple. Employ 
correlational analysis to select subsets of items that are maximally discriminating 
at various points along the score continuum and then combine these items into one 
overall test. 

It is seldom worth the trouble to develop an EQD test in basic research or 
classroom settings. The major requirement in basic research is to have sufficient 
overall reliability to evaluate different sOUl:ces of individual differences. Limitations 
of time and available items typically preclude EQD construction in the classroom 
setting. However, at least an approximation of an EQD test should be constructed, 
resources pennitting, where (1) people vary considerably with respect to the attribute 
in question, (2) it is important to make reliable distinctions at all points on the score 
continuum, and (3) test results are used to make important decisions. Even if one does 
not literally construct an EQD test, it is important not to make the maximization of 
an overall coefficient a an end in itself. Spreading item difficulties does sacrifice some 
overall reliability but improves discrimination and, quite possibly, validity (Loevinger. 
1954). 

We have thus far assumed that all items are weighted equally in the linear composite. 
It is 10gicaUy possible to weight items differentially-one could weight some items 3, 
others 2, and the remainder 1. We have not discussed this possibility because differen
tial weights are almost always a total waste of time when a test has more than about 20 
items-another reflection of Wainer's (1976) "it don't make no nevennind" principLe. 
Various rules have been proposed for weighting items. Items could be weighted to 
maximize the correlation between total test scores and the criterion, e.g., by its regres
sion weight or item-criterion correlation. We strongly recommended that this not be 
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done since (1) it is generatly unwise to construct tests in terms of item~criterion corre~ 
lations and (2) the item~criterion (or item~anything correlation) usually contains con
siderable sampling error. In addition. the method cannot be used with content-validated 
tests, as there is no criterion to be weighted. A slightly more sensible approach is to 
weight items to maximize the total test score reliability by weighting each item in 
terms of its item-total correlation, but this makes little difference and is also unstable 
in most settings. 

Weighting makes a difference when the weighted and unweighted scores on whole 
tests do not correlate highly and the weighted test is more reliable than the unweighted 
test. However, the evidence that differential weights seldom make a difference is over~ 
whelming. Regardless of how differential weights are determined, the two sets of 
scores typically correlate in the high .90s as long as they are based upon at least 20 
items. Differential weights may provide a slight benefit when (1) the number of items 
is relatively small (less than 20). (2) item~total correlations vary markedly, and (3) the 
sample consists of several hundred people. These conditions are seldom all present 
with dichotomous itl;lms. Some multicategory scales have considerably less than 20 
items, and their item~total corretations vary more than those for tests composed of di
chotomous items. Differentially weighting items might increase the reliability slightly, 
but this same increase in reliability might also result from adding two or three new 
items. In addition, the regression weights will have large standard errors and probably 
be poorer than equal weights in a new sample if the sample is relatively small and the 
number of items is large. In sum, total scores should nearly always be obtained by 
weighting items equally. If the reliability is undesirably loW, increase the number and 
quality of items. 

Taking Advantage of Chance 

All forms of item analysis tend to capitalize on sampling errors relating to the selec
tion of people, so that the results will generally overestimate such quantities as co
efficient /l. One takes advantage of chance anytime something is optimized from the 
data at hand-in multiple correlation, in selecting items in terms of item~total corre~ 
lations. in selecting items for an EQD test, in seelcing differential item weights, and 
in ridding a test of an unwanted factor. Since the opportunities to take advantage of 
chance are related positively to the number of variables and negatively to the number 
of persons, we suggest that there be at least twice as many subjects as items and that 
at least 200 subjects be used to construct a test designed for long-teon use to mini
mize the role of chance. Items found to have a reliability of .84 might have an even
tual reliability of .80, but the drop in reliability will seldom be more than that. If the 
exact level of reliability is crucial to item selection, strive for a reliability at least five 
points above the crucial level. The sample needed to construct an EQD test is even 
larger. 

It is wise to investigate the extent to which item selection and related operations 
take advantage of chance by means of cross validation. Compute coefficient <X and 
other appropriate statistics for a holdout group of at least 100 subjects after optimizing 
the test on the normative group. 
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This chapter considered tests designed for general use, including classroom tests. SUch 
tests may be developed along principles of content, construct, or predictive validation. 
These are highly similar, but each has its own distinctive features. It is assumed that 
the tests are scored according to the linear model; i.e., the totat score is the sum of re
sponses to individual items. 

Developing a test for content validation requires a domain of content, which defines 
the nature of the required subject matter and includes the population to which it will be 
administered, and a test plan. Defining the domain of content in industry may require a 
job analysis to determine what individuals with a given job actually do. The test plan 
includes the type of items to be used with examples, the apprOltimate number of items, 
the length of administration, how it is to be administered, how it is to be scored, and 
the type of norms that will be required. Plans for major tests typically require consulta
tion with various experts and revisions. Test items may be short-answer, essay, multiple
choice, problem-solving, or other objective formats such as true-false and matching. 
Choice of test item will reflect the needs of the situation. One consideration is whether 
recognition of the material is sufficient, in which case multiple-choice questions would 
be preferred; whether recall is essential, suggesting short-answer fonnats; or whether 
organizational ability is critical, in which case problem-solving or essay questions 
would be appropriate. Standard tips were provided to help phrase questions optimally, 
but the most essential point is clarity with respect to (1) phrasing, (2) the relation of 
the item to the content domain, and (3) pointing knowledgeable individuals in the ap
propriate direction. 

The key to the development of any successful test is a good item analysis which 
provides infonnation about how subjects responded to each item. For example, multiple
choice items for which discractors are chosen more often than the correct alternative 
are suspect, and dis tractors that are hardly ever or never chosen should be replaced. 
One major result of the analysis is the internal consistency reliability (coefficient CL). 
Data for each item include its response distribution and its discrimination. If an item 
is dichotomously scored, the information about its response distribution is completely 
contained in the probability of responding in the keyed direction (p value). This is 
the item difficulty for judgments and the endorsement probability for sentiments. If 
an item allows several categories, the variance may also be of interest in addition to 
the mean. There are several measures of discrimination, but the item-total correla
tion, corrected for overlap, Eq. 8-1, is generally preferred. Some situations warrant 
the correlation of individual items with marker variables (a set of items known to re
late to the domain) instead of the total score, thOUgh. Additional information is con
tained in the trace lines, which should be monotonic in the sense of Chapter 2. Item 
selection generally proceeds by choosing the items which are the most discriminat
ing. Strategically, it is often useful to include some easy items at the beginning of the 
test as ice breakers. Hopefully, the item analysis provides a sufficient number of valid 
items. 

The raw score is usually not informative by itself, and so it must be placed in con
text. Norms are statistical data that relate a person's score to the scores of others. The 
score may be expressed as a percentile. defining how many people in the target popu-
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lation fall at or below that score, or transformed in some other way. Some of these 
common transfonnations are z scores (j.J. = 0 and 0' == 1), deviation IQ scores (j.J. = lOO 
and c5 = 15), McCall T scores (j.J. = 50 and 0' = 10), SAT and GRE scores (j.J.;: 500 and 
0':;;;: 100), and stanines (j.J. = 5.5 and 0' = l). These usually imply that the raw scores are 
also normalized (transformed to the shape of a normal distribution), but normalization 
typically has little effect on tests comprised of several items because the obtained dis
tribution of raw scores is typically a good approximation to a nonual distribution. 
Nonns are not the only way to make an obtained score meaningful. It may be criterion
referenced by estimating a criterion scores in some way, (e.g., the probability of suc
cess) or domain-referenced by relating it to the broader pool that is sampled. Some 
fonn of transformation is usually required when a measure is to be used for making In
di vidual decisions. 

One also needs a domain of content in construct validation, but the domain is a 
function of the theory chosen by the investigator rather than imposed by such factors 
as course requirements or job demands. Personality constructs involve typical perfor
mance and are usually inferred from sentiments, whereas ability constructs involve 
maximum performance and are usually inferred from judgments. Nonetheless, other 
considerations are quite similar. Items should be homogeneous as to content and thus 
scale subjects unidimensionallY and form one factor. The average item intercorrela
tion, and therefore coefficient Ct, should be high. If a test contains more than one do
main of content, its correlates cannot be interpreted unambiguously. However, items 
should be methodologically heterogeneous (diverse) in order to define a general con
struct. The simplest explicit example of methodological heterogeneity is to develop 
some sentiment items that are keyed "true" ("agree", etc.) and others that are keyed 
"false." Sampling over situations is another important way to achieve the needed di
versity of method. Methodological heterogeneity can cause items to be multidimen
sional and consist of several factors, but this is a desirable outcome as long as the cor
relations among methods are high. 

Constructs need to be studied in relation to other constructs, and items need to be 
studied in relation to irrelevant constructs as well as to the construct that they ostensi
bly relate to. This implies a multivariate approach to test development. Factor analysis 
is perhaps the most important of the multivariate tools. However, a distinction should 
be made between factor analyses of whole tests (scale-level analyses) and factor 
analyses of individual items (item-level analyses). Scale-level analyses are extremely 
important, but item level analyses are quite likely to lead one astray. First, a successful 
factor analysis requires that correlations vary widely, but correlations among items 
tend to be low and restricted in range by differences in item distributions. Moreover, 
traditional (but not more recent) methods tend to be exploratory and often lead to 
"shotgun empiricism." Ad hoc collections of items are factored with the intent of hav
ing the analysis provide meaningful scales rather than having a theory guide item gen
eration and selection. Finally, although there are meaningful methods of factoring 
items, conventional methods of factoring were developed assuming that variables were 
continuous rather than categorical as items are. It is more important to employ careful 
methods of item analysis, particularly those which remove the effects of extraneous 
variables, such as direction of keying. 
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Students of human abilities have been concerned about validation for 100 years, but 
prior to 1940, students of personality measurement tended to accept an item as a legiti
mate measure of a construct if it rationally related to that construct. The development 
of the MMPI in the 19408 led to an empirical (criterion-oriented) approach in which 
items are selected because they correlate with a relevant criterion. We argue for the in
sufficiency of both approaches. Although items on rationally developed scales are usu

ally (but far from universally) logically related to the construct, item analyses often re
veal they are invalid because of problems in wording. Empirically developed scales 
often fail to replicate because they are highly sensitive to sampling error. Theory 
should provide a domain, and items should follow from that domain. This has been the 
dominant approach since the late 1960s. We note the role of implicit theory in the de
velopment of the MMPI, which was ostensibly derived by empirical procedures. In 
partiCUlar, the item pool probably reflected items that had been used successfully to 
define the traits associated with the pathological conditions that form its major clinical 
scales, and the validity scales serve to remove the effects of irrelevant variables. Be
cause the scales are long, items falsely assigned to them have relatively little effect. 
However, where the MMPI was most truly empirical (e.g., in the formation of new 
scales designed to make discriminations that were not implicit in the original item 
pool), it has been least successful. The section concluded with several examples of 
how abilities measures reflect the importance of either a conventional theory (verbal 
versus performance ability. crystallized or fact-oriented versus fluid or abstract ability, 
and verbal versus quantitative ability) or one that is highly elaborated because it is 
based upon detailed research findings (the work of Robert Sternberg, Earl Hunt, and 
others, which incorporates deve\opme.nts in cognitive psychology). J. P. Guilford's 
work was an early recognition of the role of methodological heterogeneity. 

Predictive validity requires the least discussion of the three fonns of validation. The 
stress is on the test's relation with a suitable criterion, and so issues of theory are not 
likely to be as prominent However, selection of a test for this purpose still needs some 
theory to determine what is important. 

The final section of the chapter considered some special topics. 

lOne is how to reverse the direction of keying, as on tests where a given response 
category (e.g., "agree") is in the keyed direction for some items and in the aonkeyed 
direction for others. 

2 Unipolar attributes are those for which the opposite of having the trait is not hav
ing the trai.t (e.g., intelligence), and bipolar attributes are those for which the opposite 
is a trait in its own right (e.g .• introversion-ex.traversion). Items may be comparative or 
absolute, as noted in Chapter 2. The greater sensitivity of comparative responses 
generally makes them preferable. One particular example involves having subjects 
make a choice between two activities reflecting either the poles of a single attribute or 
two different attributes instead of making absolute choices between the two separate 
sets. 

3 Some applications require discrimination at a point, e.g., separating the top 10 
percent of a group from the bottom 90 percent without making discriminations within 
each of the separate groups. A simple way to do this is to obtain the values of r be-
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tween item scores and total scores dichotomized with respect to the two groups. (terns 
with the largest values of r are chosen instead of items that correlate most highly with 
the (continuous) total score. 

4 In an equidiscriminating test, item difficulties are deliberately varied to maintain 
the reliability of the test at all levels instead of maximizing the overall coefficient ex, 
which usually results in selecting items with p values of approximately .5. This in
volves obtaining several values of r for each item, respectively, dichotomizing the 
total score distribution at several levels along the continuum. Choose items with the 
largest values of r within levels. 

5 If a test score is based upon 20 or more items, weighting items is generally un
necessary. 

6 Finally, the large role of chance in item selection was reiterated. 

SUGGESTED ADDITIONAL READINGS 

If you have not had a basic course in tests and measurements that exposed you to the more com
mon tests and items on these tests, read a standard reference in the area such as 

Cronbach, L. 1. (1990). Essentials o/psychological testing (5th ed.). New York: Harper & Row. 
There are now many reference works on available texts. Perhaps the most comprehensive is still 

the following: 
Mitchell, J..v., rf. (Ed.) (l989). The Tenth Mental Measurement Yearbook, Lincoln, NE: Univer

sity of Nebraska Press. 
A basic reference to construct validation of tests is 

Jackson, D. N. (1971). The dynamics of structured personality tests: 1971, Psychological 
Bulletin, 78, 229-248. 

The Marcil 1986 issue of the Journal 0/ Personality contains several papers devoted to impor· 
tant themes in personality research. In particular, Houts. Coole, and Shadish deal elttensively 
with issues of methodological heterogeneity as an ingredient in their suggested research ap
proach, which they term "multiplism." Briggs and Cheek and Judd, Jessor. and Donovan 
provide useful introductions to the role of factor analysis and structural analysis. However, 
neither makes the sharp distinction between item- and scale-level analysis that we feel is 
necessary. 



CHAPTER OVERVIEW 

CHAPTER 9 
SPECIAL PROBLEMS IN 

CLASSICAL TEST THEORY 

Chapter 8 discussed principles for constructing general-purpose tests intended to have 
content, construct, or predictive validity. Although many auxiliary techniques are in
volved, instruments intended to have content validity are essentially constructed in 
terms of a rational appeal to the appropriateness of the hem coverage; instruments in
tended to have construct validity are constructed to be homogeneous with respect to 
content but not to the methods of measurement, which is true, to a lesser extent, of in
struments intended to have predictive validity. Such tests may be designed as general
purpose instruments for use with a variety of subjects and numerous purposes or sim
ply as classroom examinations. 

These tests are generally designed to produce large, reliable individual differences 
where they are employed and are the mainstay of research and applied work. Howev
er, there are special issues that also need to be considered: (1) speeded tests; (2) COl'

rections for guessing; (3) the interrelated concepts of adverse impact, improper dis
crimination, test bias, and disparity; (4) halo effects; (5) response biases and response 
styles, which are measurement artifacts that are, respectively, situation-specific and 
generalizable; and (6) problems associated with multiscale tests. Some of these special 
issues apply only in situations thaf you may not encounter. For example, you may 
never need to construct a speeded test or have to deal with corrections for guessing or 
halo effects; other times additional analyses or slight modifications of previously dis
cussed procedures may be required; IlDd still other times major changes in test con
struction may be needed. Conversely. it is improbabJe that your work will be conduct
ed exclusively on populations that are so homogeneous that bias is not an issue. In 
general, these issues will be examined from the standpoint of the classical linear 
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model in which scores are simply sums of item responses, but we will again consider 
some of them from the perspective of item response theory in Chapter 10. 

The main points of this chapter are as follows: 

1 There is a classical correction for guessing known as Abbott's formula. It as
sumes that subjects either know the correct answer or guess blindly. As such, it poorly 
describes what individuals actually do in taking a test. Guessing lowers test reliability 
somewhat because two individuals with the same underlying knowledge may get dif
ferent scores because of differences in luck. However, the loss in reliability can be off
set by adding a few items, if needed, and instructions not to guess potentially intro
duce individual differences in willingness to guess that are usually irrelevant to the test 
scores. Moreover, scores produced by Abbott's fonnula correlate perfectly with ob
tained scores when individuals attempt all items. We therefore strongly suggest that 
subjects simply be instructed to attempt all items. 

2 We have thus far been concerned with power rather than speed tests. A "power 
test" is one in which the presence of a time limit does not contribute to individual dif
ferences: The presence of a time limit per se, even one that makes some individuals 
uncomfortable, is not crucial. The main point in constructing a "speed test" is to 
choose a time limit that maximizes individual differences and therefore reliability. Un
fortunately, the internal consistency method (coefficient a) used to study reliability in 
power tests is inappropriate with speed tests, although test-retest methods are appro
priate. 

3 A test has adverse impact if there is a disparity in outcomes between a reference 
group, commonly white males, and a focal group, commonly one of several legally 
protected groups such as females, Hispanics, and blacks. Adverse impact and related 
fonus of disparity are legally important but do not imply bias, group differences in 
what the test measures, in and of themselves. Indeed, a failure to find group differ
ences also implies bias, as when a scale fails to find a difference between the weights 
of adult men and women. Unfortunately, there are several definitions of bias which are 
often inconsistenc when group differences exist. A basic ethical issue is whether it is 
more important to be fair to individuals or to groups. Approaches oriented toward in
dividuals are based upon linear regression, often moderated multiple regression, and 
approaches oriented toward groups are based upon quotas. However, the modem 
methods of Chapter 10 have played an increasingly important role in the study of bias. 
"Reverse regression" is a paradoxical artifact of the regression model in which the 
same data may simultaneollsly appear to demonstrate that a focal group is both under
paid and underqualified. A different artifact, Simpson's paradox (Chapter 5), is shown 
to arise from improper aggregation. Methods of determining quotas, and the use of 
pooled versus separate group noms are also considered. 

4 Many investigators use behavioral ratings. A major problem with their use is that 
the rater may confound the specific attribute to be rated with other attributes, including 
an overall evaluation, producing a halo effect. Problems associated with traditional de
finitions of halo are considered, as are several causal models of halo. 

S A "response bias" is a measurement artifact that emerges from a specific situa
tion, whereas a "response style" is a characteristic of an individual that is consistent 
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across situations. Sources of bias and ways to deal with it ilre considered. Perhaps the 
most widely discussed response style is social desirability. Although its- role is clear- in 
determining overall differences in response to items, its status as an individual differ. 
ence variable is somewhat debatable. Moreover, it is important to separate the tenden, 
cy to give a socially desired response with lack of self-knowledge. The section consid. 
ers examples of other proposed response styles. 

6 Chapter 8 noted the importance of taking a multivatiate approach to the study of 
constructs. This natLU'ally leads to the development of multiscale tests. Some of the 
problems in dealing with such tests are considered. One such problem is whether to re, 
peat an item on more than one scale. This will artifactually produce a correlation be, 
tween the scales since there will be a component in common even among subjects who 
answer randomly. However, an item may legitimately relate to two or more constructs 
because the constructs are inherently related. 

One of the distinctive features of objective format items is that subjects may respond 
correctly because of guessing rather than knowledge. Although our discussion of this 
topic wilt involve judgments, as in classroom examinations, the same issues can 
apply to sentiments even though the term "guessing" is strained. The fact that are, 
sponse can be correct because of luck has led many to attempt to correct observed 
scores for guessing. There are two general classes of models. The fITst, which we 
will consider in greatest detail, is a blind guessing model: Guesses are assumed to 
produce random choice. Thus, each alternative on a four-alternative multiple-choice 
item has a .25 probability of being chosen. Blind guessing leads to Abbott's formula 
(Finney, 1947), which we will develop over the next few pages. In contrast, there are 
various sophisticated guessing models. For example, an individual might not know 
which answer is correct but can correctly rule out certain alternatives. Guessing has 
been examined extensively in experimental psychology, most explicitly in psy· 
chophysics where it has pLayed a substantial role in the estimation of thresholds (see 
Chapter 2). 

The Blind Guessing Model and Abbott's Formula 

The traditional model for guessing in a multiple-choice test assumes that a subject ei, 
ther ( I) knows the COlTect response, and so the probability of a correct response is l.O, 
or (2) guesses completely at random with equal preference for each alternative, and so 
the probability of a correct response is 11K, where K is the number of alternatives. The 
blind guessing probability is therefore .5 on a true-false test, .25 on a four-alternative 
multiple-choice test, etc. This blind guessing assumption also appears in some item re
sponse theory models considered in Chapter 10. Lucky guesses are assumed not to 
occur in completion or other nonobjective formats. 

The blind guessing model may be stated algebraically as 

(9-1) 
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where R = observed number of correct (right) responses 
Rr: = number of items a person knows. for which the probability uf a correct re

sponse is l.0 
p = probability of a lucky guess = tlK, where K is the number of alternatives 
T = number of items attempted 

Also let N = total number of test items. W = number of incorrect or wrong respons
es, and U = number of items left blank (not guessed). Thus, T = R + Wand N = T + U. 
The only term that cannot be observed is Rt;1 which represents the number of correct 
responses the subject would obtain if be or she never guessed and left items blank 
when the correct answer was unknown. A useful but somewhat inaccurate analogy is 
that R is the score a subject receives on a multiple-choice test and Rr: is the score a sub
ject would receive on an equivalent short-answer test. We stress that this model as
sumes that guesses are totally random if the correct answer is not known; no alterna
tive can be correctly eliminated. contrary to what anyone taking a test usually 
experiences. By definition. Rt: denotes the number of items a subject really knows and 
T - Rt: describes the opportunities to guess on the remaining items. The probability 
of a correct (lucky) guess is p = 11K. and the probability of an incorrect response is 
q = 1 - p = (K - l)IK. It is then simple to take Eq. 9-1 and solve for Rr:: 

R=Rt:+pT-pRr: 
= Rt:-pRr:+pT 
=RJl-p)+pT 
=qRr:+pt 

q~=R-pT 

R _ R-pT 
c- q 

Since p = 11K. q = (K - 1)/K. and T= R + W, Eq. 9-2 may be expressed as 

R = R-(lJK)(R+ W) 
c (K -I)lK 

KR-R-W 
= K-I 

(K-l)R- W 
= K-I 

W 
=R- K-l 

(9-2) 

(9-3) 

Equation 9-3 is one way to state Abbott's formula and is the final correction for 
guessing. The term "correction" is a misnomer because it only estimates the effects of 
guessing under unlikely assumptions. The model provides Rc by subtracting a fraction. 
lI(K - 1). of the number of the attempted but incorrect responses (W) from tbe actual 
number of correct responses (R). For example. assume (I) there are four alternatives 
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per question, (2) the subject attempts 32 out of 40 items, and (3) the subject answers 
20 of them comedy and 12 incorrectly. Thus. 

R =20--.!.L 
c 4-1 

= 16 

The estimate is that the subject really knew the answers to 16 items and made 4 
lucky guesses. 

Effects of Guessing on Test Parameters 

The effects of blind guessing on the psychometric properties of score distributions ace 
easily determined. First, guessing causes the estimated mean score to be larger than it 
would have been had the subjects left the items blank. The expected increase is R - Rc 
and is directly related to the number of attempted but incorrect responses (W). In other 
words. W reflects differences in the amount of guessing. If all subjects attempt all 
items, the expected gain from guessing is inversely related to Rc (knowledge). People 
who know the least must guess the most, and they consequently stand to gain the most 
from guessing. Figure 9·1 shows the expected relationship between Rand Rc for a k ::: 
4 alternative, 40-item test. People who actually know every correct answer all obtain 
scores of 40. and people who actually know none of the answers obtain an average 
score of 10 by pure guessing. Note that Rc and W are linearly related with a slope of 1 
because Kl(K - 1) is a coostant for a given test. 

FIGURe 9·1 Expected scores when guessing Is a factor (R) as a function at scores when guessing is not a 
factor (Rd. The figure assumes that R is based on a 4Q·ltem multiple-choice test with four 
altematlves for each Item and that each subject attempts all items. 
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Regardless of the overall effects of guessing. there are individual differences in the 
amounts and results of guessing. Individuals with the same Rand W will have differ
ent types of luck in guessing. One may answer every question correctly by guessing, 
and another may fail to answer any correctly, although both outcomes are improbable. 
The model for blind guessing assumes that the probabilities of correctly guessing on 
different items are independent. so that the expected variance in success of guessing, 
R - Re. follows from the binomial theorem: 

(9-4) 

where N = number of guesses = T - Rc 
p = probability of a correct guess = 11K 
q = probability of an incorrect guess = (K - l)IK 

O';r = expected variance of R - Re for people who guess on N items 

Again assume that there are T == 40 items. there are K == 4 alternatives, Rc ranges 
from 0 to 40. and each person responds to each item. The model states that people who 
do not know any correct answers eRe = 0) always guess, and so N is 40, P 1s .25, and q 
is .75. The expected variance of their scores is (40)(.25)(.75) or 7.5, and the expected 
standard deviation is Y7.50 or 2.74. Conversely, individuals who know all the correct 
answers never guess (N = 0), and so R == Rc = 40 and the variance of both actual scores 
eR) and corrected scores (Re) is zero. Since p and q are constants for a given test, the 
variance due to guessing (0';) is an increasing linear function of the number of 
guessed items (N) and a decreasing linear function of the number of known items (Re). 
Figure 9-2 illustrates the latter, which holds only if subjects attempt all items, as in 
most classroom multiple-choice tests and research. Situations in which subjects are 
urged not to guess when they' are unsure of the correct answer will be discussed later. 

The variance of errors due to guessing adds to the measurement error from previ
ously considered sources. Figure 9-2 illustrates that the measurement error (unreliabil
ity) due to guessing decreases with actual ability. Guessing not only increases the 
scores of low-ability subjects more than those of high-ability subjects but also makes 
their scores less reliable. Since Eq. 9-4 involves the number of guessed items (N), it is 
only of theoretical interest. Estimates of the variance of scores contributed by guessing 
can be obtained by estimating N since p and q are known. By definition, N equals the 
total number of attempted items (T) minus the score that would be obtained in the ab
sence of guessing (R~): 

Using Eq. 9-3, 

N=T-(R-~) K-I 

=T-R+~ 
K-l 
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Expected variance of errors because of guessing as a function of Reo The IIgure assumes that 
there are four alternatives for each Item on the multiple-choice lest and that each subject attempts 
all the Items. 

Since T - R equals the number of attempted but incorrect responses, we may 
rewrite this equation as 

W N=W+-
X-1 

(9-5) 

Equation 9-5 therefore estimates the number of items on which the individual 
guesses blindly (N). Multiplying by pq estimates 0;,. the amount of measurement 
error due to guessing for people with the same number of attempted but incorrect re
sponses (W): 

(9-6) 

Suppose, for example. W = 8 for many people, they all have the same Re, and K = 5 
altemati yes per item: 

cr., = (.2)(.8)(8 + 8/4) 
= (.16)(10) 

=1.60 

Thus, guessing causes the scores to have a variance of 1.6 points even though sub
jects all know the same amount. 
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ihe Accuracy of the Correction for Blind Guessing 

We have noted that the basic assumptions of blind guessing usually do not hold; sub
jects usually can eliminate at least one distractor. This means that the probability of a 
correct guess is greater than 11K. For example, if K = 5, but one distractor can al
ways be eliminated, the number of attempted but incorrect responses (\>V) should be 
multiplied by Y4 rather than 1A; in Eq. 9-3. Since W is actually multiplied by Vs, the 
actual effect of guessing is usually underestimated (Price, 1964). However, if some 
distractors are unusually plausible, Eq. 9-3 will overestimate the effects of guessing; 
even if subjects strenuously atterr.pt not to guess, they may make many W responses. 
One may argue that it is poor practice to include highly plausible distractors and that 
good methods of test construction tend to weed them out. Rather than employ such 
highly plausible distractors, it is better to compose dis tractors that aU sound plausible 
to a student who knows very little about the topic. However, this is easier said than 
done. As most tests have few highly plausible distractors but provide ample opportu
nities for narrowing alternatives, the practical result is that the blind guessing model, 
Eq. 9-3, underestimates the amount of guessing and overestimates [he number of 
items subjects kn0v.:. 

sophisticated Guessing Models 

Signal detection theory, which was briefly introduced in Chapter 2 and is also dis
cussed in Chapter 15, provides an illustration of how models developed in psy
chophysics can be applied to psychometric theory, in thjs case, to consider guessing 
(Green & Swets, 1967; Egan, 1975; Macmillan & Creelman, 1990; Nelson, 1986; 
Swets, 1986a, 1986b; Swets, Tanner, & Bi!dsall, 196L; Tanner & Swets, (954). The 
basic (and reasonable) approach is to assume that each alternative possesses a 
"strength" or "truthfulness" and that the subject chooses the "strongest" (most truthful
appearing) alternative. 

Formal models specify the mathematical properties of the strengths of the correct 
alternative and distractors. The model most relevant to a multiple-choice test is called 
the K-altemative forced-chojce task. It is designed to handle tasks such as the ability [0 

localize a briefly presented visual stimulus in One of K spatial locations. The assump
tions are that the effects of each stimulus vary randomly about a mean value on an in
terval scale of strength. The mean values of the incorrect alternatives are set at 0 with 
a standard deviation of 1, and the mean value of the correct alternative is set at a high
er value, traditionally designated d', with a standard deviation of 1. The specific values 
obtained for each alternative reflect random sampling. The subject is correct on a 
given trial when. the values sampled for aU K - I incorrect alternatives are less than 
the value sampled for the correct alternative; if one of the incorrect values exceeds the 
value sampled for the correct alternative, the subject will be incorrect. The chances of 
an incorrect response diminish as d' increases, and so the better the subject, the larger 
his or her d' parameter. 

This particular formalization is clearly more suited to psychophysical applications 
where trials are much more likely to differ only by chance than in actual multiple
choice tests where (1) items vary in difficulty and (2) some distractors within ieems are 
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more likely to be chosen than othet'S. However, two particular deductions will usually 
hold even when the rather strict assumptions are relaxed. 

1 Allowing subjects a second guess when they are incorrect will show that they are 
not guessing blindly. The blind guessing model states that subjects must again guess 
blindly, this time among K - l (rather than K) alternatives. Sophisticated guessing 
models predict a higher probability of a correct second guess, which js almost univer
sally the case (see the above references). 

2 The number of correct responses obtained when subjects respond to every trial is 
a sufficient estimator of d'; I.e .• it uses all relevant information so that it is perfectly 
proper to instruct subjects to guess on every trial. 

Practical Considerations 

Should one use a correction for blind guessing? Two reasons are commonly given for 
instructing subjects not to guess. First. guessing introduces a small amount of unrelia
bility into test scores-reducing coefficient a by about .04 (Guilford, 1954; Lord, 
1963; Price, 1964). Although it may be important in rare settings. this unreliability 
may nearly always be offset by making the test a few items longer. Second, some sug
gest that guessing fosters poor attitudes in students, as they are taught not to guess 
blindlY in daily schoolwork but to investigate facts and "think out" unsolved problems. 
We consider it doubtful that multiple-choice tests warp many students' minds. 

Instructing subjects not to guess poses at least two problems. 

1 It is difficult to frame such instructions clearly. The student is told that it does 
not pay to guess when in doubt. but this is rarely true. Students (and often teachers) do 
not understand the magnitude of the correction so that the penalty primarily stands as a 
vague and unnecessary threat. 

2 The effects of the instructions vary over students and create an irrelevant source 
of individual differences. A very conscientious student might lower her or his score 
appreciably by taking the instructions not to guess too seriously. There are degrees of 
guessing from blind to nearly complete knowledge, so that the meaning of "guessing" 
is ambiguous. Individual differences in guessing reflect personal idiosyncrasies more 
than intelligence or knowledge of the particular subject matter (Price. 1964). Conse~ 
quently, individual differences in guessing will complicate the factor composition 
compared to that obtained when students attempt all items. 

We therefore suggest that subjects be instrocted to attempt every item. If subjects 
do attempt every item. there is no need to correct for guessing since there will be a 
perfect negative correlation between Wand R and. more importantly. a perfect positive 
correlation between corrected (R,,) and obtained (R) scores. This strategy also follows 
from at least some sophisticated guessing models. 

Using the Model to Estimate Test Parameters 

Even though we suggest that the blind guessing correction not be employed in test 
scoring, it does have utility in predicting the effects of guessing on test reliability and 
other important psychometric properties of score distributions. 
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first, it is often useful to distinguish between the possible and the effective score 
range. The possible range equals the number of test items plus 1. Of course, unless a 
test is given to as vast a sample as the SAT is, this range is unlikely to be filled, and 
guessing limits this range further. Assuming subjects attempt all items, the expected 
lower bound of the effective range is the expected number of items obtainable by pure 
chance (Np). This would be 10 on a 40-item, four-alternative test. Rarely, some scores 
may fall below 10 because of the variance in errors due to guessing (a;y). 

The variance of scores below chance should be entirely totally unreliable. as it is 
due [0 random differences in guessing. This is commonly the case, but there are ex
ceptions. Cliff (1958) found scores below the chance level on one fonn of a test Corre
lated significantly with scores below chance level on an alternative form. This can 
arise when certain distractors successfully mislead very low-ability individuals. 
Below-chance performance also occurs when subjects deliberately try to do poorly 
(Theodor & Mandelcord, 1973). 

Multiple-Choice versus Short-Answer Tests 

Multiple~choice tests and short~answer tests based upon the same material have been 
compared to study the effects of guessing. A short-answer test (which is assumed to be 
free of the effects of blind guessing) should be more reliable than a mUltiple-choice 
test by an explicit amount (see Nunnally, 1967. p. 584.), but Plumlee (1952) found that 
the difference in reliability was less than predicted. The short-answer test was not as 
reliable as predicted or. conversely, the mUltiple-choice test was more reliable than 
predicted. The acrual difference was between one-half and two~thirds that predicted. 

In actuality (see Chapter 8), multiple-choice items test recognition and short
answer items test recall. Recognition is usually easier than recall. The blind guessing 
model is not actually intended to estimate relations between a multiple-choice test and 
a corresponding short-answer test. It is intended to estimate relations between an actu
al multiple-choice test with a finite number of alternatives per item and a hypothetical 
multiple-choice test with an infinite number of alternatives per item. A short-answer 
test is not the same as a test with an infinite number of alternatives. Short-answer tests 
contain measurement error that is not present in multiple-choice tests. Good multiple
choice items "aim" knowledgeable students toward the correct answer. Items that are 
quite clear when presented in multiple-choice fonn are sometimes ambiguous when 
presented in short-answer form. Consider. for example, the item "An important prod-
uct of Bolivia is ___ " in which the multiple-choice alternatives are (1) coal, (2) tin 
(the correct answer), (3) diamonds, and (4) lead. If the same students were asked the 
item in short-answer form. the word "product" might be unclear. as it could refer to 
farming. manufacturing, mining, Or other industries. Confusion produces measurement 
error in short-answer tests that partially offsets the effects of guessing on multiple
choice tests. It is one reason why the difference in reliability between the two formats 
is not as great as predicted. 

Detailed evaluation of this difference in formats really requires a hypothetical test 
with an infinite number of alternatives. However. one may estimate the extent to 
which the blind guessing model predicts differences in reliability as a function of the 
numbers of alternatives, e.g .• the relative reliability of a five- versus a four-alternative 
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test obtained by randomly removing one distractor from euch item. Numerous studies 
of this kind suggest that reliability increases as a function of the number of alternative. 
responses, but by less than predicted by the blind guessing model (Nunnally. 1967, 
Chapter 15) and alternative models (Lord, 1976). There is generaHy a substantial in
crease from two alternatives (e.g., true-false) to three alternatives, a worthwhile in
crease from three to four alternatives. a small increase from four to five alternatives 
and negligible increases beyond that point. Ebel's (1969) findings for simulated lOO~ 
item tests are typical. His reliabilities were .74, .83, .86, .87, arid .88 for two through 
five alternatives, but the precise results also depended upon such factors as the average 
interitem correlations. 

Data such as Ebe\'s involve the overall reliability. There is a larger gain in reliabili
ty for low-scoring individuals with an increased number of alternatives. Figure 9~2 
sh.owed that unreliability due to guessing declines rapidly as ability increases. Using 
more than four alternatives per item therefore reduces unreliability at the lower end of 
the trait continuum. If it were crucial to discriminate among low-ability individuals, 
seven or eight alternatives per item might be needed. In sum, it almost always pays to 
have more than two response alternatives, and seven or eig~t alternatives may be 
called for in rare instances. However, four or five alternatives nearly always suffice, 
the strategy followed on nearly all commerciany distributed multiple-choice teses. The 
baseline provided by random guessing changes little per alternative beyond four-it 
decreases only from .25 to .20 as a fifth alternative is added, for example. Increase test 
reliability by adding more items rather than by adding more alternatives to each item. 

Chapter 8 was concerned with power tests, i.e., tests on which individual differences 
are not due to the effects of a time limit. Although a given test may have a time limit 
to expedite test administration, it may be considered a power test if this time limit is 
sufficiently generous so that it does not affect the variance of test scores. In other 
words, a given test may be considered a power test to the ex.tent that the correlation 
between scores obtained with the time limit and (probably) hypothetical scores ob
tained in the absence of any time constraints approaches 1.0 even if the two means are 
different. In a speed test, these individual differences emerge precisely because a high
ly restrictive time limit is imposed. A pure speed test consists of items that would be 
of trivial difficulty if subjects were given unlimited time. Consequently p values would 
exceed .95 if the items were administered with no time limit. Simple addition prob
lems given to literate adults (23 + 12 = ?) are one example. The only way to obtain a 
reliable dispersion of scores with these items is to employ a highly restrictive time 
limit that prevents individuals from answering all the questions. 

Simply imposing a time limit does not make a measure a speed test. Time limits are 
often imposed for practical reasons, e.g., classroom tests are typically limited to the 
available class time. Unless the time limit is severely restrictive, it will not influence 
the underlying traits measured by the tests. If scores obtained with and (usually hypo
thetically) without time limits are very highly correlated, the timed test can be consid
ered a power test. 
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Unless the underlying trait obviously involves speed, it is generally ill-advised to 
employ a speed test in place of a power test. Much practical e:tperience and a consid
erable amount of experimentation (e.g., Miller & Weiss, 1976) indicate that restrictive 
time limits cause test scores to be influenced by unwanted variance caused by inciden
tal testing-taking habits unrelated to the underlying trait. Some general abilities, how
ever, are intimately related to speed, such as numerical fluency and perceptual speed, 
as are vruious clerical aptitudes. Rules that apply to the construction of power tests 
generally do not appJy to the construction of speed t~sts, and so special principles are 
needed. 

The Internal Structure of Speed Tests 

The Item Pool 

The theory of reliability and the construction of power tests rely heavily upon the sizes 
and patterns of correlations among items (see Chapters 6 and 7). However, these cor
relations among items are artifacts of time limits and of the ordering of items within a 
test in speed tests. Consequently one cannot construct a speed test based on item inter
correlations. The average correlation among items on a speed test is directly related to 
the amount of time allotted for taking the test. The p values of all items will be close to 
1.0 if subjects are given unlimited time, which will range-restrict the correlations to 
zero. Conversely, these p values will all be close to zero if subjects are given little time 
to take the test, which will also range-restrict the correlations. The average p value b~
tween these two extreme time limits ranges from 0 to 1.0. If the limits produce average 
p values near .5, the average correlation might be !ubstantial. 

The time limit affects the pattern of correlations among items and therefore the pat
tern of item-total correlations as well as the average correlation. Assume that the time 
limit produces an average p value of .5 and that the test is made reliable by methods to 
be discussed. The item-total correlations will be artifacts of the ordering of items with
in a speed test. The p values will decline from nearly L.O at the beginning of the test to 
nearly .0 at the end of the test. Both these early and late items must correlate poorly 
w.ith the other items and therefore with total scores. In contrast, items near the middle 
of the test will correlate substantially with one another and with total test scores. Since 
the ordering of items on a speed test is arbitrary, these item-total correlations will also 
be arbitrary. It therefore makes no sense to select items on this basis. This is why a dif
ferent form of item selection must be used for speed tests than for power tests. This 
section will consider the principles needed. 

As in all test construction, the first step in constructing a speed test is to develop an 
item pool based upon a domain of content. Once a suitable domain is defined, the task 
is usually rather easy because the items are typically so simple that they can be com
posed by the dozens. Whereas it was possible to give some rules of thumb about the 
size of a power test's item pool, the size required for a speed test is very difficult to de
termine 'ahead of time. This is because the reliability of speed tests is not as highly re
lated to the number of items as is the case with power tests. For example, a 50-item 
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speed test using addition items might be more reliable than a 20D-item test requiring 
subjects to say whether pairs of letter groupings are the same or different. The reliabil
ity of different types of speed tests is usually more closely related to the testing time 
required to obtain the most reliable distribution of scores than to the number of items. 
Thus. if the ideal testing times for two different speed tests are both 15 minutes. the 
tests will tend to have similar reliabilities even if the numbers of items differ. The 
number of items in the pool should depend on intuitive judgments about how rapidly 
they can be answered by the average person. If this pool is later found to be too sman, 
it is usually easy to construct new items. 

Assume, for ex.ample. that addition items are to be used with unselected adults. 
Previous experience might indicate that the average adult can correctly solve 2 such 
problems per minute and that about 80 such items will produce the desired reliability. 
The experimenter constructs 80 such items and experiments to determine the ideal 
time limit. At 2 problems per minute, this ideal time limit is approximately 40 min
utes, but this should be determined empirically. Consequently. administer the items 
to five different randomly sampled groups with respective time limits of 30. 35, 40. 
45. and 50 minutes. Quite often it is feasible to administer the test to a single group 
and score their results after each of a series of time limits. Although a cnore sophisti
cated measure will be discussed later, one simple approach is to select the time limit 
that produces the largest standard deviation of scores, interpolating as necessary. The 
reliabilities of a speed test under different time limits are highly related to the result
ing standard deviations of scores. Hypothetical results from the above study are 
shown in Fig. 9-3. The standard deviation (and thus the reliability) will be highest at 
some intermediate point and taper off on either side of that point, in this case at 45 
minutes. 

FIGURE 9·3 Standard deviations of scores on a speed lest as a function of different time limits. 

30 35 40 45 50 

Time limit (minutes) 
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Measurement of Reliability 

Factor Composition 

It is not correct to measure the reliability of a speed test in terms of"internal consisten
cy (coefficient a). The most appropriate measure of reliability is to correlate alterna
tive forms. Thus, construct two SO-item tests of numerical computation in the previous 
example, rather than only one, and then use the correlation between the two sets of 
scores to estimate the reliability. A time-saving approximation to the alternative-form 
reliability is to use the split-half method (Chapter 7) on a single form of the test. Ad
minister halves of the items with time limits of half that employed for the whole test. 
Use the Spearman-Brown prophesy formula, Eq. 6-18, on the correlation between the 
two halves since this correlation comes from haIf-tests. As a further check on the tem
poral stability of the attribute, administer the half-tests about 2 weeks apart instead of 
consecutively. The corrected correlation between halves will be a meaningful estimate 
of the reliability as long as performance within a testing session is not markedly influ
enced by fatigue. 

The artifactual correlations among items are not the only reason that coefficient a 
poorly describes the reliability of speed tests. Chapter 6 noted that reliability is closely 
related to the standard deviation of total scores, which in tum is highly related to the 
average correlation among items within the test. Internal consistency measures (coeffi
cient a) cannot be legitimately employed with speed tests because they predict the 
alternative~fonn reliability only when· one can assume that the average correlation 
among items within a test is the same as the average correlation between items on al
ternative forms. The average correlation between items on alternative forms o{a speed 
test tends to be smaller than the average correlation between items within each test, so 
that internal consistency overestimates the alternative-form reliability of speed tests. 

As mentioned previously, the patterns of correlations among items on a speed test are 
determined almost entirely by the time limit and the ordering of items within the test. 
Items near the middle of the test correlate more highly with other items than do items 
near either end of the test because they have larger variances. Some people will pass 
these items and others will not. In contrast, nearly everyone will pass early items and 
fail later items. In general, items will correlate more highly with items near their own 
ordinal position on the test than they do with items further removed in the ordering. be~ 
cause of the similarities of their distributions (see Chapter 4). For ex:ampl~. the four~ 
teenth item will probably correlate more highly with the thirteenth and fifteenth items 
than it will with the tenth and twentieth items. Items therefore tend to break up into 
different factors because of their proximity to one another, and items near the middle 
of the test will have the highest loadings on a general factor for reasons to be dis
cussed in Chapter 11. This may be interesting mathematically, but it tells one nothing 
about factors of ability or personality. The proper way to learn about the factors pre
sent in speed tests is to apply the analysis to a set of whole tests (scale-level analyses) 
because these artifacts will not be present. As noted in the previous chapter, distribu
tions of continuous scores on whole tests are usually sufficiently similar so that arti
facts reflecting differences in distribution shape are not major considerations. 
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Variables Relating to Speed 

Speed instructions request subjects to work quickly. For ex.ample, word association 
usually stresses responding with the first word that co~es to mind. Speed instructions 
usually do not force subjects to perform at any set speed, item per item, or to stop re
sponding after any particular amount of time. Indeed, SUbjects are often not actually 
timed. Speed instructions therefore serve only to encourage rupi.d responses. They do 
not ensure rapid responses, prevent individual differences in rate of response. or neces
sarily lead to individual differences in rate of response. 

Another variable relating to speed is preferred rate of response, which concems 
how rapidly subjects like to respond. Preferred rate can be purely measured only when 
(l) responses are very easy (i.e., not mentally difficult or physically exhausting) and 
(2) the experimenter does not provide incentives for responding either quickly Or 
slowly. Very few tasks meet these standards. Subjects might be told to tap a stylus at 
their preferre'd rate while that rate is recorded. If a word association test is given with
out speed instructions, a subject's total time is related to the preferred rate. However. 
individual differences in the ability to form associations would be a confounding fac
tor. Preferred rate is the motivational component of the effects of speed on test scores. 
It concerns how rapidly the subject tries to work in a particular setting. Obviously, the 
purpose of speed instructions is to alter the preferred rate. 

It is noc clear whether preferred rate is a general personality trait or is largely spe
cific to the task. at hand, or how preferred rate interacts with speed instructions. The 
average person usually responds more quickly with speed instructions than without 
speed instructions, but this does not mean that changes in individual differences OCCur. 
A correlation of l.0 between scores in the two situations. corrected for attenuation. 
means that speed instructions influence average rate of responding but not individual 
differences in preferred rate. Conversely, a zero correlation means that speed instruc
tioos erase individual differences in preferred rate. We know little about preferred rate 
because it is very difficult to investigate it independently of other variables. The appar
ent preferred rate is usually a mixture of how quickly subjects would like to respond 
and how quickly they can respond. A person of limited numerical ability may take 
considerable time to complete the problems even though that individual makes every 
effort to work quicldy. Another person of superior ability may feel no pressure to work 
quickly but may complete the test quickly. 

It is useful to distinguish between time-limit accuracy and response-time scores. 
Time-limit accuracy scores hold constant the amount of time needed to complete a set 
of problems for all subjects; the score for each subject consists of the number of prob
lems correctly solved. Most classroom examinations are scored in this way, and time
limit accuracy scores are generally well suited to group testing. Response-time scores 
require each subject to work until one or more problems is solved; the score consists 
of the amount of time used. These tests usually require individual administration. 

A final distinction is between paced and time-limit measures. Paced measures in
volve a time limit for each item or block of items. For example, subjects might be 
given 1 minute to solve each of 20 arithmetic problems. Pacing is seldom used in 
group testing because it is difficult to administer, but it is widely used when subjects 
are run individually. Time limits require subjects to complete as many problems as 
possible in the allotted time. There are often problems adjusting for a speed-accuracy 
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tradeoff, as some individuals of the same skill may work rapidly and produce many er
rors, whereas others work slower but more accurately. 

Statistical Effects of TIme Limits 

Restrictive time limits obviously affect group mean scores but can have varied ef
fects upon the reliability and validity once the time limit maximizing the variance is 
taken into account. A mean near the center of the usable score range (e.g., half of the 
number of items on a dichotomously scored short-answer test) tends to favor high re
liability, but the relationship holds only loosely. The effect of the time limits On the 
distribution shape is important because it affec[5 the reliability at different score 
(ability) levels. In particular, a highly restrictive time limit will produce a positively 
skewed distribution and provide more reliable discriminations among high-ability 
people than among low-ability people. A less restrictive time limit that produces a 
negatively skewed distribution will have the converse affect. These differences hold 
regardless of the variance and therefore the overall reliability. The overall reliability 
is related to the distribution shape only indirectly.through the relation between shape 
and standard deviation. 

These considerations do not specify how a restrictive time limit affects validity. 
One approach is to determine how a time limit affects the factor composition. Unfortu
nately, the factor composition of a pure power test is often unknown. However, the at
tenuation-corrected correlation, Eq. 6-36, between scores obtained with and without a 
time limit directly measures the extent that they measure the same thing. The square of 
this correlatiOn defines the shared common variance (SCV) of the two measures. We 
will use this term specifically to describe the effects of speeding, although any attenua
tion-corrected correlation may be squared, of course. The SCV describes the effects of 
restrictive time limits on changes in the factor composition. and thus the validity, of 
different test materials. Alternative forms of a test can be constructed and administered 
to the same subjects on different days under different time limits, and the alternative 
forms reliabilities obtained to provide the desired data. 

For example, suppose the reliability of scores under one time limit is .8, the relia
bility under a shorter time limit is .6, and the correlation between the two sets of 
scores is .7. The attenuation-corrected correlation is .7rV (.8)(.6) or, approximately, 
1.0, and so the SCV is also approlCimately 1.0. Thus, the scores obtained under more 
restrictive time limits have the same factor composition as the scores obtained under 
more generous time limits, but the former are more reliable. One must be careful to 
counterbalance testing sessions to control for practice effects. Investigate each alterna
tive form in each time-limit condition in order to make this determination. Because of 
the labor involved in performing these kinds of studies, very few have been done. 
Morrison (1960) provides a thorough example. 

One-TriaJ Measures of the Effects of TIme Limits 

Computation of the SCV requires correlations among alternative forms administered 
under different time limits. Consequently all Subjects must be administered several al
ternative forms. Proposals have been made for examining changes in factor structure 
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due to varying time limits through item statistics rather than through alternative-fonns 
correlations. GuIliksen (1950) and Morrison (l960) discuss these in detan. 

One such approach is based upon the relative occurrence of errors of omission 
(items not attempted) and errors of commission (items attempted but answered incor
rectly). A pure speed test could be defined as one in which all errors are omissions be
cause the subject did not reach the item. rather than commissions because the subject 
answered the item incorrectly. The converse is true on a pure power test, and both 
types of error are found on a test that mixes speed and power. The simplest index of 
speeding based upon this distinction is the variance of errors of omission over subjects 
divided by the variance in the total number of errors (omissions plus commissions). 
More complex but related indices take the correlation between the two types of errors 
into account. A measure can be considered a speed test to the extent that the index ap~ 
proaches 1.0, and a power test to the extent that it approaches zero. 

Indices of this form are appealing because they require neither construction nor ad
ministration of alternative foons. However, they are not recommended and have right
ly fallen into disrepute. One unreasonable assumption they make is that errors of omis
sion reflect speeding. In fact, the number of unattempted items is largely detennined 
by the test instructions, penalties for guessing, and the overall atmosphere of test ad
ministration. regardless of any time limit. The experimenter can make the number of 
unattempted items large even with a very generous time limit simply by warning sub
jects not to guess when unsure. Conversely. one can produce many error!! of commis
sion on a test with a highly restrictive time limit and easy items by urging all SUbjects 
to answer all items in the allotted time even if they 'must guess wildly. 

One-trial indices would still fail to provide important infonnation even if their basic 
assumptions were sounder because these indices do not provide any information about 
the factor composition of scores. Investigations of factor composition necessarily are 
based on correlations of alternative forms or the same test administered to the same 
subjects under different time limits using methods described above. 

Correction for Guessing In Speed Tests 

In principle. the blind guessing model has limited applicability to pure speed tests be
cause there should be few errors of commission to correct for. The burden of prevent
ing appreciable numbers of commission errors on pure speed tests rests on the effec
tiveness of instructions not to guess. However. low-ability subjects should ignore these 
instructions if there is no penalty. For example, assume that the problems require sub
jects to choose from a small number of alternatives. e.g., classify the sum of two num
'bers as odd or even. Low-ability subjects will probably benefit by hurriedly marking 
every item or even responding randomly unless there is some penalty for guessing. 
One 'cannot handle this problem by having all subjects attempt all items because that 
defeats the very purpose of designing the test so that the average subject can attempt 
only about half of the items. Consequently. if many commission errors arise, it more 
defensible to make the correction for guessing, Eq. 9-3, on speed tests than on power 
tests despite the flaws of the correction. 

Errors of comrrussion can also be minimized by using items that discourage guess-
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jog, such as short-answer or multiple-choice items with a large number of alternatives. 
Unfortunately, this introduces variances due to differences in reading fluency, which 
may be quite separate from the goals of the test. fn general, guessing tends to be more 
of a problem on speed tests than on power tests if it is difficult to minimize the number 
of commission errors. The reliability and factor composition of the Scores will depend 
greatly on the test instructions and on individual differences in test-taking strategies. 

A "timed-power test" is a measure designed to assess power but administered with a 
time limit, normally imposed for administrative purposes, e.g., classroom availability. 
The basic issue is how much of a time limit can be imposed without adverselY influ
encing the distribution of obtained scores, Le., causing the SCV between the actual test 
and one administered with unlimited time to be appreciably less than 1,0. Essentially, 
the issue is how much the testing time can be reduced from a limit subjects find "com
fortable," defined somewhat arbitrarily as the time required for 90 percent of the sub
jects to report having ample time to complete the test. Although most of the evidence 
is circumstantial rather than direct, most of it indicates that the comfortable time can 
be decreased appreciably without seriously affecting ,any of the psychometric proper
ties of tests save perhaps the mean. 

For example, a vocabulary test is almost always given under power conditions even 
though time is required for the subject to look over each item and select the most ap
propriate answer. The intention is to measure knowledge of words rather than rapidity 
of response. In fact, additional time beyond the amount required to read and respond 
to the items does not materially change scores: If an individual does not know the 
meaning of the word "amalgamate," two additional minutes of staring at the word will 
not help select the correct alternative response. Consequently, time limits can often be 
imposed without affecting the psychometric properties of the test. 

Obviously, there is a lower limit to the testing time at which point the reliability be~ 
comes adversely affected. For example, allowing 1 minute for a 40~item vocabulary 
test would yield a small standard deviation of scores and consequently low reI1ability, 
However, it requires an extremely limited amount of time to eliminate individual dif
ferences in this way. Some studies have found that doubling the usual time limit has 
little effect, and other studies have shown that halving the usual time limit does not 
even alter mean performance. When the mean was affected, the reliabilities usually 
dropped minimally. Even when the reliability was affected, the factor composition was 
minimally influenced. Restrictive time limits that change the reliability typically affect 
the factors underlying the reliable variance equally, so that the SCV remains high. 
Most of the important literature on this topic is now relatively old, e.g., Kendall 
(1964). Lord (1956), and Morrison (1960). Modem test theorists have generally fo
cused on other issues, e.g., adaptive testing (Wainer, 1990). 

Guilford (1954, pp. 366-370) and Morrison (1960) provide a relevant exception to 
the minimal effects of a time limit in which items become progressively more difficult. 
A very restrictive time limit causes individuals to respond to items that are easier than 
the items in general. The SCV for scores under timed and untimed conditions can be 
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low because the easier items may meaSllre different factors than the items in general, 
even when their content appears to be the same. For example, easy items on many 
quantitative tests tend to measure numerical skins, but difficult items tend to measure 
reasoning. Although this illustrates how restrictive time llmits affect the factor compo
sition of scores, it does not mean that speed per se introduces new abiHty factors. It 
means thut restrictive time limits force the subject to take a somewhat different test 
than he or she would with a more generous time limit. The SCV would be high if 
items were randomly ordered in difficulty, allowing subjects to take the same kind of 
test under different time limits. Similar considerations hold for different types of items 
of the same difficulty. 

If the mean score with a comfortable time limit is nearer the center of the effective 
range than either extreme, a good working rule is that the comfortable time can be cut 
on a power test by at least one-third without materially changing the standard devia
tion, reliability, or factor composition. This rule works because most subjects can per
fonn effectively when asked to work faster than their preferred rate. They may be an
noyed by huving to work faster and frequently claim that the restrictive time limits 
hurt their performance, but that is not actually the case. Mildly restrictive time limits 
allow more efficient use of testing time. For example, one may employ more multiple
choice achievement items to sample content more widely. At the same time, there is a 
public relations facet to making individuals at least somewhat comfortable that should 

. not be ignored. If an unavoidable time limit will make many individuals uncomfort
able, the fact should be announced well ahead of time. If there is reason to believe that 
the time limit has influenced the mean on a classroom examination and grading is tied 
into absolute perfonnance levels, an appropriate allowance should be made. 

Speed-Difficulty Tests 

A sp.eed-difficulty test is a measure in which items are easy but not extremely so, i.e., 
the p values are in the .8 to .9 range without a time limit, but a restrictive time limit is 
used. It is much more difficult to determine the effects of speed on perfonnance in this 
case than in the more traditional speed test where the p values would all be close to 1.0 
in the absence of a speed limit. Although the comfortable time on timed power tests 
can generally be cut by one-third without inducing important changes in psychometric 
properties, it is not safe to make this statement about speed-difficulty tests. 

Whereas considerable research has been done to compare pure speed tests with 
pure power and timed power tests, very little has been done to compare speed-difficul
ty tests with either. Logically, one expects speed-difficulty tests to combine the pure 
speed and power factors, but this hypothesis is mainly untested. If it is correct, the 
mixture of factors in the speed-difficulty test may vary with different time limits. Per
haps the easiest way to avoid the ambiguity of speed-difficulty tests is to avoid their 
use. They are neither pure speed tests nor power tests, and so it is difficult to develop 
an adequate psychometric theory for them_ They are often chosen for practical reasons 
to measure power rather than speed abilities. Numerolls reasoning tests are of this 
kind, such as letter series and number series. The average item is relatively easy, and 
so the difficulty is increased by employing highly restrictive time limits. The items are 
used because it is very time-consuming to compose and administer large numbers of 
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more difficult reasoning items within a comfortable time limit. These tests often fuil to 
measure what is desired. 

, 
L 

Factors Measured by Speed and Power Tests 

Implications 

Spearman (1927) argued that the factors measured by power tests were the same as 
those measured by speed tests, however, his conjecture has not received wide support. 
Speed and power tests have generally been found to measure different factors. For ex
ample, speed tests involving the production of simple words tend to measure verbal 
fluency, but power tests involving the understanding of more difficult words tend to 
measure verbal comprehension. Similarly, simple perceptual judgments measure per
ceptual speed, but more difficult judgments measure spatial visualization. Speed and 
power tests using the same types of mental operations typically correlate positively but 
with a low SCV. Although the specific findings depend upon the type of material test
ed, and it is difficult to make explicit comparisons, performing simple problems quick
ly usually is quite different from performing difficult problems at a high level. The 
Galton-Spearman tradition has stressed the comparability of speed and accuracy mea
sures of general intelligence (as is manifest in our language-someone who is smart is 
said to be "quick"). In contrast, the Binet tradition stresses problem-solving ability. 

Whether or not one wants to employ pure speed or power tests depends on the context. 
Most content-validated measures, such as standardized achievement tests, involve 
power rather than speed. Consequently, it is usually undesirable to use speed tests for 
such measures unless speed is an inherent part of the task, as is true of some clerical 
skills. Tuned power tests are also somewhat undesirable with content-validated mea
sures for previously discussed reasons. As noted, time limits may lower mean scores, 
which are often tied into grading standards. 

Changes in the mean per se are generally less important to measures designed for 
predictive or construct validation. Speed may be more predictive than power in one in
stance and less predictive in another. Speed per se may be the topic of investigation. 
Having a theory guide the choice is highly desirable, if not mandatory, in the case of 
constructs. If power tests are appropriate, consider administering them at somewhat 
less than the comfortable time if testing time is at a premium. The bulk of the data in
dicate that this does not affect the critical psychometric properties. Finally, avoid 
speed-difficulty tests in developing constructs since their confounding of the two 
processes virtually guarantees lack of requisite content homogeneity. 

ADVERSE IMPACT, IMPROPER DISCRIMINATION, TEST BIAS, 
AND DISPARITY 

Psychological tests are easily misused, and these misuses can have important legal 
ramifications for anyone who makes decisions about individuals. This section will be 
most concerned with misuses that affect groups of people sharing a common attribute 
such as gender or ethnicity, with particular, but not exclusive, emphasis placed upon 
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legal implications. Females. Asian Americans, African Americans, Native Americans 
Hispanic Americans, and Americans of Pacific Island ancestry are legally protected 
groups under Title VII of the 1964 Civil Rights Act. Although most of the discussion 
will use examples drawn from the workplace, parallel issues can arise over diagnoses 
and treatment and affect clinical, counseling, and school psychologists. The point is 
not discrimination per se but improper discrimination. To "discriminate" means to 
treat differently, and any evaluation must eventually treat people differently. 

There are two basic arguments (called "theories" by lawyers, but not in the scientif
ic sense) that are raised in employment discrimination. 

1 "Systematic discrimination" means that an individual or company deliberately 
seeks to exclude members of a protected group in initial hiring, promotion, or reten
tion. It is the older of the two legal bases for illegal discrimination. Statistical evidence 
may playa role, but specific instances of intentional discrimination are usually more 
important. Statements like "We don't think a woman (black, Hispanic, etc.) can do the 
job" would bear most directly upon this argument, but the basis need not be this avert. 
Good faith is a basic defense. Some better known cases based upon this approach are 
International Brotherhood of Teamsters v. United States (1977), Bazemore v. Friday 
(l986), and Rendon v. AT & T (1989). 

2 "Disparate (adverse) impact" involves a procedure that appears neutral but 
which serves to exclude protected groups disproportionately, i.e., raises unnecessary 
barriers. Frequently, the plaintiff (complainant) aUeges test bias-the test measures 
different things in different groups. Griggs v. Duke Power (1971) was an early dis
parate impact case. The suit was initiated by black employees who claimed that the 
employer's testing and educational requirements discriminated by race, serving to 
keep them at lower job levels. The original trial court found for the defendant in 1968 
on the basis of a systematic discrimination argument; this decision was reversed by the 
U.S. Supreme Court. More recently, Watson v. Ft. Worth Bank & Trust (1990) estab
lished thac disparate impact applied to selection by interview and not necessarily for
mal psychometric evaluation. Good faith is irrelevant to the defense; it must show that 
the practice yielding the disparity is a business necessity, which often involves valida
tional research. 

This section will be more concerned with disparate impact and, in particular, with 
test bias more than with systematic discrimination. Plaintiffs using the 1964 Act obvi
ously wanted the broadest definition of improper discrimination to allow the use of 
psychometric and other statistical evidence. Recent decisions, such as Wards Cove 
Packing Co. If. Atonia (1990) made disparate impact cases more difficult to pursue. 
The Psychological Corporation (1978) summarized the early legal decisions. Bias has 
also been studied extensively at the level of individual items. Most of this work on 
item-level bias arises from item response theory. where it is known as differential item 
functioning rather than classical psychometrics. It will therefore be considered in the 
n~xt chapter, and we will consider only bias in whole tests. 

The Guidelines of the Equal Opportunity Employment Commission (1978, 1979) 
have legal status. They are also of interest to psychologists because they bocrow heavi
ly from material that had previously been adopted by the American Educational Re-
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search Association, American Psychological Association, National Council on Mea. 
surement in Education, and American Personnel and Guidance Association (for cur
rent standards, see American Educational Research Association et al., 1985; American 
Psychological Association, 1985, 1986a, 1986b, 1992; American Personnel and Guid
ance Association, 1978). The Guidelines define disparate impact in terms of the differ
ence in success rate between individuals in the reference group and the focal group 
("focal" has replaced "minority" among psychometricians because numerically large 
groups such as females have also obviously been victims of illegal discrimination). 
Prima facie (apparent but not conclusive) evidence for discrimination exists when the 
disparity is 20 percent or greater, the "four-fifths rule," although the figure is a rule of 
thumb. However, disparity is not conclusive evidence of bias in either the legal or psy· 
chometric sense. 

Just as bias (in the everyday sense of the word) has had a long and virulent history, 
other factors may prevent focal (or reference) group members from being selected. 
Chapter 3 noted the criterion problem which reflects the difficulty people have in 
agreeing on what "best" means. Even if there is consensus about the criterion. finding 
a valid predictor is a second obvious problem. Third, temporal instability due to such 
factors as luck may arise-a potentially succ~ssful individual may be selected but be
come ill. Classical unreliability, while usually not the major problem, regresses indi· 
viduals with the highest true scores toward the mean. All are probably at least as im· 
portant as bias in preventing the best person from being selected, at least when 
standardized measures are used. 

Defining bias is not a simple task and, as we shall see, plausible alternative definitions 
are often contradictory. Perhaps the most basic question asks to whom we should be 
fair-the individual or the group to which the individual belongs (Hunter & Schmidt, 
1976)7 Courts demand fairness to both, but the interests may be in opposition. As· 
surne, for example, that 100 people are be hired for a given position where the criteri· 
on for success is unequivocal and a perfectly valid predictor exists. Perhaps nobody 
from a particular focal grou.p is included in that number. Many argue that no focal 
group member should be selected. At the same time, others argue that it would be un
fair to the focal group if this were done because of prior injustices and the need for di· 
versity among those selected, e.g., hiring black police officers. The most recent legal 
trends, specifically the 1991 Civil Rights Act, have been in the direction of individual 
rather than group rights, buc many proponents of group representation obviously exist. 

To a large extent, this dilemma involves ethics. Psychometricians have no particular 
role to play in an ethical choice. Nonetheless, it is possible co analyze various posi. 
tions that ba'(e been adopted. Hunter and Schmidt (1976) describe a person who opts 
for picking the best person and would use any valid predictor to this end (including 
race, sex., or ethnicity, perhaps giving credit on the predictor to focal group members 
to increase their scores if it improves overall Validity) as an unqualified individualist, 
and a person who seeks the best individual but feels ethically bound to avoid race, sex, 
or ethnicity directly as a qualified individualist. Both may be contrasted with support· 
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ers of quotas, who are concerned with fairness at the group level. The several ways to 
form quotas will be noted below. Jensen (980) has criticized the distinction between 
unqualified and qualified individualists, contrasting both with supporters of quotas. 

Perhaps the most familiar lay definition of bias is that any group difference constitutes 
bias in and of itself. Judge Robert Peckham illustrated this definition when he banned 
the use of intelligence tests for the assessment of blacks that came before his court on 
the grounds that their lower scores arose from test bias (Landers, 1986). However, this 
position ignores the point that group differences may well reflect unbiased and valid 
measurement operations. Indeed, the weights provided by an ordinary scale would be 
suspect if there were no mean difference between randomly selected groups of aduit 
males and females. If weight were job-related, the disparity would be defensible, and so 
disparate impact is therefore not sufficient to establish bias in any meaningful sense. 
Moreover, disparity is not necessary since test means may be the same in focal and ref
erence groups, but individual scores may relate differentially to a criterion. This is 
known as "differential validity." Bias might affect the variability of a measure rather 
than the mean, as when the range of scores is attenuated in a focal population relative to 
a reference papulation. The second author observed this effect in unpublished data situa
tions where 'supervisors were less likely to give females higher performance ratings than 
males. In order to avoid being seen as biased, the supervisors also gave females fewer 
low scores. This same process can also obviously affect reference group members. 

Test Bias, Regression, and the Cleary Rule 

Although several statistical measures of test bias have been proposed (see Darlington, 
1971; Hunter & Schmidt, 1976), the most important one is due to Anne Cleary (1968). 
The Cleary rule states that a test developed for use in construct or predictive validation 
is fair if it has the same regression equation in the focal and reference group. and bi~ 
ased if it does not (content validation will be considered separately). This rule can be 
applied to an individual test or to a composite score of several measures. [t relates to 
the disparity in the consequences of using a test rather than in the predictor itself-a 
test is unbiased in a given group if its errors of prediction sum to zero. Courts have 
given heavy weight to this rule. If (1) reference and focal groups distributions on the 
predictor were identical, (2) they were matched on all relevant "third variables," and 
(3) the criterion could be assumed unbiased, the problem would reduce to whether or 
not there were group mean differences on the criterion. We will assume, often falsely, 
that the criterion is unbiased. However, reference groups commonly have higher mean 
scores on both predictor and criterion because of third variables such as prior experi
ence, which is why statistical adjustments such as regression are necessary. 

The Cleary rule implies that any criterion difference is (1) proportionate to the pre
dictor difference and (2) independent of the level of the predictor. Issue 1 deals with 
whether or not there is an intercept difference between the focal and reference group 
regression lines, and issue 2 deals with whether or not there is a slope difference. An 
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intercept difference implie.'1 that performance on the criterion systematically differs be
tween membelii of the two groups at a given level of the predictor. However, it is im
material whether there is or is not an intercept difference given a slope difference, 
which implies differential validity. Figure 9-4 portrays hypothetical outcomes reflect
ing (l) a fair test according to the Cleary common regression line rule, (2) intercept 
bias, and (3) slope bias. This is the same as Fig. 5-5 except for context. 

An intercept difference implies bias because a reference subject and a focal subject 

FIGURE 9-4 Relation between a predictor (X) and a criterion (y) for a test which produces (a) neither an 
Intercept nor a slope difference between focal and reference groups and is therefore fair in the 
regression sense, (b) an intercept but no slope difference, suggesting unfairness to the focal 
group, and (e) a slope difference, suggesting a different form of unfairness to the focel group. Note 
that In all three cases there is a dfsparity between reference and focal groups on both ptedlctor 
and criterion. 

(a) 

Predictor, X 

(c) 

Reference 
group 

Predictor. X 

Focal 
group 

(b) 

Reference 
group 

Predictor, X 
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with the same score on the predictor will not have the same expected criterion perfor_ 
mance, If the focal group'l> regression line fell abnve the reference group's regression 
line, there would be general agreement that the predictor is biased because the perfor
mance of focal group members would be systematically underestimated, If the focal 
group's regression line feU below the reference group's regression line, the same logic 
would lead individualists to argue that the test is biased against the reference group. 
However, proponents of quotas might not agree (see Thorndike, ·197l) because they 
stress the social value of selecting focal group members and remediating prior injus
tices. By definition, bias would be a constant, independent of predictor score. A slope 
difference means that one group's criterion performance is predicted less well than the 
other's (differential validity). The extreme is single-group validity in which the slope 
for one group is zero. The common expectation is that the focal group's slope will be 
flatter since the predictor, having been developed upon the reference group, will be 
less predictive in the focal group. 

Moderated multiple regression (Chapter 5, particular Fig. 5~5) is the most standard 
way to investigate possible slope and intercept differences, Denote the predictor X, the 
criterion as Y. and focal versus reference group membership (the possible moderator) 
M. Finally, let I denote the cross product of X and M eX itself for focal group members 
and 0 for reference group members when M is coded 1 versus 0). As in any moderated 
multiple regression problem, first compute the correlation between predictor and crite~ 
rion (rXl'), ignoring M and I, to describe the predictor's overall validity, Next, add M as 
a predictor and compute tbe multiple correlation predicting Y fro.m X and M (R,('XM)' 
ignoring I. Finally, add I to X and M to the model and compute the'multiple correlation 
with all terms (saturated model, RY,KM1)' A significant difference between 4'XMI and 
~'.YM or, equivalently, a significant ~ weight for 1 implies a slope bias. Jensen (1980) 
suggests an additional consideration-the standard errors for the two groups should be 
the same. If there is no evidence for slope bias, a signi.ficant difference between RhM 
and R},x ot' a significant ~ weight for M in the saturated model implies an intercept 
bias. The empirical literature on bias assessed through the Cleary rule is complex. 
Houston and Novick (1987) reported black-white differences and Dunbar and Novick 
(1985) reported male-female differences, Jensen (1980) aad Hunter and Schmidt (e.g" 
Hunter, Schmidt, & Rauschenberger, 1984) are good sources fat' the many possible ar
tifacts leading to apparent bias. Conversely, one may fail to find bias because criterion 
measures themselves are biased. In addition, more evidence for bias is found when in
terviews, peer ratings, o( supervisory ratings are used as predictors (Hunter, Schmidt, 
& Hunter, 1979), A test with a slope bias may favor low-scoring members of one 
group and high-scoring members of the other group, 

Applying Linear Regression to Salary Disputes 

Linear regre.,sion is commonly used by courts to adjudicate salary disputes (the tenn 
"Cleary rule" is more typically applied to psychometric tests rather than processes 
used to determine salu,ry even though the principles are the same). POl' purposes of dis
cussion, we will assume that salary reflects qualifications which in tum may consist of 
easily measured but relevant varinbles like length of service plus a more vaguely de-
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fined merit component. Because salary is a continuous measu\'e, the ordinary least
squares multiple regression methods of Chapter 5 may be employed. Regression can 
also be applied to categorical variables such as being hired versus not rured., promoted 
versus not promoted, assigned to one of several types of positions, and retained versus 
fired, but discriminant analysis or categorical modeling may be more appropriate than 
linear regression (see Chapters 14 and 15). 

Class action lawsuits (those initiated on behalf of a group, legally protected or not, 
in contrast to those on behalf of a specific individual or individuals) involving salary 
and related group differences usually begin with the plaintiff describing n disparity fa
voring the reference group. The defense usually responds by stating that the reference 
group is more qualified than the focal group. Focal groups are often less qualified 
(e.g., may have less experience), perhaps because of previous injustices for which the 
various civil rights laws have not required redress. The plaintiff may also state that the 
disparity is increasing over time, but this can arise simply because raises are usually 
proportional to base salary-if there was a mean disparity between focal and reference 
groups of $1000 in I year and everyone was given a 5 percent raise, the disparity 
would also increase by 5 percent to $1050. 

The disparity may be explained in terms of easily objectified measures like seniori
ty. Unless the plaintiff can show that the focal group has more merit in a manner the 
company recognizes in some other way (e.g., in a different department or branch of
fice), this may prove a satisfactory defense. Members within each of the two groups 
may be totally homogeneous as to qualifications (e.g., all reference group members 
were hired in 1985 and all focal group members were hired in 1990). In this case, se
niority and group membership would be perfectly confounded, a problem inherent in 
any correlational problem. The issue might hinge on whether the dispru.ity in salary 
due to experience is proportional to the disparity in comparable jobs. 

Quite often the disparity cannot be simply explained, and even those companies 
that might have been fair may lack weB-developed measures of merit. Actual applica
tioo of the Cleary rule is thus often complicated. Consequently, if there were no mean 
difference in seniority, a disparity in mean salary could either reflect (1) true, appropri
ate, but perhaps implicit differences in merit or (2) illegal discrimination. The defense 
would then attempt to explicate merit by trying to emulate statistically the processes 
that previously may have been implicit, e.g., by attempting to show that the groups 
differed in some measure of productivity. These additional data would then be com.
bined with seniority to redefine overall qualifications, returning the problem to the lise 
of linear regression. 

Regression-based methods of e;<plaining disparities simply seek to determine what 
the disparity would be if there were no difference in qualifications, and the outcome 
may indicate no salary disparity, an intercept difference (which we have focused 
upon), or a slope difference (obtainable, as usual, from the product of qualifications 
and group membership). Attention centers upon disparities that adversely impact focal 
group members. One problem in evaluating predictors of measures like salary relative 
to tests is that the employees fonn a fixed population, and so the use of inferential tests 
is questionable (even though it is Gommonly done). An investigation of a test usually 
has no sllch imposed size limit. 
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Birnbaum (1979b; also see Birnbaum, 197911., 1981) performed an interesting twist on 
classical regression with data showing that a focal group was underpaid relative to a 
reference group, adjusting for qualifications. He then reversed the roles of predictor 
and criterion to predict qualifications from salary. Although one might logically el(pect 
the result to show that the focal members were overqualified for their salaries. precise. 
ly the reverse was noted-members of the focal group were simultaneously underpaid 
and underquali:fied! This paradox. arises from the peculiarities of the regression 
model-what is considered error and is therefore minimized by least squares or othet 
algorithms differs in the two cases: The regression tine predicting Y from X is different 
from the regression Hne predicting X from Y. 

This reveals a problem with multiple regression. Although it is more natural to pre. 
diet salary fro.m qualifications than the converse, the term "qualifications" is often 
rather fuzzy and therefore somewhat unreliable. Salary disputes usually center on a 
discretionary (merit) component. The unreliability of merit violates a major assump
tion of the regression model, and so a structural model (see Chapter 4) may be more 
appropriate (McLaughlin. 1980; also see Birnbaum, 1981). The details of this ap. 
proach are beyond the scope of this book. 

Discovering relevant "third variables" that account for disparities arising from a fair 
process is a combination of knowing the context in which the investigation is conduct
ed, insight, and sometimes luck. One possible way to discover third variables is to 
conduct a residual analysis which analyzes what is left over after accounting for the 
variables employed in the regression analysis (see Chapter 5). The second author ana
lyzed faculty salaries in response to a ctass action law suit filed by a former faculty 
member. One model employed a composite measure of qualifications that took acade
mic rank, seniority, college of appointment (e.g., business, liberal arts, etc.), and group 
(focal versus reference) into account. The raw-score regression (b) weight for group 
describes the mean disparity in dollars and was relatively large in the model. 

The next seep was [0 determine the residual difference between actual and predicted 
salary for individual faculty members. This indicated a key variable had been neglect
ed. Several reference group members but relatively few focal group members previ
ously had been administrators. The policy was to pay faculty higber salaries as an in
ducement to take on these duties but not to lower their salaries when they left the 
position. A new model was constructed that included whether or not the individual had 
been a former administrator as a predictor. This model reduced the mean disparity 
considerably. 

Plotting the residuals separately for the two groups revealed an additional point. 
The reference group residuals were much more variable than the focal group's. After 
adjustment both the lowest-paid and highest-paid faculty were in the reference group, 
even though the focal group earned less on average than the reference group. This il
lustrates the relevance of Jensen's (1980) concern about equal standard errors. Much 
of the difference in variability came from extremely senior outliers at the low end of 
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the scale. The actual effects of seniority upon salary were not linear bm "compressed" 
in that younger faculty got larger raises per additional year of service [han older faculty. 

Simpson's Paradox Revisited 

Simpson's paradox (Chapter 5), illustrating one form of aggregation error, is extreme
ly important in the study of illegal discrimination (Bickel, Hammel, & O'Connell, 
1975). For example, assume that a company accepts applicants for clerical positions 
which require 2 years of college and executive positions which require an M.B.A. 
Many more people thus apply for clerical positions than executive positions, but a 
lower proportion are actually hired. Further assume (1.) that the selection processes for 
the positions are fair, (2) focal group applicants are less likely to be eligible for execu
tive positions, and (3) the company doing the hiring is not responsible for this dispari
ty. Table 9-1 illustrates the following. 

1 There were more focal group applicants than reference group applicants for cler
ical positions (1000 versus 500). 

2 A greater percentage of focal group applicants were hired for clerical positions 
than reference group applicants (100/1000 or 10 percent versus 251500 or 5 percent). 

3 There were fewer focal group applicants than reference group applicants for elt
ecutive positions (10 versus 100). 

4 A greater percentage of focal group applicants were hired for e1{ecutive positions 
than reference group applicants (10/10 or 100 percent versus 601100 or 60 percent). 

5 However, Only 11 percent of the focal group members were hired overall 
(11 011 010) versus 14 percent of the reference group members (85/600). 

Despite being hired at higher rates within each level,' a lower rate of focal group 
members were hired overall, which is Simpson's paradox. Simpson's paradox would 
also be illustrated if the data represented those retained or promoted. Although the 
paradox pertains to aggregated percentages, the same principles could also be illustrat
ed with regard to mean salary or any other continuous variable. 

The heart of this paradox is that differences in a third variable, the distribution of 
applicants at the two levels, is confounded with focal group membership per se. Over 
99 percent (1000/1010) of the focal group applied for clerical positions, but only 83 
percent (500/600) of the reference group applied for clerical positions. Only 125 (100 

TABLE 9-1 NUMBERS AND PERCENTAGES OF FOCAL AND REFERENCE APPICANTS AND HIREES 
FOA CLERICAL AND EXECUTIVE POSITIONS (HYPOTHETICAL DATA) 

Focal Reference Focal Reference 
Position applicants, N applicants, N hirees, N (%) hirees, N (%) 

Clerical 1000 500 100 (10) 25 (5) 

ExeC1Jtive 10 100 10 (100) 60 (60) 

Overall 1010 600 110 (11) 85 (14) 
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+ 25) of a111500 (lOOO + 500) elerical applicants were selected (8 percent), but 70 (LO 
+ 60) of all 110 (to + 100) executive applicants were hired (64 percent). 'There need 
not even be more focal group applicants at the clerical level and fewer at the executive 
level; all that is required is (1) a relative disparity in focal group applicants and (2) 
higher selection percentages at positions for which there are fewer applicants. Aggre
gating produces un weighted percentages that do not take these two factors into ac
count. Though the data are fictitious. the example is quite releva.nt because the dispari
ties in eligibility are all very real. 

Bias in Content-Validated Measures 

Measures used for personnel selection are often based upon content validation. rn prin
ciple, they need not be correlated with any criterion, and so the Cleary rule less obvi
ously applies. In U.S. v. State of South Carolina (1977), the courts supported a mea
sure of teaching effectiveness for which it was argued that no satisfactory criterion 
existed (as a rule, construct-validated measures that are not based upon extremely 
well-accepted theories have fared poorest and tests that are most clearly job-related 
have fared best). The primary issue is how well the test samples the content of the job. 
This is especially true of tests used for promotion or retention rather than initial hiring. 
Initial hiring decisions often use a cognitive ability (intelligence) measure for which 
the Cleary rule is applicable, but this may range-restrict the role of cognitive ability in 
promotion and retention. The latter decisions are based upon job performance, for 
which there may not be any standardized measure, and sample sizes are usually small. 
The following points are espe~ially relevant. 

1 Content on tests used for initial selection should not unfairly discriminate against 
focal group members. In particular, do not test for easily learned skills such as job vo
cabulary, as focal applicants may have poorer differential access to the jargon (Dob
bins v. International Brotherhood of Electrical Workers, Local 212. 1968). This was 
clearly used as a discriminatory device in the past, allowing relatives of reference 
group employees unfair advantage. If people are trained in the jargon and it is impor
tant to communication, it may be appropriately used as a criterion for promotion and 
retention. 

2 If possible, select the benaviors to be sampled through a careful job analysis that 
describes what people actually do on the job (see Chapter 8). In U.S. v. City of St. 
Louis (1978) the selection and promotion practices of the defendant were supported 
because of the thoroughness of their job analysis. 

3 Test for invariance in the factor structure if the testes) provide a profile of scores. 
A difference in the factor structure for: reference and focal groups provides SOlDe evi
dence for bias even though equivalence (in variance) does not guarantee fairness. Fac
tor invariance, which is also relevant to construct and predictive validity, is discussed 
in Chapter 13 and in more detail in technical sources such as Gorsuch (1983) and Har
man (1976). 

4 Knowledge of the correlates of the test is useful. Showing that a tesc correlates 
with other appropriate measures of performance on that job is an asset, especially con-
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sidering the range restriction that may be present. Conversely, showing that a test cor
relates highly with irrelevant attributes is a liability. For example, a test designed to 
evaluate management performance might primarily reflect low-level clerical abilities. 

We have noted that the basis of the four-fifths rule is the desire to avoid placing unnec
essary barriers in the path of members of a protected group. A disparity may arise in a 
test that is unbiased in the Cleary sense when an unnecessarily high cutoff is used. 
which. to a first approximation, occurred in Commonwealth of Pennsylvania v. Flaher
ty (1975). For example, a job might require the lifting of 50· pound weights, which 
need not create a huge gender disparity. However. requiring applicants for this job to 
lift a ZOO-pound weight may create a much larger gender disparity and lead to illegal 
discrimination if it cannot shown to be job-related. 

Figure 9-5 illustrates the source of this particular problem. Assume that the mea
sure (1) is sufficiently normal to have a reasonable "tail," (2) is valid in an appropriate 
sense, (3) is unbiased in the Cleary sense, and (4) produces slightly higher means in 
the reference group compared to the focal group. First. set the selection criterion at the 
median of the reference group. The disparity in rates of those passing will be of sman, 
perhaps trivial magnitude, e.g., 48 percent of the focal group versus 50 percent of the 
reference group. However, if the criterion is high, the relative disparity in those pass
mg can be extreme. For example, if it is set two standard deviations above the refer
ence group's mean, roughly 2.5 percent of the reference group will pass, but practical-

FIGURE 9~5 Even though distributions of scores for the focal and reference groups may overlap considerably, 
the slight mean disparity favoring the reference group translates into a large disparity in relative 
numbers of Individuals selected when the selection cutoff Is quite extreme. 

Score on predictor 
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Iy no focal group members will pass. As a result, only reference group members will 
be selected. The absolute disparity in the rates of those passing or failing will be small, 
but attention will naturally be drawn to the composition of those passing. A parallel 
situation arises when the criterion is set very low. Although nearly everybody in both 
groups passes, these who fail will nearly all be focal group members. 

The crucial consideration is how much of the attribute is requireli. It is obviously 
unfair to the focal group to require that someone fall at the extreme of a dimension 
when only an average level is required. However, it is just as unfair to those doing the 
selecting to cite small mean differences in a general population as evidence for a barri
er when the position demands very high scores on the attribute. 

Selection Fairness and Quotas 

The above discussion is most applicable to a single test and dominated academic con
cern about bias until about 1970. It is still basic to the legal system. However, much 
subsequent work was devoted to what is called "selection fairness," which considers 
tbe overall social consequences of selection procedures. Discussion of this topic was 
stimulated by Cole (1973), Darlington (1911), McNemar (1975), and Thorndike 
(1971); see Cole and Moss (1989) for more recent developments. In partiCUlar, Mc
Nemar (1975) effectively defined "fairness" as the maximum predicted potential on 
the criterion. Unfortunately, what is considered fair depends very m~ch on one's per
spective, an issue that was foreshadowed by the distinction between individualists and 
proponents of quotas (and perhaps between qualified and unqualified individualists). 
Institutions, especially employers, are prone to be individualists, as are reference 
group members; members of focal groups likewise tend to be proponents of some 
form of quota (but, in both cases, not universally). We begin by noting five general de~ 
finitions of fairness. 

1 Pure regression, i.e., choosing people with the highest score 
2 Compensated regression, i.e., using a common regression line but adjusting for 

some unfairness 
3 Quotas using nonpsychometrically determined selection, e.g., random 
4 Quotas using psychometticaUy determined selection, usually selecting the high

est~scoring individuals within groups 
5 Methods based upon the utility of decisions. 

Pure Regression Although the term "best qualified" is commonly used to de
scribe the individuals chosen under a pure regression model, it misses the point that 
the test is a predictor and usually a highly fallible one. The properties of this model 
have already been considered; in general it would be considered fair only if (1) se
lection was unbiased in the Cleary sense, (2) it met Jensen's (1980) requirement of 
equal standard errors of measurement, and (3) there was no need to diversify a popu
lation beyond that provided by the ordering of people on the predictor. If these con
ditions were met, the test would select people having the highest expected criterion 
perfonnance. 
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Compensated Regression Darlington (1971) suggt!sted adding a constant to 
focru. group scores as a form of bonus paralleling the veteran'S bonus on civil service 
tests. People with the highest scores following the correction would then be selected. 
A major question, of course, is how much of a bonus is needed. If the test has D. inter
cept bias, the correction could be the magnitude of the bias, but that would be a reme
dy, not a bonus, notwithstanding the rarity of pure intercept biases. In practice the 
value of his suggested correction was based upon the social value of focal group repre
sentation rather than simple compensation for bias. 

A different approach bas been suggested to provide equal marginal utility (equal 
risk), i.e., ensure that the last person selected in the focal and reference groups will 
have the same probability of success or expected perfonnance on a continuous mea
sure. Equal risk is violated when the group standard errors are unequal, even though 
the test may be fair in the Cleary sense. Unequal standard errors can arise from non
additivity or when one of the groups is range-restricted. For example, ~quiring a col
lege degree may be appropriate to a position, but it will result in a more highly select
ed group of blacks than whites. It can also cause an apparent slope bias. Further 
assuming that residuals are approximately normally distributed, the following proce
dure may be applied to select individuals whose probability of failure is less than 
some criterion amount (a). which can be adjusted to select a desired proportion of in
dividuals. This method can be used when there is a slope. 'pias. However, it does not 
guarantee any form of diverse representation. Indeed, it really offers more benefit to 
an institution (e.g., an employer) by providing a better selection of employees when its 
conditions for use arise. At the extreme, no focal group member may exceed cutoff. 

eYe - Y') 
z= 

where X= predictor score 
Y' = predicted criterion Score 
b ;;;:; regression line slope relating predictor to criterion 
a = regression line slope 

Sy.x = standard error of estimate 
Yc ;;;:; cutoff on criterion 

(9-7a) 

(9-7b) 

The probability of failure (a.) is the area under the normal curve below Y". For ex
ample, if C/. = .16 (an 84 percent chance of success is desired) and scores have been 
standardized, the predicted criterion sCOre is one standard deviation above the criterion 
mean (Ye = 1). Let rXY = .30 for a given group. Consequently Sy.x = y 1 - .302 = v':9T 
= .95. In order to achieve this predicted score, the obtained score on the predictor must 
be 11.95;: 1.05. Whether this is an advantage to a focal group member or not depends 
upon whether a. is high or low and whether there are slope or incercept differences. If 
the group standard erIors are equal and the test is fair in the Cleary sense, it will pro
vide the same results as the pure regression model. 



370 P,A.R·C :3: CONSTFIlJ(; nON OF MlnT11 rr:M MJ.:~SlJRES 

Quotas U,;ing NHllpsych{)metric:!lly H(~termi'Ocd Selection Quotns in which 
choice i~; not mudc p~;ych(Jmetri(;ally may involve random choice or eleclion by a suit
able constiwcncy. This cutegory represents many laypersons' view of u populution
ba!~ect quota; t!.g., if 10 percent of the population belongs to a focal group, to percent 
of these individuals should be selected. One relatively uncontroversial use is selection 
of individuals for inclusion in a research study, e.g., randomly selecting groups of 
males and females to study gender differences. Another example is the allotment of in
dividuals by race and gender as delegates to political conventions. Tlus form of quota 
is dictated when there is no valid predictor and the need for diverse representation is 
paramount. Random selection according to a quota is also reasonable when a content
validated test has provided a very large pool of qualified individuals and there is only 
marginal benelit from very high scores or the skills can be easily taught. 

Unfortunately, the controversy over specific quotas hardly needs documentation. 
Groups defined by gender and ancestry are certainly not the only ones possible even in 
the relatively narrow legal sense, e.g., handicapped individuals have similar legal 
rights. Situations may demand representation of different religious groups. Those lead
ing alternative lifestyles have also sought representation. Moreover, protected groups 
are not necessarily underrepresented-at this writing many programs in clinical psy
chology have been concerned that not enough males apply and that Asian Americans 
are well represented in many academic endeavors. Quotaq that start as a guarantee of 
representation can also unfairly limit representation. 

Multi~le quotas (e.g., selection by gender, race, and ethnicity) raise an interesting 
problem. The question has been raised whether someone who is female, black, and 
Hispanic counts toward all three quotas. If the individual does, people who fulfill 
fewer quotas may have even more difficulty being selected than if no quota were im
posed. Male black non-Hispanics may be disadvantaged by being counted only toward 
one quota, and a female black Hispanic may reflect different values than females in 
general, blacks in general. or Hispanics in general. However, if the individual'counts 
toward only one quota, more positions could be required than there are positions to be 
filled. For example, if 50 percent must be allotted to females. 25 percent to blacks, 20 
percent to Hispanics, and 10 percent to Asians, 105 percent of the positions would be 
accounted for. Population quotas must be based upon joint attributes, e.g .• the percent
age of individuals who are female and black and Hispanic rather than these marginal 
figures. Unfortunately, it may be difficult to locate individuals having the joint attribut
es because these percentages may be quite small even when there are as few as three 
attributes. This issue arises, less controversially as a rule, in marketing studies. 

Quotas Using Psychometrically Determined Selection Assuming that the pre
dictor and criterion can be satisfactorily represented as dichotomies, one possibility is 
simply to select individuals in accord with general quotas, e.g., population quotas. 
This is like random selection, but people are selected within groups on the basis of a 
valid, but perhaps biased, predictor. Three additional models can be understood with 
reference to an outcome matrix (see Table 9-2) which would be formed for each group 
(only the marginal data are needed for the third of these). For example. true positive is 
the number of individuals in a given group who ex.ceed cutoff (pass) on both predictor 
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TABLE 9-2 AN OUTCOME MATRIX 

Pass criterion 
Fall criterion 
Sum 

Pass predictor 

True positives (A) 
False positives (C) 
Predicted positives 
(A+ C) 

Fall predictor 

False negatives (B) 
True negatives (0) 
Predicted negatives 
(8+0) 

Sum 

Actual positives (A + 8) 
Actual negatives (C + D) 

NotB: A. 8. C. and D are cell frequencies associated with the four possible results 01 passing or failing a predic. 
tor and passing or failing a criterion. where passing is dellned as exceeding a cutoff. Actual positive, actual neg. 
ative. predicted positive, and predicted negative outcomes ara marginal frequencies. 

and criterion. Three other concepts derivable from the matrix used in traditional per
sonnel selection are (1) the selection ratio or proportion of individuals to be selected, 
defined as the total number who pass over over the total number of individuals, (A + 
B)/(A + B + C + D); (2) the success ratio of those who are chosen (true positive over 
total positive = AI(A + B): and (3) the base rate or ratio of those who succeed relative 
to the total, (A + D)I(A + B + C + D). 

The three models are based upon concepts (but. unfortunately. different concepts) 
of fairness. They can be used to rectify intercept or slope bias or to accommodate the 
need for additional cultural diversity in a test that is fair by Cleary's standards. 

1 The "equal-probability model" chooses predictor cutoffs in each group to equate 
the ratios of true positive to predicted positive-the success rate or AI(A + B). It means 
that the probability of success will be the same in all groups; if half of the reference 
group succeeds under its cutoff, half of the focal group will also succeed under its 
(presumably different) cutoff. Linn (1973) suggested, but did not endorse, this model, 
and it may Dot be possible to obtain suitable cutoffs (Jensen, 1980). 

2' The "conditional-probability model" chooses cutoffs in each group to equate tbe 
ratios of true positive to actual positive, AI(A + C). This allows all individuals who can 
succeed on the criterion to have the same selection probability, regardless of whether 
they are in the focal or the reference group (Cole, 1973). 

3 The "constant-ratio model" (Thorndike, 1971) chooses predictor cutoffs in each 
group to equate the ratios of predicted positive to actual positive. (A + B)I(A + C). This 
means that if the reference group is 10 times the size of the focal group among those 
who succeed at the task, the proportions of those selected must also be in a 10:1 ratio. 
As noted above, the actual cells of the matrix (A. B, C, and D) are not needed: all one 
needs to do is select cutoffs iliac equate the selection ratios to the success ratios. Ran
domly generated quotas are a special case in which a predictor has no validity. 

The equal-probability and conditional-proba:bility models will usually provide bet
ter expected short-term. performance than the constant--ratio m~l; the constant-ratio 
model will provide better short-term performance than selection from population quo
tas within groups, which in tum will provide better short-tenn performance than ran
dom selection when the focal group's predicted perfonnance is well below that of the 
reference group. Conversely. the first two models are also less likely to satisfy focal 
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group members. Since focal group members would have the same representation when 
selection is made by a predictor as randomly, there is little reason for preferring the 
latter. Proponents of quotas often argue about long-term benefits which are basically 
unknown. fn all cases, focal group members who are selected may have lower scores 
than reference group members who are rejected. In contrast, a model using a single re
gression line (pure regression or the modincation needed to accommodate unequal 
standard errors) picks those people with the highest expected criterion scores. [f the 
test is fair according to the Cleary rule, it means that being fair to the individual means 
being unfair to the group, and vice versa. Moreover, criteria for selection to accept in
dividuals fairly according to these rules will not necessarily reject individuals fairly 
according to the same rules (Peterson & Novick, 1976). Selecting individuals who 
eventually fail has an obvious cost to both emplOyee and employer. 

Methods Based upon the Utility of Decisions Darlington's additive correction 
considered the utilities or costs and benefits of the various outcomes. A much more 
complex. approach presented by Sawyer, Cole, and Cole (L976) considers this issue in 
more detail. The basic concept is standard in decision theory. The utility associated 
with the decision to accept an individual equals the benefit (reward) associated with 
successful performance times the probability that the individual will succeed plus the 
cost (penalty) associated with unsuccessful performance times the probability that the 
individual will fail. The two probabilities are conditionru true and false positive proba
bilities. Conversely, the utility associated with the decision to reject an ap,plicant 
equals the savings associated with not hiring tbe individual times the probabiltty that 
the individual will fail plus the cost associated with not hiring a successful individual 
times the probability that the individual will succeed. These latter probabilities are the 
true and false negative probabilities. Because the costs and benefits are usually even 
more difficult to agree upon (especially when viewed from the different eyes of the in
stitution and applicant) than quotas, we will not consider this model in detail. Howev
er, there may be situations where outcomes can be agreed upon. 

It is important to note that Section L06 of the 1991 Ci viI Rights Act amends the 1964 
Act by making it "an unlawful employment selection practice for [anyone making hir
ing decisions] . . . to adjust the scores of. use different cutoff scores for, or otherwise 
alter the results of, employment related tests on the basis of race, color, religion, sex, or 
national origin." Pending further legal decisions and legislation, this appears to rule out 
anything but a pure regression model in employment, though it may not affect college 
admissions. The act also reversed aspects of Wards Cove Packing Co. v. Atonio (1990) 
in which the Supreme Court ruled that if mUltiple potential practices can have disparate 
impact, the plaintiff had to show that a particular practice led to this impact. Equally im
portant, the Court required the plaintiff to show that a business practice was not joh
related. The Act returned the burden to the defendant once disparate impact is shown 
(where it had generally been felt to lie before the Court decision). 

Many individuals have suggested that some focal groups do more poorly on abili
ties items because they have had iess exposure to the content. Appropriate methods 
for evaluating the issue of bias involving particular items are considered in the next 
chapter. 
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pooled versus Separate Group Norms 

HALO EFFECTS 

It is common to form separate norms when focal and reference groups differ on a mea
sure. For example, several MMP[ scales are normed separately by gender aod age. 
Whether or not it is appropriate to use separate norms depends upon the fonn of the 
question being asked. For example, younger individuals tend to endorse more items 
that denote impulsivity than older individuals. Some circumstances dictate asking how 
impulsive a person is for someone of that age, and others dictate ignoring age. Impul
sivity would not be a matter of concern in a young person seen for therapy if the level 
was high for people in general but normal for that age. There would be a reasonable 
expectation that the individual would "outgrow" the condition. However, one would 
not wish to hire him or her for a position where impulsivity was undesirable, such as a 
police officer. To the extent that both types of questions may be asked, both separate 
and pooled nonns are needed. Choice of norm is thus situation specific, and interpreta
tions should be made accordingly. 

A "halo effect" is a rater's tendency to perceive an individual who 1s bigh (or low) in 
one area as high (or low) in other areas as well (Wells, 1907; Thorndike, 1920). It re
flects "a failure to discriminate among conceptually distinct and potentially indepen
dent aspects of a ratee's behavior" (Saal, Downey, & Lahey, 1980, p. 450) and is a 
form of method variance~induced reduction in the divergent validity of ratings (see 
Chapter 3.) Many desirable traits have at least a small positive correlation (true balo), 
but a halo effect enhances these correlations (observed halo). Bernardin and Beatty 
(1984) have, however, noted negative halo effects, as when one underestimates the in
telligence of someone who is physically attractive. 

The traditional view of halo does not necessarily assume that the attributes under 
evaluation (true scores in the sense of classical psychometrics) are uncorrelated. Our 
discussion will therefore include situations in which the relation between the evalua
tions (observed scores) is either too high (traditional positive balo) or too low (nega
tive halo). In addition, we use the term. "relation" rather than "correlation" because 
halo effects are not always assessed in terms of correlations, although this is common
ly the case. Halo effects are historically assumed to impair accuracy of judgment. so 
that the magnitude of a halo effect and judgmental accuracy are negatively related 
over judges or situations to the ex.tent that accuracy can be defined. Cooper (1981) re
ported a paradoxical positive correlation between measures of halo and judgmental ac
curacy, but Fisicaro (1988) noted some problems with this conclusion. 

In order to assess halo effects, one must obtain objective measures of the relevant 
attributes, e.g., the true correlations among the attributes. This has led various investi
gators to have subjects judge two or more physically defined attributes, e.g., Gamer 
(1974), Santee and Egetb (1980), and Pomerantz and Pristach (1989), among many 
others. These experiments. considered further in Chapter 15. typically employ uncor
related attributes-subjects might judge the height and width of rectangles that vary 
independently of one another. A classical finding is that misperceptions of height and 
width are related. Unfortunately, most studies require judgments that have no objective 



374 PAAT 3: CONSTRUCTION OF MULTI-ITEM MEASURES 

physical correlates. For example, a teaching effectiveness survey may have stUdents 
rate how "clear" and "interesting" an instructor i.s. It 1s common to average expert rat
ings to define true scores, but this does not define true scores as unequivocally as do 
physical measures. 

If possible, mask dimensions to eliminate halo. Imagine a marketing task involving 
judging the voice quality and visual appearance of television news reporters. Making 
both judgments while looking at a videotape with sound clearly allows halo effects to 
emerge. However, one could separately.have the catees (1) listen to an audio tape with
out video to judge voice quality and (2) look at a videotape without sound to evaluate 
visual appearance. 

Traditional Measures of Halo 

Fisicaro (1988) describes two traditional classes of halo measures. Both attempt to es
timate halo error (Hv from an observed halo (Ho) and a true halo (Hr). Borman 
(1977) used the standard deviations of each judge's ratings (either in raw or standard
ized form) across dimensions for a given ratee and averaged these over ratees to yield 
Ho. The HT is the corresponding average standard deviation of the true scores. One 
possible measure of He is simply the average difference between Ho and HT over ra
tees. Since a positive difference for one ratee may cancel a negative difference for an
other ratee, the absolute halo error is based upon the absolute value of the average 
signed difference (Cooper, 1981), whereas the cumulative halo error is based upon the 
average absolute difference. 

The second class of measures uses the correlation between dimensions over ratees 
for a given judge (Borman, 1979). Although the average of the resulting (Ie'- - k)12 
such correlations for the k dimensions may be used to define Ho, the Fisher Z' trans
formation is preferable (see Chapter 5). This transformation corrects for the nonlinear
ity in the scale defining r. Equation 9-8 provides this transformation (also see Hays, 
1988, pp. 590-592): 

Z' = -In .!.( 1 + r) 
2 l-r 

(9-8) 

The 1n is the natural log function, and r is the PM correlation. The average of the 
values of z: can then be transformed back to a value of r. This inverse transformation 
is given by 

e2t' -1 
r:;;:-.,-,-

eJ.Z + 1 
(9·9) 

where •. as usual. e = 2.7182 .... Tables are widely available. 
A value of HT can be obtained in like manner from the average dimensional inter

correlation between true scores and halo error computed as some form of difference 
(signed or unsigned) between Ho and HT • Unfortunately. Fisicaro and Lance (1990) 
have noted problems associated with any form of difference between observed and 
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true halo which we will now consider. The problem is that any form of difference be
tween Ho and HT ignores measurement error. Suppose that there is actually a correla
tion of .5 between two attributes over ratees. A rater perceives a much higher correla
tion, say .8, but the actual ratings are attenuated back to .5 because of judgmental 
error. This falsely suggests no halo error; Ho - HT underestimates true halo. 

Making the rater's judgments more reliable by obtaining multiple ratings of some 
or all the ratees on each of the dimensions is one way to overcome this problem. The 
observed correlation can be corrected for attenuation using Eq. 6-36. Fisicaro and 
Lance (1990) appropriately term the correlation between true and observed Scores 
"correlation accuracy." However, it is basically the same as a reliability index of clas
sical psychometrics (see Chapter 6) save that it is influenced by systematic as well as 
random factors. In fact, it is the square root of a generalizability coefficient in the 
sense of Chapter 7. Designate the true and observed scores for one dimension as A and 
a, and the true and observed scores for a second dimension as B and b. The correlation 
between observed scores (ratings) (rab) in the absence of halo error is rA"rSb'AB' [n 
other words, it is the true-score correlation weighted by the product of the two correla
tion accuracies. To obtain an appropriate measure of halo, subtract rA"rSbrAS and not 
simply the correlation between true scores (rAS) from the correlation between observed 
scores (r tJb). 

Recent Developments in the Study of Halo 

Fisicaro and Lance (1990) have developed three structural models (see Chapter 4) of 
halo. 

1 The "general-impression model" follows from the ordinary usage of the term 
"halo" but more specifically from King, Hunter, and Schmidt's (1980) definition as 
"the tendency of a rater to allow overall impressions of an individual to influence the 
judgment of that person's performance along several quasi-independent dimensions of 
job performance" (p. 507). A general impression (G) affects observed scores but not 
true scores. The G may be a composite of all attributes being rated or a separate at
tribute. For example, viewers separately judging auditory and visual characteristics of 
reporters may respond to their composite "pleasantness." Conversely, G may also be a 
separate attribute-students may judge the "clarity" and "effectiveness" of their in
structor in terms of how easy the instructor grades. 

2 The "salient dimension model" was anticipated by Robbins (1989; also see 
Anastasi, 1988; Blum & Naylor, 1968) who defined it as the "tendency for an evalua
tor to let the assessment of an individual on one trait influence. . . evaluation of that 
person on other traits" (p. 444). There is no composite or external variable G. One or 
more dimensions to be rated stand out, being easier to judge, and determine judgments 
on more subtle dimensions. For example, physical attractiveness has long been known 
to be a salient dimension (Walster, Aronson, & Abrams, 1966) and quite probably in
fluences judgments of other dimensions such as honesty. Perceptually visual informa
tion frequently "captures" auditory information (Colavita, 1974), which is the basis of 
ventriloquism. 
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3 The "inadequate discrimination mode!" refers to a "rater's failure to discriminate 
among conceptually distinct and potentially independent aspects of a (ratee's) behav
ior" (Saal, Downey, & Lahey, 1980, p. 415; cf. DeCotiis, 1977; Murphy & Reynolds, 
1988). This involves mutual but perhaps unequal influences of one dimension upon 
another. As an example, viewers judging TV reporters may judge their voice partially 
in terms of their appearance, and vice versa. The general-impression model sometimes 
reduces to proportional contributions of each dimension upon the other, e.g., respond
ing completely to G is the same as having each of two dimensions influence their Own 
and other judgments equally. Likewise, the salient dimension model is a special case 
of inadequate discrimination where one of the intluences is zero. The interpretation of 
halo error depends upon the applicable model and may become quite complex to esti
mate and require numerous simplifying assumptions wben there are more than two di
mensions. The simplest case is when a salient dimension influences one other dimen
sion. In this case, the halo error equals the s10pe of the regression line in predicting the 
less salient dimension from the more salient dimension. 

It is probably best to say that any of these models may fit in a given situation, but 
studies using ratings of multiple attributes must consider the problem of balo. 

RESPONSE BIASES AND RESPONSE STYLES 

We define a "response bias" as a measurement artifact which emerges from the context 
of a particular situation that affects one or more people. Biases may systematically 
lead to one response over another, or they may produce randomness through confusion 
or carelessness. Systematic and random biases will be considered separately. A re
sponse style is a measurement artifact that is consistent across situations so that it 
qualifies as a personality variabte. It is thus similar to a trait except that it is a "nui
sance" variable that is incidental to the issues of interest. It may also be systematic 
(some people systematically prefer to choose socially desirable responses more than 
other people do) or random (some people are more careLess than others). Both biases 
and styles are artifacts because what they are is at least partially independent of what 
one seeks to measure. 

To understand the similarities and differences between the two, consider an ordi
nary political poll. Response biases and response styles could both cause someone 
who prefers one candi~ate or is indifferent to declare a preference for the other candi
date. Political polls are notoriously influenced by the characteristics of the pollster. 
People are more likely to say that they plan to vote for candidate A if pollsters say 
they work for that candidate than if pollsters remains unidentified or say that they are 
associated with candidate B. Pollsters working for a given political candidate will dis
guise the fact if they want an honest result, or identify themselves if they wish to make 
the candidate look good when releasing the poll to the public. 

The following hypothetical experiment can be used to evaluate the magnitude of 
bias associated with a pollster's identification. Assume that people are called twice 
during Ii political campaign, once by someone identified with candidate A and once 
under neutral identification. The result might be that 58 percent prefer candidate A 
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when the pol!ster is identified with that candidate, but only 50 percent prefer candidate 
A when the pollster is unidentified. The order of calling needs to be counterbalanced 
over ratees to allow bias to be separated from shifts in the electorate over the course of 
the campaign. Identification changed the ratee's bias, but do not necessarily assume 
that the lack of identification and a consequent 50-50 split in the potential voters 
meant that this condition was unbiased. Either or both conditions might be biased rela
tive to the U(;tual election for any of a number of reusons. One candidate might belong 
to a racial minority. and the respondents might not wish to be considered bigots for 
choosing the opponent. The relari ve bias is at issue. not the absolute bias in a given 
condition of measurement. Measuring either relative or absolute bias is a thorny prob
lem which requires the theoretical discussion of Chapter 15 (see Macmillan & Creel
man. 1990). 

Now. imagine that the same people are called twice more at some later date and 
asked whether they prefer brand X or brand Y cola. Paralleling the first situation. one 
market researcher is identified as working for brand X, and the other researcher is 
unidentified. There is no reason to assume that the change in bias due to the market re
searcher's identification is necessarily the 8 percent change observed in the political 
polling. but for simplicity assume it is also 8 percent. The issue of response style deals 
with the eKtent of overlap between the 8 percent of the people who responded differ
ently to the political pollsters and the 8 percent who responded differently to the two 
market researchers, Le .• cross-situational consistency. In other words, if subjects are 
coded 0 (gave the same response) versus L (gave different responses) in each situation. 
how high is the correlation between the two measures? 

Any of a number of words might be used to describe the tendency to respond in 
terms of the interviewer's identification. ~uch as "compliance." but the term must 
characterize subjects in at least two situations at least to some extent. Consequently. 
bia.'Ies might be present in both situations without there being any evidence for a con
sistent style if the changes are idiosyncratic, Le .• if the two groups of respondencs are 
unrelated. Furthermore. even if a response style is consistent. it may not correlate with 
any other variable of interest. In that case, it would basically be a nuisance. 

It is extremely simple to create biases; indeed. they are often unintended by-prod
ucts of a flaw in the design of a study. Response styles were a popular research topic 
some years back but now have mostly faded from the literature. Consequently our dis
cussion of them will be brief. 

The problems of controlling response biases depend upon whether one is primarily in
terested in studying people or scaling stimuli. Questions which everybody answers in 
the same way obviously cannot cast light upon how people differ. regardless of 
whether the content of the item makes it too easy or too difficult on an abilities test or 
the wording leads everyone in a common direction on any type of test. There are many 
advantages to asking questions (or. more generally. presenting stimuli) in such a way 
as to obtain a rectangular distribution of responses (equal response category usage). 
e.g., to have 20 percent of the sample choose each of five Likert-type alternatives. 
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These questions have the best opportunity of revealing individual differences. This 
does not deny the necessity of concentrating on questions that the overwhelming pro
portion of individuals answer in one way, as when one is measuring attributes of peo
ple that are relatively rare such as extreme psychopathology. One would probably not 
be successful in identifying extremely psychotic individuals by asking questions on 
which the general population is itself divided nearly equally. 

The issue in scaling stimuli generally involves obtaining the Imost accurate measure 
of disparity among alternatives, e.g., of determining the probability that a candidate 
will be selected, which is probably not .5. The political poll example above illustrates 
the obvious importance of eliminating any biases that would cause the results to differ 
from the actual election when level is important. However, bias is less of a problem 
when interest centers on the correlation among measures, as in most research that 
scales p~ople rather than level. Many points in this section are neglected even though 
they actually fairly obvious. 

1 Avoid implying that one response is preferred over another. Communicating a 
desired outcome creates what is known as a demand characteristic. This may either in
volve suggesting what the experimenter would like, so that making the preferred re
sponse will be doing the experimenter a favor, or that people who behave in one way 
are in some sense superior to others. Although the latter (e.g., telling people that psy
chotics tend to favor response A over response B) will generally create stronger bias
es, both are undesirable. Many subjects say they "triell to mess the experiment up" and 
do what was not desired, but most misleading results arise from attempts to cooperate. 
Instead of assuming that an experiment was free of demand characteristics, interview 
the subjects after the experiment about their perceptions. If subjects felt they were sup
posed to act in a certain way and it was physically possible for them to act in other 
ways, demand characteristics were probably operative even if they were unrelated or 
even opposed to the experimenter's intent. A coUeague of the second author who was 
a priest but was also working toward a doctorate in experimental psychology uninten
tionally obtained demand characteristics in a word-naming task. He normally ran sub
jects in ordinary clothing but wore his clerical collar when he did not have time to 
change after celebrating mass. As you might well expect, the subjects gave a much 
higher percentage of religious words than usual. 

2 Make all responses of equal effort. This principal is violated in many subliminal 
perception experiments. A word is flashed at a rate that is ostensibly too rapid to permit 
conscious identification, and the intent is to show that the word influences behavior in 
more indirect ways. In order to show that the word is truly subliminal, some experi
menters run an additional condition in which they flash the word and then ask subjects 
to write down what they saw as completely as possible. However. they also tell the sub
jects to simply draw a line across the page or make a similar response if they felt they 
saw nothing. Quite obviously, it takes more effort to write about what the subjects 
thought they saw than to simply respond in the negative. There is no incentive to re
spond completely and often a considerable disincentive. The subjects probably have lit
tle confidence about what they have seen, even though their judgments may be correct. 
They may feel their perceptions are incorrect or even silly. Bernstein and Eriksen (1965) 
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surveyed :;c:veral studies in which such biases were apparent. for example, Klein, 
Spence, Holt, and (j()urevitch (1958) showed drawings of genitalia briefly to schizo
phrenic subjects in an attempt to modify their perception of a subseCfuent clearly visible 
stimulus. Quite obviously, subjects had nothing to gain if correct, but their medication 
might be strengthened for "hallucinating" if they were incorrect. 

3 Pay attention to details of wording, especially on questions used to scale people 
that have a binary response format. Keep the wording as simple as possible. Avoid "al
ways" or "never" as much us possible, for example. The problem is less likely to be 
major with multicategory responses such as Likert scales since these either directly or 
indirectly supply alternative modifiers as part of the response scale, e.g., a question 
like "I feel unsure of myself (a) never, (b) rarely, (c) moderately often, (d) very often 
(e) always" (also see Chapter 8.) 

4 Design the experiment to use tasks that are less subject to bias. In particular. ab
solute judgments and sentiments tend to be more prone to bias than comparative judg
ments for reasons discussed in Chapter 2: "Do you like A?" brings up the question of 
how much liking is needed to answer in the affirmative: "Do you like A better than 
B?" is a more symmetric question. 

S Use converging operations (Garner, Hake, & Eriksen, 1956). Garner et al. 
(1956) provide the following example based upon the then-popular "dirty word" stud
ies (McGincies, 1949). In this type of study, subjects are asked to identify briefly pre
sented ordinary words and socially taboo words. The qritical finding is that the ordi
nary words are usuaUy identified better than the taboo· words, raising the interesting 
theoretical question of how one knows a word is taboo unless it is identified in the first 
place. A problem is that subjects are generally less willing to say taboo words in the 
context of an experiment. Garner et al.'s (1956) approach is to have one group of sub
jects respond in an ordinary manner and have a second group respond by saying taboo 
words when they see ordinary words, and vice versa. The operations converge because 
neither condition alone is sufficient to separate the question of whether the difference 
is due to seeing or saying, but they jointly separate these two explanations by having 
the difficulties with each offset one another. 

6 Provide clear instructions. If one wants subjects to say yes and no with approxi
mately equal frequency, don't keep this from them. Forced distributions, such as Q 
sorts (Stephenson, 1953; Kerlingec, 1986), are one way to minimize bias in category 
usage. Test administration includes not only the specific instructions but the atmos
phere created by the administrator and can have both intended and unintended effects 
on bias responses. The second author was once approached by a student who was 
completing a dissertation concerned with modifying the attitudes and self-perceptions 
of parents of disabled children by different interventions. Various measures were given 
during a pretest, the intervention was introduced, and the measures were readminis
tered during a posttest. The data were gathered during single sessions, but the parents 
were assigned randomly to the various groups. The results were that there were large 
group differences on the pretest, which is obviously inconsistent with the random as
signment that had apparently taken place. What happened was that different test ad
ministrators were used in the various conditions, and their demeanors were sufficiently 
different to evoke different responses from the subjects. 
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7 independently assess bias. The MMPl contains several validity scales which 
measure carelessness, eVllsiveness, the tendency to present a positive image of one's' 
self ("faking good"), und the tendency to present a negative image of one's self ("fak • 
. ing bad"). 

Changes in Test Scores as Personality Changes 

Not all changes in the distribution of test scores produced by the context of testing reo 
flect changes in bias. For example, the second author has obtained tvINIPls (1) screen. 
ing individuals for positions where maladjustment is a potential danger to the general 
public, such as in police officers or security guards at a nuclear power plant and, (2) for 
psychological and psychiatric evaluations. The 'MMPls obtained in the second context 
are much more likely to suggest pathology. Personality test results should not be 
thought of as measuring properties of individuals that are invariant across situations 
since nontest behaviors exhibit similar changes. Part of the difference between the two 
situations may reflect a true difference in incidence of pathology. Although some indi~ 
viduals who apply for positions as police officers may be disturbed, it is reasonable to 
assume that the incidence is higher among those who are seeking professional help. 
However. pan of this disparity also reflects the context of testing. A person being in
terviewed for a job may present a more positive view of himself or herself than when 
being interviewed for sel.f~referred clinical evaluation. 

This difference between the conditions is not simply a bias, as it describes legiti~ 

mate differences in how people behave in different settings. Changes in response to 
formal test items mirror other changes in behavior. The problem in thinking of this as 
a change in bias is that one is forced to think of behavior as a rigid, fixed set of traits 
that are independent of the situation in which they occur. Indeed, it would be a sign of 
pathology for one to behave in the same manner at home and at work. Behavior is usu· 
ally most strongly determined by the conteKt in which it occurs and only secondarily 
by consistent individual differences. Moreover, there are trai(-by~situation interactions: 
person A may exhibit more of a trait than person B in one situation, but person B may 
exhibit more of the trait in another situation (West, 1983). 

Carelessness and Confusion 

Carelessness and confusion may both be outgrowths of the testing situation and there· 
fore sources of bias-situations vary in the extent to which subjects are careful. They 
may also be styles-some people are more careful and/or less confused than others. 
The two are considered jointly because both introduce randomness into [est responses. 
The tradeoff between speed and accuracy under a time limit is a form of carelessness 
or carefulness even thOllgh it is somewhat separable since some subjects are both rapid 
and careful. Since the effects of individual differences in motivation, fatigue, and 
physical health relate to carelessness and confusion, the comments in this section have 
some relevance for the former three variables also. Testing also may reveal illiteracy, 
which is perhaps the ultimate confusion about written material. Many different types 
of psychological measures iLLustrate the effects of carelessness and confusion. The 
original version of the M.1V(PI contained 16 repeated questions, and it was common to 
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see several pairs of these items answered inconsistently. SUbjects may mark both ends 
of a series of rating scales. Pattern responding is common where the subject progres
sively marks the next higher step on each scale, marks all scales in the neuttal catego
ry, or alternately marks the extreme ends of scales. Psychopathological subjects are es
pecially likely to be careless andlor confused. 

Research comparing the means of groups varying in carefulness or confusion (e.g., 
children versus adults, or normals versus psychiatriCally impaired individuals) is most 
strongly affected. Such group differences in carelessness and confusion can artifactu
ally in£late content differences of all types. The possibilicy of obtaining statistically 
significant group differences because of group differences in amount of carelessness or 
confusion is an ever-present danger in research. The danger is easiest to see when the 
groups are defined by a classificatory variable, but it can also arise as a by-product of 
experimental manipulations. 

Carelessness and confusion are quite similar to blind guessing as discussed above, 
but the effects of all three differ from systematic measurement error. Although purely 
random error cannot produce true below-chance perfonnance on abilities tests, this is 
not true of systematic attempts to respond incorrectly (Tbeodor & Mandelcord, 1973). 
The classical theory of measurement error (Chapter 6) deals with error that leads to a 
symmetric distribution of obtained (fallible) scores about subjects' true scores. Errors 
due to carelessness and confusion, however, not only lower the precision of obtained 
scores but also bias obtained scores toward the chance level on an abilities test and to
ward the middle of the measurement scale on a test of personality or sentiments. If all 
members of a group are equally careless or confused. the obtained rank order of scores 
will be the rank: order of true scores within measurement error, but subjects with ex
treme scores will regress more toward the chance level (on abilities tests) or the mid
point (on personality tests) than subjects with true scores nearer chance or nearer the 
midpoint. The mean of the distribution of scores will shift toward the chance level or 
the midpoint. and the variability will be reduced. Carelessness and confusion produce 
unreliabilicy but not systematic invalidity. 

If, however, there are individual differences in amount of carelessness or confusion, 
systematic sources of invalidity can arise. For example, if opponents of an issue are 
more careless than proponents, the opponents' mean obtained scores will be closer to 
chance (on abilities tests) or midscale (on personality tests and surveys) than those of 
propo.nents. For example, the respective mean values might be 8 and 14 on a 20·item 
binary scale where the midpoint is 10, even though the true scores for both groups are 
equally far from the midpoint. e.g., 5 and 15. A person who scores at the apparent neu
tral point of 10 will therefore most likely be someone who actually is slightly opposed 
to the issue. The effects of individual differences in amount of carelessness or confu
sion are complexly interwoven with the type of item, the scoring key, and any possible 
correlation of carelessness or confusion with the trait in question. Regardless of the 
specific effects, individual differences in carelessness and confusion not only add to 
measurement error but also reduce validity. 

Carelessness and confusion will obviously cause a person's true level of skill or 
ability to be underestimated because the score will be regressed toward chance. The 
effects on certain personalicy measures, such as the rvlMPI's maladjusonent scales, are 
more interesting. As noted in Chapter 8's discussion of discriminating at a point. 
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MMP[ items have a relatively low probability (typically around .3) of being answered 
in the keyed direction, but for good reasOn. Random responding produces p values of 
.5. In other words, carelessness and confusion increase the chances of considering an 
individual maladjusted on the MMPL Since careless andlor confused people are prob
ably also more maladjusted, this outcome is not undesirable. Not all outcomes are that 
fortuitous. of course, and much training in the use of the M1tIPI properly is concerned 
with separating maladjustment due to carelessness and confusion from that resulting 
from intentional choice of item responses. 

Individual differences in carelessness andlor confusion attenuate correlations with 
external measures compared to "cleaner" data because of the resulting increase in 
measurement error. However. systematic differences in carelessness or confusion may 
either increase or decrease correlations among measures, depending on the correlation 
between amount of carelessness and confusion with the traits in question. The usual 
result is a decrease because of the overall effects of randomness, but correlations may 
increase in magnitude when the correlation between carelessness or confusion and 
each of the traits is large and consistent. 

If carelessness or confusion is likely to be a major problem, it may be advisable to 
measure these traits independently by interspersing a series of abilities items that are 
ex.tremely easy or personality items that are unlikely to be answered in the unusual dt· 
rection, like scale F on the MMPI. To take an extreme case, college students who add 
2 + 2 incorrectly but can correctly solve a calculus problem are probably careless or 
confused. A more formal measure is the performance difference between easy and dif· 
ficult items. Another strategy is the lVIMPI's use of repeated or near-repeated personal. 
ity items and counting the number answered consistently. However, these measures 
provide only circumstantial evidence because they assume that responses are perfectly 
uniform when people are not careless or confused. Since the correlations among items 
are usually small. one should ex.pect many inconsistencies in responses from item to 
item. It is far better to minimize carelessness or confusion ahead of time rather than 
evaluate it after the fact. One can do this by experimenting with the instructions to en
sure that they are understandable, keeping the wording of items simple. and cross 
checking the results from different measuring instruments. If the measurement error 
due to carelessness or confusion is large, no sensible correction procedure can be ap
plied. Attempting to do so would be like attempting to unscramble an egg. 

When the tendency to guess and carelessness or confusion vary across subjects and re
late to other variables, they take on the status of a response styLe. Guessing does not ap
pear to be strongly related to any variable of interest. Obviously. carelessness and, espe· 
cially. confusion are of some import as a manifestation of psychiatric impairment. Indeed, 
confusion is as valid a component of irnpainnent as it is a response style. The tendency to 
avoid endorsing socially desirable statements also relates to pathology, although one 
might simply reflect the tendency to define maladjustment in part as nonconformity. 

The Role of Social Desirability 

Social desirability in general refers to the tend~ncy to choose items that reflect soci
etally approved behaviors. We have noted that this is a particular problem in scaling 
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stimuli: It is easy to overestimate the frequency with which adults actually go to the 
opera and underestimate the frequency with which they watch TV cartoons On Satur
day mornings based upon their self-reports. This section is, however, Concerned with 
the effect of the social desirability of responses upon scaling people. Although re
sponses clearly vary in social desirability, it does not follow that this is a source of in
dividual differences, the essential issue. 

Although it had long been suspected that choosing socially desirable alternatives on 
items tended to dominate self-report inventories, Edwards (l953, 1970; 1990) was the 
first to document this well. His first major study involved 152 subjects who rated the 
social desirability of l40 self-report items on a 9-point scale. The mean rating of each 
item over subjects defined its social desirability. Edwards then obtained yes-no self
reports on these 140 items from a second group of subjects. He found a correlation of 
.87 over items between social desirability ratings and the endorsement probabilities of 
each item. Subjects thus tended to describe themselves in a socially desirable manner, 
but these data alone did not indicate that this tendency was a reliable individual differ
ences variable (as noted earlier, behavior is most strongly determined by the situation, 
in this case item content). However, Edwards (1957) reported that a 39-1tem social de
sirability scale he developed from NlMPI items correlated very highly with the princi
pal dimension of variation in the overall ivllv.£PI and, indeed, suggested its use as a 
short form of the MlVIPI (Edwards & Walker, 1961). This finding is consi.stent with so
cial desirability being an individual differences variable. Because he felt that individ
ual differences in social desirability were irrelevant to personality 'traits, he stressed 
eliminating or controlling social desirability in personality measures. This spurred an 
enormous amount of research from 1955 to 1965. It became de rigueur to correlate 
proposed scales with social desirability measures (these specific measures will be con
sidered shortly). Aspersion was cast upon those scales that correlated highly. 

Block (1965; also see Block, 1990) and Rorer (1965) then offered major critiques. 
In particular, Block noted that Edwards' original social desirability scale actually con
sisted of a large number of substantive items describing anxiety. In other words, it 
measured a form of pathology as strongly as it did individual differences in social de
sirability. Block then developed an alternative scale of rnaladjustnlent that was neutral 
with respect to social desirability and showed that this scale was a valid predictor of 
maladjustment. These critiques led research away from emphasis upon social desir
ability (though it continued to be common practice to correlate scales with measures of 
social desirability). Walsh (1990) has suggested a somewhat different view: The re
sults became so complex that the topic died of its own weight. Nonetheless, interest in 
soci.al desirability has recently reawakened (Block, 1990; Edwards, 1990; Hogan & 
Nicholson, 1988; McCrae & Costa, L983). . 

Four possibilities are that social desirability differences are 

1 Situation-specific (biases) 
2 Generalizable across situations as the by-product of conscious strategies (styles) 
3 Generalizable acrosS situations as unconscious manifestations of a broader per-

sonality trait 
4 Not worth considering. 
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Specifically, the first two, if not three, of these positions imply that personality 
scales should be corrected for social desirability. Paulhus (l984, 1985) is particularly 
concerned with separating positions 2 and 3, but psychology has a long but unsuccess_ 
ful history of separating the conscious from the unconscious. It is possible for a given 
measure to confound 1,2, and 3 since they are not mutually exclusive. 

The view that social desirability is situation-specific is implicit in the ordinary Use 
of the MNIPl's K correction. Scale K was empirically derived by Meehl and Hathaway 
(1946) to provide items that minimize classification errors (patients classified as nOr
mal on the basis of their scale scores, and vice versa). A fraction of the score on this 
scale is added to clinical scales to improve prediction, which makes the scores of de
fensive individuals more pathological (higher). A complete review of the validity of 
this procedure is beyond the scope of this book (see Dahlstrom, Welsh, & Dahlstrom 
(t975a, 1975b) for older studies and Graham (l990) for a recent discussion], but it is 
safe to say that there is at least some evidence that it is effective to this end. We have 
used the term "ordinary use" to denote that scale K is considered separately from the 
substantive or clinical scales. In that sense, it is assumed to reflect the immediate situa
tion so that a person's score could change as the situation changes. However, a moder. 
ate as opposed to a low or high level of K is also assumed to be a positive indicator of 
adjustment, which is more closely related to position 3. 

Viewing social desirability as a consci.ous process implies faking and is implicitly re
flected in the standard use of tvLMPI scales Land F. Scale L consists of 15 highly ap
proved behaviors such as not cursing and reading the editorial pages every day. People 
with high scores are assumed to be faking good by attempting to appear better adjusted 
than they really are (even though its full name is the "lie scale," few would literally view 
it in this manner, though). In contrast, scale F consists of bizarre behaviors that are 
rarely endorsed even by psychopathological individuals. People with high scores are as
sumed to be "faking bad" by attempting to appear more poorly adjusted than they are, 
i.e., malingering. Unlike scale K, these scales are not used to adjust clinical scales, al· 
though the whole profile may be considered suspect or even unusable when these scales 
are extremely elevated. Edwards (1953, 1957) is often viewed as a proponent of the 
view that chOOSing socially desirable responses reflects conscious faking (Block, 1990; 
Hogan & Nicholson, 1988), but he vigorously denied this in his 1990 article. 

Edwards' (1990) statement is consistent with position 3, and Walsh (1990) conceives 
of the ability to endorse socially desirable items as a major component of mental health. 
We have already noted Block's (1965, 1990) points in support of ignoring social desir
ability as an issue. More recently, McCrae and Costa (1984) argued that if social desir
ability is an irrelevant contaminant, controlling for it should increase validity. In fact, 
validities either decreased slightly or remained essentially unchanged following two 
separate types of corrections. Note that there is no contradiction between Edwards' 
(1953, 1957) findings that substantive and social desirability measures are highly corre
lated and McCrae and Costa's failure to find large changes in the validity of substantive 
measures when they are corrected for social desirability. Chapter 5 noted that zero-order 
and partial correlations do not differ as much as one would expect. 

Edwards (1990) contrasted three types of social desirability scales. His odginal def
inition of 0. social desirability scale was one on which all items are keyed in the social-
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Iy desirahle dimension and the keyed response is also the modal response. His MMP[ 
~cale is of this form (ignoring its relation to anxiety). The second type of scale is illus
trated by the Marlowe-Crowne Social Desirability Scale (Crowne & Marlowe, (960), 
which has been the most popular such scale, and MMPI scale L (McCrae & Casta, 
1984, used these two scales). Both contain items for which the socially desired re
sponse is not modal. His third type of scale is obtained by finding items that change 
when subjects are given standard instructions versus instructions to fake good or give 
a good impression. Wiggins (I 959) constructed a scale of this form. Scale K of the 
1\I1MPI reflects a somewhat similar approach since it too is empirically developed. Al
though the first two types of scales tend to correlate highly with each other, neither 
correlates highly with Wiggins' scale. Consequently, Edwards criticized McCrae and 
Costa (1984) for failing to incorporate Wiggins' scale, but he presented no datu of his 
own to show that partialling out Wiggins' scale would improve validity. 

Social desirability is certainly a major factor in self-description among normal indi.
viduals, but it does not explain all systematic variance. The major components of the 
tendency to choose socially desirable responses probably are the subjects' (1) actual 
adjustment, (2) self-knowledge (which includes memory for one's behavior, see 
Schwarz, 1990), and (3) frankness. Only component 3, frankness, can be clearly clas
sified either as faking or as a response style in self-inventories. No one would classify 
actual adjustment or self-knowledge as a response style because the concept of re
sponse style would become so global as to lose all meaning. It is best to think of self
knowledge as an inherent limit upon what can be learned about a self-inventory. Evi
dence about the role in self-descriptions due to differences in frankness necessarily is 
indirect. 

Subjects can indeed make themselves appear better adjusted on self-report invento
ries like the :MMPI when they are instructed to fake good, Le., not be frank. The data 
on the ~IMPI K correction implies that its use does no hann at worst and probably is 
beneficial even though it is seldom employed for its original goal of providing psychi
atric diagnosis. There is some risk in comparing the scores of two people who were 
tested under conditions that differed in amount of frankness. The rank ordering of peo
ple does change under different test instructions, types of items, and situational vari
ables. This indicates that variation in frankness accounts for some substantive vari
ance. However, these changes typically are not large. Consequently the correlations 
between scores obtained under the different conditions will be high. In sum, frankness 
probably accounts for some but not large amounts of indi vidual differences in self
report inventories, and the tendency to choose socially desirable responses is probably 
one component of positive adjustment. 

Other Proposed Stylistic Variables 

As above noted, there has been little interest in other stylistic variables following 
Rorer's (1965) critique, but they are briefly listed for completeness. They may also 
arise as biases. 

1 Yea-saying, also known as the "agreement tendency" and "acquiescence," is the 
tendency to choose "agree" or "true" as a response category. Nay-saying is the reverse. 
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This topic emerged from research conducted using the California F scale (Adorno, 
Frenke!-Brunswik, Levinson. & Sanford. 1950), not to be confused with scale F on the 
MMPL The scale was unfortunatel.y constructed so that all items were keyed in the 
"agree" direction, and the unfortunate consequences were discussed in Chapter 8. A 
scale consisting of items baJanced in the direction of keying eliminates any potential 
problem in this area, as does improving the clarity of [he item. since the style, to the 
extent that it exists, would presumably be most manifest with ambiguous items. 

2 The "extreme response tendency" refers to habitual choice of the extreme versus 
the middle categories on multicategory items, such as Likert formats. Subjects do vary 
in this tendency. For example, Price and Eriksen (1966) found paranoid schizophrenics 
used rating scale extremes more than non paranoid schizophrenics or controls. 

MULTISCALE TESTS 

Item Overlap 

Tests containing more than one scale (e.g., the MMPI) illustrate the adage that "The 
whole is different from the sum of its parts"; the relations among the scales form an 
important part of the data being studied. This is true whether the different scales pre
sumably assess different content or whether some measure test-taking attitudes, such 
as the MMPI validation scales. This typically involves questions of factor analysis 
(Chapters II through 13). 

A major consideration added ill considering the relation among scales is that their 
correlation (corrected for attenuation) should be sufficiently low to indicate that the 
measures are actually distinct. "How low is low?" depends very much upon the con
text. At the one extreme, correlations that are very much greater than .6 make it diffi
cult for the two scales to improve upon prediction of a criterion. In this case, the issue 
is not theoretical, nor is i[ necessarily whether the two predictors do better than one. 
What is at issue is whether an optimally weighted combination of the two tests leads to 
better prediction than simpl.y combining tbe two tests into one instrument, which ef
fectively weights the two tests simply in terms of their reliabilities. Having only one 
long instrument clearly makes for parsimony. One may additionally wish to raise the 
separate question of whether the two tests do better than one in reducing testing time. 

At the other end, tests designed for occupational placement not only may correlate 
very highly but should correlate highly if the job requirements are very similar. As 
long as the tests are not completely redundant, there may be sufficient reason to use 
separate tests, although it may be possible to use one test and different cutoffs. Like
wise, the point of some theoretical investigations is to show that two constructs are 
separable, and so any attenuation-corrected correlation below l.0 may be of interest. 
Most situations are intermediate between these two extremes. 

If two scales share items in common, as on the NThtlPI, they will have a built-in cor
relation even if answers are generated randomly. This Obviously poses problems for 
the analysis which were brought most tellingly to 1ight by Shure and Rogers (1965; 
also see Guilford, 1952). Before their paper, there had been many factorings of the 
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NrMPI. A conslstent finding was that one group of scales formed what was inter
pretable as a "neurotic" factor and a second group of scales formed a "psychotic" 
factor. Some used this as a model for psychopathology in general rather than the 
structure of the MMPI. 

Shure and Rogers (1965) estimated the correlations among scales due entirely to 
item overlap using a method known as common-elements correl~ltions (Dahlstrom & 
Welsh, 1960, p. 83) and then computed a second set of correlations among scales by 
deleting all overlapping items. These truncated scales (Welsh, 1956) are still some
times used. The main finding was that factors derived from item overlap (common ele
ments) were very similar to those obtained in prior studies; those based upon truncated 
scales were very dissimilar. The implication is that the MMPI's factor structure reflects 
the overlap of items rather than the content of the responses. Subsequent studies that 
have factored MMPI without correcting for overlap have been criticized by anyone fa
miliar with Shure and Rogers results. Overlapping items also induce correlated error in 
the scales since responses are common to both. 

Unfortunately, this places one in a dilemma. The item overlap is not totally an arti
fact of test construction, as it reflects real similarities among tne traits in question. For 
example. people diagnosed as schizophrenic and people diagnosed as paranoid will 
answer certain questions alike but differently from the general population and other 
psychiatric groups. Even though not aU schizophrenics are paranoid and not all people 
with ~aranoid symptoms are schizophrenic, the two trwts are related. Although both 
scales were constructed from several studies, so that one cannot ascertain how many 
individuals diagnosed as paranoid schizophrenics were in both the paranoid and the 
schizophrenic groups, it is reasonable to assume that items cominon to both scales 
would still arise if such people were not allowed to appear in both groups (paranoid 
schizophrenics, being a large group within psychiatric hospitals, obviously cannot be 
totally excluded from the study). By analogy, individuals who are (I) culturally French 
and (2) culturally French-Canadian, among other groups, wm endorse the item "My 
native language is French," and individuals who are culturally English will not even 
though one cannot be both French and French-Canadian at the same time. 

If one grants that the item overlap is appropriate to the overlap of the concepts, 
since the concepts are related, it also follows that the reduction in correlations among 
scales obtained by eliminating overlapping items is artifactual because it describes 
correlations among scales that no one would use. Its effects are particularly trouble
some when the eliminated items are among the more discriminating, as unpublished 
data by the second author suggest is in fact the case. Equally as unfortunate is that the 
resulting scales may be weakened when item overlap is eliminated or independence 
forced using the methods considered in Chapter 8. Consequently, item overlap can be 
described as "not indefensible," and correlations obtained with item overlap are at 
least as appropriate measures as correlations obtained with truncated scales. These in
terscale correlations may then be used to test the invariance of the MMPI's factor 
structure. However. this still does not mean that the original use of the factoring to de
termine dimensions of pathology is appropriate. These dimensions might have some 
meaning if the MMPI items were a random sample of relevant items. However, they 
are not. They are a fixed pool of items considered appropriate by clinicians. 
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Six. major topics were considered in the conte:<t of classical test theory: (I) speeded 
tests, (2) cOITections for guessing, (3) adverse impact, improper discrimination, test 
bias, and disparity, (4) halo effects, (5) response biases and response styles, and (6) 
problems associated with multiscale tests. 

The traditional blind guessing model, which applies to multiple-choice tests, as
sumes that individ!Jals either (\) know the correct answer or (2) choose alternatives 
randomly and with equal frequency. It leads to Abbott's formula, which estimates 
wllat an individual'~ score would be if he or she left unknown items blank. Guessing 
(1) increases the mean scores, (2) is inversely related to what an individual knows, and 
(3) is a Source of individual differences and therefore unreliability because of differ
ences in luck. However, partial knowledge causes guessing effects to be underestimat
ed when Abbott's formula is used, but highly plausible distractors cause them to be 
underestimated. Alternative models, based upon signal detection theory, have two im
portant consequences: (t) SubjectR do not guess randomly-second guesses are more 
likely to be correct than the blind guessing model suggestS; and (2) the number of COf

rect responses is sufficient to estimate the key (knowledge) parameter of the model. 
Unfortunately, specific models for signal detection appropriate to the psychophysical 
applications where they were developed are difficult to use with ordinary tests. Further 
discussion noted that the smaU gain in reliability that may be achieved by a correction 
for blind guessing may be offset by making the test a little longer. Instructions de
signed to minimize guessing are difficult to make clear, and their effects may vary 
over subjects. However, the blind guessing model is useful in considering certain as
pects of testing such as the difference between multiple-choice and short-answer tests. 
In general, we concluded by suggesting that there is tittle reason to use more than four 
or five alternatives per item, that test takers should be encouraged to answer all items, 
and that no correction for guessing should be used. . 

A test is a power test Co the extent that scores obtained with a time limit (usually 
imposed for administrative convenience) correlate highly with scores obtained without 
a time limit, even though the means may be affected. Conversely, a pure speed test 
consists of items that would be of trivial difficulty were it not for the time limit. The 
internal structure of speed tests is quite difficult to infer, as correlations among items 
are arbitrarily determined by their proximity to one another. A primary consideration 
is the choice of a suitable time limit. The goal is to choose a limit that maximizes the 
variance among observed scores. One should not attempt to describe the reliability of 
a speed test in terms of coefficient a.. A more appropriate measure is the alternative
forms reliability. This may be accomplished in a single form by dividing the time limit 
in half, correlating the two halves, and applying the Spearman-Brown prophecy for
mula to the result. 

Preferred rate of response describes how rapidly subjects prefer to work, a moti
vational concept. However, itS' practical measurement is obscured by the effects of 
such variables as instructions. Two useful distinctions are (1) time-limit accuracy, or 
number of problems correctly solved (which is especially suitable for group-adminis
tered tests) versus response time, or the average time per solution (which is better 
suited for individuaHy administered tests) and (2) paced tests (in which a score is ob-
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tained for each item or block of items) versus time-limit tests in which the score is 
obtained at the end of the test as a whole. Paced tests are much more difficult to ad
minister to large groups. In all cases, a problem is that subjects may trade-off accura
cy for speed. 

Because of the statistical artifacts in speeded tests, it is especially unwise to attempt 
to infer their factor structure at the item level (it is, however. perfectly appropriate to 
use the factor analysis of whole tests). However. the shared common variance (SCV) 
or squared correlation between the actual test and a test without a time limit, correct. 
ing for attenuation. is a useful way to determine whether a speeded test measures the 
same thing as its unspeeded counterpart. One-trial measures of the effects of speeding, 
based upon the relative incidence of errors of omission (cnaracteristic of speeded tests) 
versus commission (characteristic of unspeeded tests) are discussed but not recom
mended because the relative incidence of the two types of errors are also strongly in
fluenced by the instructions. A timed power test consists of items that are not of trivial 
difficulty but are administered with a restrictive time limit. An important point to keep 
in mind is that the time limit can be reduced considerably without affecting key psy
chometric properties even though individuals may find the test somewhat uncomfort
able (and the discomfort should be avoided if possible). An exception arises when the 
items are ordered in terms of difficulty or some other important property; when the 
time available for the test is reduced, individuals take a somewhat different fonn of the 
test under the restri~tive time limit. In contrast. a speed-difficulty test consists of items 
that have correct response probabilities in the .8 to .9 range. Such tests muddy the dis
tinction between speed and power; as such they are not recommended. In general, 
speed and power measure somewhat different attributes of performance. 

Although it is vital to make decisions as fairly as possible. the courts have been es
pecially concerned about the employment rights of protected minorities such as fe
males, blacks, and Hispanics. In general, there are two types of legal arguments raised 
about discrimination. Systematic discrimination implies intent to discriminate against 
and usually involves specific acts; good faith is a defense. In contrast, disparate (ad
verse) impact involves procedures that appear neutral on the surface but result in 
uiJdue barriers to employment. Issues of test bias (differences in what the tests mea
sure for different groups) are likely to be important. Good faith is not a defense though 
business necessity, often as manifested in a validationai study, is. The Guidelines of 
the Equal Opportunities Employment Commission are significant both psychometrical
ly and legally. They define a 20 percent disparity in rate of selection between the refer
ence (dominant) group and the focal (protected) group as suggestive,,.but not conclu
sive, of illegal discrimination. This is c"alled the four-fifths rule. We also no'ted that the 
criterion problem, lack of validity, temporal instability, and, to a lesser ex.tent, unrelia
bility are other major factors keeping the best person from being hired. Definitions of 
test bias raise the issue of to whom to be fair, the individual or the group to which the 
individual belongs, as their interests are often in conflict. The most common definition 
of fairness to individualists is identity of the regression lines in the reference and focal 
groups, a criterion that courts recognize widely. When applied to test bias, it is known 
as the Cleary rule. People stressing the importance of the group often argue for some 
fann of quota. 
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The Cleary rule and other situations such as alleged salary discrimination often in
volve moderated multiple regression, as discussed in Chapter 5. Evidence for discrimi
nation can arise either through a difference in intercept (a constant difference between 
groups) or slope (differential validity when applied to tests). In salary discrimination 
cases, an anomaly often arises from the unreliability of the predictors of salary when 
reverse regression is used (predicting qualifications from salary rather than the more 
usual converse); a focal group may appear to be underqualified at the same time that it 
is underpaid. Structural models are often used to eliminate this anomaly. Residual 
analysis is often useful in detecting neglected predictors and the source of unequal 
standard errors in the groups, a frequent source of apparent misfit of a regression equa
tion. In addition. Simpson's paradox (Chapter 5) is shown to be relevant to categorical 
decisions such as hiring: The focal group may be hired in at least as high proportions 
as the reference group within levels but may have a lower overall rate of hiring be
cause of improper aggregation and the effects of a difference in rate of application for 
the various positions. 

Many tests used for personnel selection are content-validated and are appropriate if 
properly developed: Construct-validated measures based upon theories that are not 
widely accepted have been challenged most successfully and clearly job-related tests 
have been most easily defended. It is important that content-validated tests (1) not be 
based upon easily acquired vocabulary when the reference group has poorer access to 
that jargon, (2) be derived from a careful job analysis, (3) exhibit {nvariance of factor 
structure if they provide several measures, and (4) have appropriate correlates even 
though they are not necessary for content validity 'in the strict sense. Any form of test 
should not raise inappropriate barriers. A test that provides a small mean difference 
may lead to large disparities when a cutoff is located at a more extreme point; its ap
propriateness depends upon the application. 

Selection fairness has dominated most work places since 1970. Some possible ap
proaches are the following. 

1 Pure regression-select the person with the highest score on the predictor. 
2 Compensate for a constant (intercept) difference or to provide the social utility 

of additional focal group members as in the veteran's preference. Another fonn of 
compensation may be used when groups have unequal standard errors. 

3 Nonpsychometric quota selection (e.g., random or by vote) according to popula
tion quotas (problems are noted when several different types of quotas need to be 
filled). 

4 Psychometric quota selection which entails selection by a (possibly biased) pre
dictor within groups according to quotas. The quotas may be defined (a) by the popu
lation, (b) to equate expected success rates, (c) to give all people who can succeed an 
equal chance of selection, or (d) by prior success rates. 

5 Maximize the utility of decisions. 

It is important to note that the 1991 Civil Rights Act has basically made it illegal to 
use any fonn of job selection other than pure regression with an employment test. The 
final portion of this section dealt with conditions under which pooled versus separate 
test norms are more appropriate. 
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Halo effects are historically defined as failures to discriminate among conceptually 
separate dimensions. The dimensions may in fact be correlated (true halo). If the per
ceived correlation is larger than the true halo, there is said to be a positive observed 
halo, and if the correlation is lower, there is said to be a negative observed halo. Al
though it is desirable to define true halo in terms of physical measures, it is most often 
defined in terms of the average of a series of expert ratings. Traditional measures of 
halo unfortunately neglect the role of measurement error in judgment and thereby un
derestimate the magnitude of halo. Better measures correct the correlation between ob
served and true scores for unreliability (Fisicaro & Lance, 1990). Three models of halo 
have been suggested. 

1 The general-impression model in which judges react to their overall view of the 
person being rated (which can be either a composite of all dimensions or a separate di
mension of its own) instead of the designated dimension. 

2 The salient dimension model in which judges react to one dimension that stands 
out the most. 

3 The inadequate discrimination model in which judges fail to differentiate the di
mensions in question. 

Response biases are sources of measurement error that are specific to a given situa
tion, and response styles are analogous sources of error that generalize across condi
tions, thus serving as personality variables. Both may be systematic Dr random, as in 
careless and confused responding. Biases are basically nuisances. Some commonly 
suggested strategies for reducing their influence are (1) avoid suggesting one response 
is preferable, either overtly or tacitly, (2) make all responses of equal effort, (3) pay 
close attention to the wording of items, (4) use tasks that minimize bias (e.g., compar
ative rather than absolute judgments and sentiments), (5) apply converging operations, 
(6) make instructions clear. and (7) independently assess bias. Carelessness and confu
sion act somewhat like blind guessing in that they regress abilities measures toward 
chance and personality measures toward the mean of the measurement scale. Howev
er, systematic error may produce complelt effects, including below-chance responding. 
Biases may also affect group comparis~ns if one group is more affected than another. 

Although response styles were once a great topic of interest, they are currently of 
no more than secondary interest. Historically, the one of greatest interest was social 
desirability, since choice of response on self-report inventories is most strongly deter
mined by the social desirability of the response. Moreover, preference for the socially 
desired response is a function of (1) level of adjustment, (2) knowledge of one's self. 
and (3) frankness. Other styles, such as yea- and nay-saying, were briefly noted. 

Finally, we considered some of the issues that arise when a test has mUltiple scales. 
This provides a structure that can be analyzed. One major consideration is how high 
the scale intercorrelations are. Scales that are effectively redundant sholild be replaced 
by a single scale. Another important question is item overlap: Should the same ques
tion appear on more than one scale? The traditional view is that this is most undesir
able since it will induce a correlation between scale scores even when subjects respond 
at random. However, one should not miss the additional point that often the same or 
similar items are dictated when the concepts measured are similar. For example, one 
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would cenainly ask if someone's native language was French in order to detennine if 
that individual was culturally French. but the same item would also be highly discrimi· 
nating if the issue was whether the person was culturally French-Canadian. 
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CHAPTER OVERVIEW 

CHA~R 1 0 
RECENT DEVELOPMENTS 

IN TEST THEORY 

We will now consider modem psychometrics, which consists largely of item response 
theory (1RIj, notwithstanding the importance of generalizability theory (see Chapter 
7). AJty serious student of psychometrics will need to know the fundamentals of IRT 
even though classical procedures will suffice in m.ost applications. Classical test scor
ing estimates the level of an attribute (ability, personality trait, etc.) as the sum, per
haps weighted, of responses to individual items (Le., as a linear combination), whereas 
IRT, in contrast, generally uses the response pattern. Even though we will attempt to 
l.t'':lp the discussion as simple as possible, some difficult mathematics is unfortunately 
nect· :,~ry. The Suggested Additional Readings list several excellent references. Ham
bleton and Swaminathan (1985) and Hambleton, Swaminathan, and Rogers (1991) are 
pani.;.Liarly good (the former is the current standard), as is Hulin, Drasgow, and Par
sons t1983). 

Nearly all IRT research involves abilities, where the attribute of interest is some 
form of skill, symbolized e. We will assume a skill measure unless otherwise noted. 
However, a can denote a personality trait or attitude without loss of generality even 
though this has not thus far been extremely common. In general, IRT uses information 
from item trace lines (see Chapter 2) assumed to be ogives (usually logistic functions) 
that relate e to the probability of a given response (see Chapter 2). The location 
(threshold) of the trace line defines its difficulty, and the slope defines its ability to dis
criminate. Perhaps the most important concept in IRT is conditional (local) indepen
dence. Once an adjustment is made for a, responses to one item are independent of re
sponses to any other item, and so e contains all systematic information about 
responding. 

393 
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The simplest IRT model is the one-parameter (Rasch) model in which the items are 
assumed to vary only with re!\pect to their difficulty. The items are therefore assumed 
to be equally discriminating, and questions cannot be answered correctly by guessing. 
The classical measure of performance (sum of correct responses) is sufficient to esti
mate e. [nferential tests relevant to this and more complex models can be performed 
using the maximum lik.elihood test chi-square statistic (02) and the hierarchical strate
gy introduced in Chapter 4. 

The next simplest or two-parameter model allows items to vary in both discrhnina
tion and difficulty but with the probability of a correct guess still assumed zero, where
as in a three-parameter model items can vary with respect to discrimination, difficulty, 
and the probability of being guessed correctly. A phenomenon called "Lord's paradox." 
arises in these models: A relatively nondiscriminating item may be easier than a more 
discriminating item for low-ability subjects but more difficult for high-ability subjects. 
The item infonnation describes the ability of a given item to discriminate at a given 
level of e, and the test information or sum of the item information measures does so 
for the test as a whole. The relative efficiency of two tests is the ratio of their test in
formations. 

Large samples are generally needed to estimate the parameters of any but the one
and, perhaps, two-parameter models, but developments in numerical estimation may 
change this situation. Two of tbe more inceresting but, at present, largely impractical 
models are the Bock nominal model. whicb allows one to study how the choice of 
each alternative on a multiple-choice item changes with e, and the Samejima model 
designed for use with ordered response categories like Likert scales. Mokken (1971; 
Mokken & Lewis, 1982) has developed a nonparametric IRT. The section ends with a 
discussion of IRT's application to nonstandard testing situations and a brief introduc
tion to the scoring algorithms. 

The next major topic is differential item functioning (DIF), a term that has replaced 
"item bias" because of its relative neutrality. DIF occurs when item parameters differ 
across groups; e.g., an item is easier or more discriminating in one group than in an
other. A real example and a simulated ex.ample are presented. We then consider some 
alternative approaches to assessing DIP, including those based upon classical assump
tions. The final part of the section considers the meaning of "content bias." The third 
major section considers the use of IRT in tailored tests in which different items are 
chosen for various individuals based upon their estimated ability. In computerized 
adaptive testing (CAT) a computer is used to present a tailored test. We then comment 
upon IRT in general. The final section considers achievement tests for mastery learn
ing, which seek to have all subjects reach a given proficiency. IRT is one way to im
plement a mastery test, but it is not the only way. 

ITEM RESPONSE THEORY 

IRT relies heavily on the concept of a trace line (item-characteristic curve), introduced 
in Chapter. 2. Recall that the trace line related an attribute to the probability of a desig
nated response, such as a correct response on an abilities test. Trace lines are typically 
assumed to be ogives, which may be cumulative normal distributions, but they are 
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more frequently logistic functions (Eq. 2-6) for mathematical convenience. We will 
not consider models with cumulative normal trace lines further. In general, a cumula
tive normal model ex.ists for any logistic model, and the two have nearly identical 
properties. Other functions, most specifically el(ponentials, appear in special applica
tions considered below. Once the parameters of t-he trace lines are estimated, the prob
ability of any given response pattern is a function of the level of the attribute (9). One 
major goal of IRT is to estimate these parameters, including the standard errors. An
other major goal is to choose the best value of a for a given pattern, "Best" is often, 
but not universally, defined as a maximum likelihood estimate (see Chapter 4). Propo
nents of IRT note several ceaSORS for its impoltance (some reasons for caution will be 
noted in a later section), Four that are particularly important are: 

1 An IRT can compare tests comprised of different items explicitly. Consequently 
IRT allows comparisons between different occasions for the same subject where mem
ory for previous responses is a problem, even if the two tests have no items in com
mon. This is termed "test-free measurement" and is important to tailored testing and 
computerized adaptive testing, discussed later. 

2 Subjects with the same classical score (number correct) may be shown to differ 
in a, depending upon the assumptions made by the IRT model. 

3 The classical estimate of attribute level (skill) or number correct on an abilities 
test is not linearly related to e (Lord, 1980, pp. 49--51). Consequently a number correct 
scale is not an interval scale in the sense of Chapter I. The usual relation is that num
ber con'ect is an ogiva\ function a. . 

4 Classical estimates of difficulty and discrimination such as the probability of a 
correct response, p value, and the item-total correlation (riJ are not independent of one 
another, as they are dependent upon the subjects' abilities. Thus, an item whose p 
value is .5 in a general population will have a lower value among the less able. but 
classical psychometrics cannot predict the magnitude of decrease. In principle, corre
sponding IRT estimates do not suffer from these problems, 

IRT models generally assume conditional (local) independence, which states that e 
contains all the systematic information about the subject's performance [Stout (1990) 
presents an alternative position]. This means that answers to individual items will be 
randomly related once a has been partial1ed out. However, alternative IRT models vary 
as to (1) the number of different attributes or dimensions assumed to underlie the 
items; (2) item formats (binary as in short-answer and true-faIse tests. ordinal as on 
Likert scales, or nominal as in multiple-choice tests); and (3) number of item parame
ters. The latter depends in tum upon whether one assumes items vary in their ability to 
discriminate among individuals and whether or not the question can be answered cor
rectly by pure guessing. 

Different values of a may fall along a continuum (latent trait theory) or form dis
crete and perhaps nominal categories (latent class theory), Haertel (1990) connects the 
two types of models, but not all psychometricians consider latent class theories IRT 
models for reasons that are beyond the scope of this text. One pragmatic reason 
for linking the two is that the same algorithm can usually estimate both latent trait 
and latent class parameters. Another is that latent class theory allows conditional 
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independence to be readily illustrated. Most current research involves latent trait theo
ries. We will assume for most of this discussion chat a single trait underlies the item re
sponses so that the items are unidimensional. but Bock and Lieberman (i 970; also see 
Bock & Aitken, 1981) introduced multidimensional IRT models. quite a bit of work is 
currently being done with multidimensional IRT models. The Gllttman scale, dis
cussed in Chapter 2, was the first IRT. although its deterministic assumptions usually 
limit its utility. 

Before getting too deeply into IRT concepts, it is essential to recognize that very 
large normative bases are required co implement ail but the simplest and therefore 
sometimes unrealistic models using current estimation algorithms. Sometimes. howev
er, the data allow simplifying assumptions (e.g., that certain parameters are equal), and 
the impact of these assumptions may be further minimized by constructing very short 
and highly homogeneous scales. IRT's emphasis lIpon very short scales is a significant 
departure from classical test theory. We will discuss later how this homogeneity may 
be counterproductive. As noted in Chapter 8, items should follow from a homoge
neous domain of content, but it is important for a scale to possess methodological 
heterogeneity, such as keying personality items in both directions or sampling over 
situations. 

The required normative base increases very rapidly with the number of parameters 
that need to be estimated, but so does the realism of the model, a familiar problem. 
Unfortunately, the average investigator is unlikely to have access to samples of suffi
cient size to use the more complex. models. Many empirical investigations employing 
these more complex IRT models use data from the Scholastic Aptitude Test and like 
sources selected for their size. More efficient numerical estimation, may change 
this, but for now do not plan on using any of the complex. models to be discussed 
below unless you are using an extremely short scale in n fairly large (200 to 500 sub
jects) sample. 

Conditional Independence 

We have noted that conditional (local) independence means that item responses are in
dependent once a is held constant. It further implies that the joint probability of an
swering two or more questions correctly is the product of the individual probabilities. 
For example, if someone has a .5 probability of answering each of two individual 
items correctly, the probability that the individual will answer both items correctly is 
,52 or .25. Conditional independence is also assumed to hold for answers to the same 
item in a homogeneous subpopulntion or group of individuals with the same value of 
e. This does not mean that item responses are independent over all individuals. for 
they will obviously be highly related to an extent determined by their internal consis
tency. However, this unconditional dependence is assumed to result entirely from the 
effects of e. . 

In order to appreciate the concept of conditional independence, consider a hypo
thetical two-item political survey asking 1000 potential voters whether they plan to 
vote for the Democratic or Republican candidate for (1) governor and (2) senator. 
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There are only two candidates in each race, and prospective voters must choose be
tween them ("none of the above" is not permitted). The results are as follows: 

Gubematorlal Senatorial candidate 

candidate Democratic Republican Total 

Democratic 460 180 640 
Republican BO 280 360 
Total 540 460 1000 

Choice of the gubernatorial candidate obviously is related to choice of the senatori
al candidate. If the two were independent, the number of individuals favoring the De
mocratic candidate in both races would be (1000)(640/1000)(54011000) = 
(640)(540/1000) or 345.6 instead of 460, and so forth for the remaining three options. 
Now assume that there are two homogeneous latent classes of voters. which will sim
ply be labeled A and B. These may correspond to Democrats and Republicans, making 
the term "latent" questionable. However, they might also be groups differing on a 
dominant political issue, regardless of party affiliation. The type· A voters' preferences 
are as follows: 

GUbematoriai 

candidate 

Democratic 
Republican 
Total 

Senatorial candidate 

Democratic 

450 
50 

500 

Republican 

90 
10 

100 

Total 

540 
60 

600 

Similarly, the type-B voters' preferences are as follows: 

Gubernatorial Senatorial candidate 

candidate Democratic Republican Total 

Democratic 10 90 100 
Republican 30 270 300 
Total 40 360 400 

Voting preferences for the two candidates are independent within each of the two 
classes even though they are not for voters as a whole. For example. the number of 
people preferring the Democratic candidate in both races among type-A voters is as 
expected: 450 = (540){500/600), etc. In a like manner. the preference for the Democra
tic candidate for governor among type-A voters is 9: 1 regardless of their candidate 
for senator. Note that type-A voters do not vote consistently one way and type-B vot
ers do not vote consistently the other way, but choices are unrelated within groups. 
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Conditional independence means that the latent class (in this case) or trait information 
partials out all association. [f we know peoples' choices for senator, we know some
thing about their class membership, but once we know that class, the two choices be
come independent. Note the relation of these data to Simpson's paradolt (see Chapters 
5 and 9). 

One-Parameter Models 

The simplest logistic latent trait IRT model assumes that items are equally discriminat
ing but perhaps unequally difficult, and so it is called a one-parameter logistic (lPt) 
model. Each item is defined by a difficulty or location parameter that reflects the 
ogive's intercept, symbolized b. The Rasch (1960) model originally described a one
parameter model that used a particular form of estimation, but it is now synonymous 
with a 1PL model. Simpler equivalence or parallel models assume the items are also 
equally difficult, as in domain sampling, and employ one value of b for the entire set 
of items but have no additional properties of interest to IRT. The Guttman scale in 
Chapter 2 is also a special case in which the items ace perfectly discriminating. This 
means that their slopes are infinite-the ascending portion (slope) of the trace line is 
vertical as in Fig. 2-7a. 

A IPt model assumes that subjects who are low in the attribute have little chance 
of guessing the correct answer and that subjects who are high in the attribute are near
ly certain to choose the correct answer. Consequently these models ate more applica
ble to short-answer items rather than multiple-choice items scored as correct versus in
correct. Equations 10-la and lO-lb equivalently describe the IPL model in terms of 
the relation between the p value for a given value of 9, p(9), and 9 itself. 

ed(9-b) 

p(8)=---
1 + ed(9-b) 

=1 ___ 1 __ 
1 + e-d{9-b) 

(lO-la) 

(10-1b) 

As before, e = 2.18728 .... The symbol d is a scaling factor. Its usual value is 1.7, 
making the results comparable (±.Ol) to a cumulative normal distribution, or I, so that 
it drops out of the model. Be careful when you read results from a computer program 
so that you will oot assume the wrong scaling. Even within a given program, different 
options may provide different scalings. 

The term "threshold" is borrowed from psychophysics (see Chapter 2). This paral
lel will be exploited in a subsequent discussion about tailored testing. The term gets its 
meaning because an individual with a given 9 has a threshold C.5) probability of cor
rect response when b::: a, regardless of scaling, since eO/( 1 + eO) = 1/(1 + 1) = .5. The 
probability of an incorrect response [q(8)] may also be defined by means of equations 
that parallel Eq. (10-1a) or (lO-lb), but q(9) is more simply calculated as 1 - p(9) by 
flipping the trace line at .5 on the ordinate. The e and b parameters are measurable on 
the 3arne interval scale. The higher the subject is in e, the easier any item is for that 
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subject, but the higher tbe value of b, the more difficult that item is. The e and b are 
defined relative to one another rather than absolutely because they are measured on an 
interval scale whose mean and standard deviation are arbitrary. If there is only a single 
group, e is usually standardized, and so J.L = 0 and 0' = I. If the value of b for a given 
item is positive, that item is relatively difficult for that group, and if the value is nega~ 
tive, that item is relatively easy. However, one may linearly transform the scale (see 
Chapter 1), which changes 9 and b by the same amount, maintaining their relation. In 
stricter notation, e would require a different subscript for each subject and b would re
quire a different subscript for each item. 

Table 10-1 contains parameter estimates from six items on a test given to 180 stu
dents in a class in abnonnal psychology taught by the first author at the University of 
Texas at Arlington during the fall of 1989. The material covered the first seven chap~ 
ters of Davison and Neale's (1986) Abnormal Psychology (4th ed.) and consisted of 56 
four-alternative multiple-choice items involving such topics as the history of the field, 
assessment methods, and scientific methods. The average score was 34.0 items correct 
with a standard deviation of 7.5 items. Coefficient a. was .82. The test as a whole and 
the student sample were typical of courses in abnonnal psychology. The chosen six 
items had the highest item-total PM correlations (ric), the classical discrimination 
index. The p values were in the .5 range for the test as a whole. The table includes the 
IPL estimates along with two additional models considered later. For simplicity, we 
will ignore the important point that these are multiple-choice items that have been di
chotomized into correct versus incorrect rather than short-answer items. In fact, their 
probabilities of being answered correctly should start around .25 because of guessing 
. and not around .0. Figure 10-1 contains the resulting six trace lines, using a d of 1. 

Although the rank: ordering need not be exact, larger p values are usually associated 
with smaller b values since both index item difficulty. For example, item 32 had the 
highest p value of the six items (.63) and the smallest value of b (-.66). Conversely, 
item 5 had the lowest p value (.48) and the largest value of b (.08). Note that estimat~ 

CORRECT ALTERNATIVES, CLASSICAL ITEM DIFFICULTIES (pl, CLASSICAL 
DISCRIMINATIONS (fit), AND IRT PARAMETER ESTIMATES FOR SIX CLASSROOM 
TEST ITEMS 

IATmodal 

1PL 2PL 3PL 
Item Correct 
number answer p fit b a b a b c 

5 C .48 .35 .08 .66 .11 .51 .99 .23 
7 D .58 .25 -.38 .47 -.71 4.28 1.16 .50 

20 8 .59 .36 -.44 1.34 -.37 2.41 .42 .35 
22 D .52 .38 -.11 1.10 -.11 12.87 .55 .36 
32 A .63 .41 -.66 1.90 -.47 1.55 -.37 .03 
38 D .54 .42 -.22 1.13 -.21 1.04 .41 .25 
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FIGURE 1 0-1 Trace lines for correct responses to six items derived from a classroom test fit to a 1 PL model. 

ing b for any item requires infonnation from all items in the model (six in the present 
case), whereas estimating a p value uses information from that item alone. 

Assume someone answers the first three items correctly but misses the last three 
items. Figure 1()'2 contains the trace lines associated with this pattern of correct and 
incorrect answers. It was derived from Fig. 10-1 by flipping the three trace lines asso
ciated with items 22, 32, and 38 to define the probabilities of incorrect responses. Ac~ 
cording to Eqs. 10-1, the probabilities that these six events will each occur in an aver~ 
age subject (8 = 0) are .47, .66, .68, 1 - .55 = .45, 1 - .75 = .25, and 1 - .59 = .41. 
Given the assumptions of conditional independence, the probability of obtaining this 
pattern (+++---) is the product of these six individual probabilities or .009. Because 
of the small magnitudes of joint event probabilities, it is common to report the natural 
logarithm instead (-4.7l). 

If the subject was relatively unskilled (8 = -1), the six probabilities would be .14, 
.26, .27, .82, .64, and .79 for a joint probability of .004 (h:l = -5.50). On the other 
hand, if the subject was relatively skilled (8 = +1), the six probabilities would be .83, 
.91, .92, .13, .06, and .11, and the joint probability would be .006 (In = -7.46). It is 
therefo.re likelier that a person who is near a = 0 would obtain this particular pattern 
than a person who is very high or very Low. Specifically, a person with a of approxi
mately -.3 would have the largest probability of obtaining this pattern (.Oll, In = 
-4.49), and so -.3 is the maximum likelihood estimate to one decimal place for an 
individual who obtains this pattern. This person is slightly below average, which is 
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FIGURE 10-2 Trace lines for six items from a classroom test fit to a 1 PL model. The first three ~ere answered 
correctly, and the last three were answered incorrectly. 

c"onsistent with the fact that the individual's score of 50 percent (three of six items) is 
slightly below the six-item average score of 55.6 percent. 

Figure 10-3 represents the likelihood (probability of the joint outcome) as a func
tion of e. It is not difficult for you to obtain these values for yourself On a computer. 
Simply (1) choose a e, e.g., -1, (2) apply the values of b from the IPL model in Table 
10-2 (.08, -.38, ... , -.22) to Eq. 10-1 to obtain six values of p(S); (3) subtract peS) 
from 1 to obtain q(9) for the last three items (if you wish to look at other response pat
terns, flip different items); (4) multiply the six probabilities together to obtain the like
lihood; and (5) repeat the process for additional values of e in the loop. The maximum 
value or mode at approximately e = -.3 is the maximum likelihood estimate. Because 
the mode is typically less stable than other measures of central tendency, the mean of 
the likelihood function provides an alternative, expected a posteriori estimate (Bock & 
Aitken, 1981; Bock & Mislevy, 1982). The maximum likelihood estimate can also be 
called the "maximum a posteriori" or "biggest after the fact." 

This example began with a given set of trace lines. In practice, neither the trace line 
parameters (values of b) nor the abilities (values of 9) are known. There are several 
different ways to estimate the two sets of parameters whose details are quite complex. 
Some estimate the two sets of parameters jointly; others alternate between solving for 
one and then using these tentative estimates to estimate the other. 

The estimates of b are usually of most interest, whereas the estimates of 9 are usu
ally only of interest in practical scaling problems. The standard errors of estimate of 
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FIGURE 10-3 likelihoods associated with the response pattern in Fig. 10-2 as a function of 9. Because of this 
particular function's symmetry, the mode is the same as the mean or expected a posteriori 
estimate, but this Is not always the case. 

the parameters are as important as the parameter estimates themselves. These errors 
are .08 for the common estimate of the slope (1.0) and range from .20 to .22 for the es
timates of the location. By assuming that these statistics have a normal distribution 
(which has notl'Ling to do with assuming that the trace line itself is logistic), one may 
test for differences between particular pairs of items and test individual items against 
particular parameter values to deveLop a model with fewer parameters. For example, 
the locations of items 5 and 38 do not differ from 0 nor from each other. In general. 
standard errors increase as the number of independent parameters estimated increases 
if these parameters differ slightly or not at all. On the other hand, the standard errors 
will also increase if two parameters that ace really quite different are treated as equal. 
The standard errors also decrease with sample size. 

Because items are assumed equally discriminating in a IPL model, certain relations 
hold that are not true of lRT in general. The most important is that subjects who obtain 
the same number correct will have the same estimated value of a. Consequently, if it is 
reasonable to assume the items are equally discriminating, all subjects who got three 
items correct would have an estimated 8 of -.3. Number correct is a sufficient estima
tor of e in the sense of Chapter 4 because the pattern data furnish no additional infor
mation about a. Moreover, the relation between number correct and the estimate of e 
will be monotonic. However, the number-correct scale is not the latent trait (9) scale. 
For one thing. the number~correct scale ranges from 0 to the total number of items. 
whereas a can take on any value. Consequently number correct is neither the maxi
mum likelihood estimator nor the expected a posteriori estimator of B. 

Additional results uf interest include the observed and expected frequencies for 
each pattern and the standardized difference between the two. Table 10-2 illustrates 
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IAT STATISTICS ASSOCIATED WITH RESPONSE PATTERNS AS INFERRED 
FROM A 1 PL MODEL (SELECTED OUTPUT) 

Frequency 
Standard 

Pattem Observed Expected a error 

------ S.O 8.3 -1.51 .71 
-----+ 3.0 2.9 -1.03 .68 
----+- 2.0 4.5 -1.03 .68 
----++ 3.0 2.5 -.59 .65 
---+++ 3.0 1.9 -.17 .65 
--+--+ 2.0 2.0 -.59 .65 
+-++++ 7.0 4.7 .72 .69 
++++-- 2.0 1.8 .27 .67 
++++-+ 1.0 3.6 .72 .69 
++++++ 22.0 16.3 1.23 .73 

Note: + denoles Ihallhe item was responded 10 correctly, and - denotes that It was 
responded to incorrectly. 

these results for 10 selected patterns that reflect a range of possible results. A - in a 
pattern denotes incorrect, and a + denotes correct. By default, the program we em
ployed (MULTILOG, Thissen, 1988) uses expected a posteriori estimates of a, which 
we present, rather than the maximum likelihood estimates. Note that the second and 
third pattern both contain one correct response and have the same estimated a (-l.03). 
Similarly, the fourth and sixth patterns both contain two correct responses and have 
the same estimated a (-.59), and the seventh and ninth patterns both contain five cor
rect responses and have the same estimated a (.72). 

The quantity -2 times the natural logarithm of the likelihood provides an overall 
test of the model. It equals 21'.0 In(ole), where 0 and e are the observed and estimated 
(expected) frequencies of each pattern, and is a likelihood ratio chi-square test statistic 
(02) for the model as a whole in large samples (65.1 in the present case; see Eq. 4-22). 
"Large" means at least 10 expected cases per pattern, which is not true in the presen[ 
case. As noted in Chapter 4, O'J. can also be used to test differences between a more 
general and a nested model, even in relatively small samples. The difference between 
two 0 2 values is itself a 0 2 statistic that is more robust with respect to sample size 
than either of its constituents (Agresti & Yang, 1986). This difference G2 indicates 
whether the constraint(s) jn the nesting degraded the model. For example, all six inter
cepts can be constrained (nested) to be equal (-.29). This caused G2 to increase to 
77.4, a difference of 12.3. The difference has 5 £if since the original model estimated 
six values of b but the nested model estimates only one. It is significam (p < .05), 
which suggests that the items are not equally difficult, and so one can reject paral
lelism even though the differences are not large (the critical value of 0 2 is 11.1). Thus, 
tests of the overall model are sometimes possible, but tests of specific constraints are 
more usually possible and in fact at least as important. Suitable programs, like MUL
TILOG, allow considerable flexibility in specifying models. For example, it is possible 
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to estimate item 5'~ difficulty separately from that of the remaining items which in 
turn might be constrained to equality. Further tests of this form will be iilustnlted. 

Two-Parameter Models 

Two-parameter logistic (2PL) models generalize I PL models by allowing items to 
vary in their ability to discriminate, as well as in their difficulty. Like their IPL COun
terpartS. they assume that subjects low in 9 are almost certain to miss the item and 
those high in e are almost certain to answer the item correctly. Both models ignore 
guessing. The a values are the discrimination indices with subscripts denoting the item 
in question inserted as needed. They define the slopes of the trace lines, Le .• how 
rapidly they rises with e. A 2PL model assumes Eqs. L0-2a and lO-2b, which are 
equivalent: 

ia(S-bl 

p(9)=---
1 + laCS-h) 

=1----
e-da(9-b) 

(lO-2a) 

(l0-2b) 

The only difference between Eqs. J 0-2 and lO-l is addition of the slope parameter 
(a). As in the IPL model, the probabitily of an incorrect response is 1 minus the prob
ability of a correct response. Table to-I contains the 2PL estimates for the classroom 
examination, and Fig. 10-4 conrains the resulting trace lines. Note the similarity be
tween the classical discrimination index, rit and a; item 7 is least discriminating by 
both criteria, and item 32 has the second highest 'it and largest a (note that fit is based 
upon all 56 items, whereas a is based upon the 6 chosen i.tems only). The two indices 
also differ because a and b do not suffer from the inherent interrelation that p and 'it 
do. Table 10-1 also indicates that the values of b obtained here and in the IPL model 
are very similar for items 5, 20, 22, and 38 but differ somewhat for item 32 and con
siderably for item 7. 

As noted above, increasing the number of estimated parameters from 7 (6 values of 
b and a common value of a) in the IPL case to 12 here (6 values of band 6 values of 
a) may make the parameter estimates less stable jf the discriminations are not very dif
ferent. This is why large populations are needed for more complex models. The stan
dard errors ranged from .21 to .41 for a and from .14 to .51 for b. All six of the a 
esti.mates and two of the b estimates are much larger than in the 1PL case, whereas 
four estimates of b are slightly smaUer. Moreover, the 0 2 is decreased only to 54.7, Con
sequently the resulting difference G2 is only 10.4 (65.1 - 54.7) which is nonsignificant 
with 5 df(l2 -7 estimated parameters). This suggests accepting the equal discrimina
tion inherent in a 1 PL model if this was a real problem rather than an exercise. Recall 
that the items were chosen as the most discriminating to begin with and were thus not 
a random sampling of items, and the sample of 180 is at best moderate. However, G2 

is close to significance and probably would become so in a slightly larger sample. 
A comparison of Figs. 10-l and 10-4 reveals some important differences between 

the IPL (including a Guttman scale) model versus the 2PL and more complex models. 
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FIGURE 104 Trace lines for correct responses to six items derived from a classroom test fit to a 2PL model. 

The rank order of item difficulties (values along the ordinate) in a IPL model is the 
same, regardless of 6j the trace lines are parallel in the sense of never crossing. How
ever, the rank order of item difficulties depends upon the point chosen along the ab
scissa (9) in the 2PL case. Specifically, item 7 is easier for low-ability students than 
item 32 but more difficult for high-ability studentS because it is less discriminating . 
. This differential effect of item discrimination on low- and high-ability subjects is 
called Lord's paradox (Lord, 1980). It can also be shown that the rank order of sub
jects is independent of the item difficulties of the items in a 1PL model but not in more 
complex models. 

Despite the general need for complex estimation algOrithIIlS, the 2PL difficulties 
and discriminations may be estimated simply. First, use Eq. 10-3 to estimate a from 
the item-total biserial correlation (TbIJ. which itself is obtainable from the point
biserial correlation (TiJ using Eq. 4-26): 

(10-3) 

The difficulties are defined by 

(10-4) 
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The symbol cp-t(p) denotes the value of z derived from the normal-curve cumula_ 
tive probability of p. For example, item 5's point-biserial correlation with the total 
score on all 56 items (rit ;:; .35) may be multiplied by vpq (Eq. 4-28) to obtain a biser
ial correlation of .44. This in tum leads to an estimate of a = .441Vl - .442 = A9.1'he 
estimate in Table 10-1 (.66) uses d = 1 rather than 1.7 in scaling. Multiplying .49 by 
1.7 to convert it to the same metric yields .83. The comparison is biased because ,. 

It 
uses all 56 items and not simply the 6 chosen for e:<ample. Using!Eq. 10-4, q,-I(p) :: 
-.01 for p = .48. Consequently b = -(-.01)/.44:= .02. Using an average value for a in 
Eq. 10-4 estimates the b parameters of a IPL model. 

Whereas e varies monotonically with the unweighted sum of correct responses in 
the LPL model, it varies monotonically with a weighted sum of correct responses in 
the 2PL model. The weighting factor is a. As in the IPL model, the scale on which 
this weighted sum is defined is not the scale for 9, and so a weighted sum is neither a 
ma:<imum likelihood nor an expected a posteriori estimator. However, a weighted sum 
does contain all relevant information (is sufficient in the sense of Chapter 4). A person 
who answers a given number of more discriminating items will have a higber estimat
ed value of e than a person who answers the same number of less discriminating 
items. For example, the estimated 9 is -.71 for a person who answers only question 32 
and -1.0 for a person who answers only question 38 correctly because item number 32 
is more discriminating (a:::: 1.90) than item number 38 (a :;;:; 1.13). Table 10-2 shows 
that both have the same estimated e (-1.03) in a IPL model. 

Three-Parameter Models 

Three-parameter logistic (3PL) models incorporate a guessing parameter Ce) which al
lows tbe ogive to begin above O. This parameter represents the false positive rate-the 
probability that someone with a minimal score on the attribute correctly answers the 
item. It is particularly suitable for multiple-choice and true-false items. Without read
ing the item, a person would have a probability of 11K of answering a K-altemative 
item correctly (see Chapter 9 for a further consideration of guessing). However, e does 
not necessarily equal 11K, as a particularly attractive distractor may be chosen dispro
portionately. Equation 10-5 defines the 3PL model: 

(1- c)eda(9-b) 

p(9) = e + da(e-b) 
l+e 

(10-5) 

As above, the probability of an incorrect response is 1 minus the probability of a 
correct response. 

Table 10-1 lists the a, b, and c parameters for the classroom test example, and Fig . 
. 10-5 shows the resulting trace lines. This model was much more difficult to fit than ei
ther of its predecessors and, more critically, produced much larger standard errors. 
Techniques c.an be used with all models to reduce these problems, which are beyond 
the scope. of this book. They include imposing prior probabilities on the c values 
(Lord, 1980). In particular, it would be reasonable to fix c at .25 since the items all 
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FIGURE 10-5 Trace lines for correct responses to six Items derived from a classroom • ~t 10 a 3PL model. 

have four alternatives. This reduces It to a 2PL trace line in which the left asymptote is 
above O. 

Item 22 rises very steeply from a left asymptote of c = .36, but item 5 rises slowly 
from a slightly lower asymptote. Item 32 had an unusually low left asymptote, and 
item 7 had an unusually high asymptote. Regardless, the difference in fit of this model 
over a 2PL model is slight-the overall Gl is 46.5, producing a nonsignificant differ
ence of G1. = 8.2 relative to the 2Ft model Cd/= 6 since 18 parameters are estimated 
here versus 12). Indeed, the difference in 01. between this model and the IPL model is 
also nonsignificant (G1. = 18.6 on 11 df). 

Unlike the IPL and 2PL models, it is not possible to make sufficient use of a sub
ject's data by computing a sum (weighted or unweighted) of item responses. The COD

cepts of test infonnation and item information are necessary to estimate e. 

Item and Test InformatIon 

Any 1PL, 2PL, or 3PL trace line consists of three segments that may be approximated 
by straight lines. For example, the 3PL trace line for item 7 in Fig. 10-5 is flat [pca) .. 
. 5] below 9 = +.50, rises steeply from e = +.50 to e = +1.20, and becomes fiat again 
past e = +1.20. The slope of the trace line, symbolized p'(8), is obtained from the tan
gent to the curve. It describes how p changes as a changes and is small, large, and then 
small again. The steeper the slope, the more information an item provides at that re-
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gian of 9. Item 7 in the 3PL is too difficult for moderate- to low-ability subjects 
(9 < +.5) who are unlikely to answer the item correctly except by guessing; differences 
among them in response to the item will be largely due to chance. ft wiLl be too easy 
for high-ability subjects (9 > +! .2) who are unlikely to miss it except through careless
ness. However, the item will be discriminating for subjects near the middle (.5 ;=: 9 2 
1.2). The same will hold for other items except that the values of 9 will differ. In gen
eral, easy items discriminate best among low-9 subjects, and difficult items discrimi. 
nate best among high-S subjects. The most useful items have difficulties (b) that are 
similar to the subject's 9. 

Technically, the item infonnation function [l(S)] is the expected value of the accel. 
eration of the trace line. The acceleration describes the change in slope as S changes. 
Equation 10-6 is an approximation that deftnes the item variance as the square of the 
slope divided by the item variance at that point. The item variance follows from ordi
nary binomial considerations. 

1(9) = [p(9)'f 
p(9)q(e) 

where [p(S)11 = squared trace tine slope at a given value of 9 
peS) = probability of a correct response at that value of 8 
q(9) = probability of an incorrect response at that value of a 

= 1-p(8) 

(10-6) 

If you have been introduced to calculus, you may recognize the slope and accelera
tion as the first and second derivatives of the trace line, but calculus itself is not need
ed to understand any of these concepts. Maximum infonnation arises in IPL and 2PL 
models (which do not involve guessing) when p(9) is .5 (when b = 8). 

The test information function [T(e)] is simply the sum of the individual item infor
mation functions: 

T(8) =L1(S) C10-7) 

The additivity of the item informations is another consequence of the assumption of 
conditional independence, as it implies that each item's contribution is independent of 
that of the other items. The complex. process of estimating a in a 3PL model involves 
weighting responses by the corresponding item information. This in turn involves 
stressing different items for different individuals. By definition, it involves finding a 
value of 9 that maximizes the joint probability of the pattern or some closely related 
quantity, using Eq. 10-5 to define each probability. More difficult items provide more 
information about higlHbility subjects, and easier items provide more information 
about low-ability subjects. A subject who misses relatively few items and is therefore 
able will have a higher estimated 9 if the missed items are easy than if they ace diffi· 
cult. Precisely the converse is true of a subject who misses many items. Looking at the 
overall test information function indicates where the test discriminates best and most 
poorly so that items can be added or subtracted as needed. 
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The relative efficiency of test y with respect to test :c is the ratio of their respective 
information functions: . 

T(y) 
RI(y, x) = T(x) (10-8) 

Test y may be a shortened form of test ;c, and 50 interest may center on what is lost 
and, of equal importance, where along the a continuum it is lost in shortening x. Alter
natively, the two tests may not have any items in common and interest may be directed 
toward determining how well they work at different a levels; test x may be more dis
Criminating for better students, and test y may be more discriminating for weaker stu
dents. The key point is that fRT stresses maximizing the test information function over 
the range of abilities that are of interest instead of maximizing reliability, as in classi
cal psychometrics. Chapter 8 noted that maximizing coefficient a requires peaking the 
difficulties of the items on the test even though this effect of peaking is slight. This has 
led certain investigators to select out items of relatively high and low difficulty in an 
attempt to maximize reliability at the eltpense of other considerations. IRT suggests 
distributing item difficulties to discriminate across the full range of abilities, which we 
strongly agree with as in equidiscriminating test (s~e Chapter 8). 

The Bock Nominal Model 

The IPL, 2PL, and 3PL models have been the most widely used, in that order. Bock 
(1972) proposed a model for the analysis of nominal responses such as individual al
ternatives on a multiple-choice test. Equation 10-9 defines this model: 

(10-9) 

The eltpression p(x = Ida) denotes the probability that a person of ability 9 chooses 
response alternative k. The model assumes that there is a tendency to choose k that is 
independent of a (c.0, but this tendency changes at a rate of ale relative to 9. The ten
dency to choose the correct answer should increase rapidly with 9 and be reflected in 
a large positive value of ale' The £II< may also be positive for an incorrect alternative, 
providing it is smaller than the ale for the correct alternative, but the tendency to 
choose an incorrect alternative should generally decrease with 9 (al: < 0) or remain 
constant (alc = 0). The symbols in the denominator, £11 and Cit denote the analogous ten
dencies associ.ated with the various alternatives, includi.ng k. The model resembles 
Luce's (1959a) choice theory (Chapter 2), as it defines the probability of choosing a 
given alternative k as the ratio of its value derived from an exponential function to the 
sum of a series of like values for all alternatives. Thus, although the absolute tendency 
to choose alternative k, akS + CIe, is a linear function of a, the observed probability, 
p(;c = kl9), is a function of this tendency relative to the other alternatives. Consequent
ly p(;c:: Ide) may vary in a complelt manner with 9. 
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FREQUENCY DISTRIBUTION OF CHOICE OF 
RESPONSE ALTERNATIVES WITHIN QUINTILES 

Alternative 

Qulntlle A B C 0 

1 (lowest) 9 9 8 10 
2 11 9 14 7 
3 6 4 19 4 
4 7 3 20 2 
5 (highest) 8 2 26 0 

Item 5 asked about the history of psychopathology in the Dark Ages and will illus
trate the model. Table lO~3 contains the frequencies with which subjects in each of 
five quintiles based upon total score chose alternative A (previously nonnal behavior 
came to be viewed as abnonnal because of religious disapproval), B (discovering the 
secrets about the cause of mental disorders was an inevitable result of scientific in
quiry), C (economics and religion had a strong effect on the degree to which science is 
valued, the correct answer), and D (one needs to distinguish demonic possession from 
mental disorder in the study of psychopathology). The total frequencies in each quin
tile are not exactly equal because of sampling error-two students omitted the ques
tion; our sample size was also extremely small. 

The table indicates that the observed distribution of response choices for the lowest 
quintile was very nearly unifonn. These students may have guessed blindly with equal 
preference for all four alternatives. A slight tendency for the correct response to domi
nate appears in the second quintile. This becomes stronger in each successive quintile, 
as it should. As a result, the other alternatives become less frequently chosen. Howev
er, the rate at which this occurs is different for the various alternatives. Alternative A 
is chosen with nearly the same relative frequency in all quintiles. The rate of decline is 
greatest for alternative D; none of rhe students in the top quintile chose it. 

The a" estimates for the four alternatives were .38, -.30, .51, and -.60, and the CIc esti
mates were .52, -.64, 1.38, and -1.27. Correct alternative C had the largest value of at 
because it became dominant as e increased. Note that the absolute tendency to choose 
A also increased with a, thougb not as rapidly as for C, but Band D showed the more 
common tendency to decrease with a. The differences among c" reflect differences in 
category choice among average subjects (9 ::: 0) which, to a flrst approximation, 
describe students in the third quintile. Figure 10-6 shows the resulting trace lines. 

Samejima (1979) extended B'ock's basic model, and in tum Thissen and Steinberg 
(l984) further modified Samejima's. The modifications allow for blind guessing (see 
Chapter 9) and "don't know" responses. 

The Samejima Model for Graded (Ordinal) Responses 

Samejima (1969, 1974) has developed andlor extended several IRT models. One of 
particular interest uses graded responses such as Likert~type scales. We will assume 
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FIGURE 10-6 Trace lines for four alternatives from a classroom test fit to a nominal model. Alternative C is 

correct. 

3 

that bigher-numbered categories are associated with larger values of e. A model of this 
fonn is applicable to personality and attitudinal data. Like all IRT models, it provides 
one trace line per response alternative, which is easy to miss when there are only two 
alternatives per response since they produce two trace lines that are flipped versions of 
each other. The Samejima model provides one monotonically decreasing trace line as
sociated with the lowest category, nonmonotonic trace lines with successively higher 
peaks for intermediate categories, and a monotonically increasing trace line for the 
highest category. It is simplest to begin with a three category scale where 1 = disagree, 
2 = neutral, and 3 = agree. Assume that 25 percent of the responses to a particular item 
are 1,40 percent are 2, and the remaining 35 percent are 3. 

Samejima's "trick" was to pool categories and obtain a series of dichotomies. For 
example, combining 2 and 3 responses produces a "do not disagree" category contain
ing 75 percent of the cases (40 percent + 35 percent). It may be contrasted with the 
"disagree" category containing the remaining 25 percent. A trace line may be obtained 
for the "do not disagree" responses in which p(x > 1) describes the probability of wnat 
serves in effect as a correct response, and hi describes the difficulty parameter. NelCt, 
pool the 1 and 2 categories to form a "do not agree" category. This contains 65 percent 
(25 percent + 40 percent) of the cases, and the contrasting "agree" category contains 
the remaining 35 percent. A second trace line defines "agree" (again, correct) respons
es, p(x > 2), and has difficulty parameter b2• Everyone who answered 2 is high (posi
tive) in the first case and low (negative) in the second, but no one was low in the first 
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case and high in the second. Consequently the probability of u high response mllst be 
lower in the second case (35 percent) than in the first (75 percent), and so b'J, must be 
numerically more positive than b l • The slopes of the resulting trace lines are con
strained to equality. 

The results are preliminary trace lines describing probabilities of being in a given 
category Or in a higher category. The instructions require that p(x. > 0) == L, as the per
son must choose a response of 1 or greater, and p(x. > 3) = 0, as category 3 is the 
largest allowed. Final trace lines describing the probability of choosing each of the 
categories are obtained by subtraction. In general, p(x = e), the probability that the re
sponse chosen falls in category c is p(x. > c - 1) - p(x > c) (this meaning of c has no re
lation to its use in a 3PL model). Thus, the probability that a person chooses category 
1 (disagrees), p(x = L), is p(x > 0) - p(x > L) or 1.0 - p(:c > 1). The probability that a 
person chooses category 2 (is neutral), p(x = 2), is p(x > 1) - p(x. > 2). Finally, the 
probability that a person chooses category 3, p(,'C = 3) ::: p(x > 2) - p(x > 3) or Simply 
p(:c > 2) since p(:c> 3) = O. 

Cheek and Buss' (L981) nine-item shyness scale will be used for illustration. Al
though the original form used 4-point Likert scales (1 ;;;: very much unlike me, 2 = 
somewhat unlike me, 3 = somewhat like me, and 4 = very much like me), the data 
were gathered on a S-point scale by adding a neutral category. The scale was complet
ed by 726 students enrolled in several sections of an introductory psychology course. 
Item 7 states "I feel inhibited in social situations." The distributions of responses to the 
five categories were 19.4 percent, 32.2 percent, 31.7 percent, 11.7 percent, and 5.0 per
cent, and the 'It was .75, making it the most highly discriminating of the nine items. 
Figure 10-7 shows the preliminary trace lines, p(:c > c). The ordinate is spelled out 
more fully as "probability response> category." Each slope is constrained to equality, 
but the slopes may vary among items. The present slope is 2.57, the steepest of the 
nine items, which is consistent with its large rj[' There are only four curves, I Less than 

FIGURE 10-7 Preliminary trace lines using shyness data (Cheek & Buss, 1981) fit to the Samejima graded 
response model. 
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model. 

the number of categories, because the curves describe relations between pairs of adja
cent categories. If there are k categories (four in the present case), there will be k - I 
(three) such pairs. The thresholds are at -1.06, .06, 1.12, and 2.01. The fact that the 
first threshold (-1.06) is closer in absolute value to zero, the distribution mean. than 
the last threshold (2.01) reflects the greater probability of a 1 response (19.4 percent) 
than a 4 response (5.0 percent). 

Figure 10-8 shows the final trace lines that describe p(x = c}, where the ordinate is 
spelled out as the "probability of obtained response." There are five curves, one per 
category. 

Similar sets of trace lines can be obtained for the remaining items. Their sbapes 
will be similar, but they will be shifted andlor differ in spread as a function of the item 
distributions. For example. when more individuals choose category t, the trace line for 
that category is displaced toward the right because more high-a people choose that 
category. The remaining curves will have less spread because proportionally fewer 
people choose those categories. 

A Nonparametric Approach 

A basic step in developing an IRT model is to postulate the specific shape of the trace 
line which, as we have seen, is most commonly the logistic ogive. Following general 
practice in statistics, such approaches may be called parametric. Mok:lcen and Lewis 
(1982; also see Mokken, 1971) employ a nonparametric approach in that trace lines 
are only assumed to possess two ordinal properties. One is that these trace lines are 
monotonically increasing. As noted in Chapter 2, this is common to a great many ap
proaches, including classical test theory. The second assumption is that the item diffi
culties maintain their same rank order regardless of ability level (8). This simply 
means that the trace lines do not cross. FollOwing standard practice in IRT. Mok.k:en 
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and Lewis define difficulty as the item threshold, i.e., the magnitude of e required for 
the probability of a correct response to equal .5. Items fulfi lling these two conditions are 
culled doubly monotonic. The trace lines of a I PL model are doubly monotonic, but this 
is not the case with 2PL and 3PL models, as we have noted-only in the I PL do the 
trace lines not cross. A person dominates an item when the probability that he or she win 
answer that item correctly direction is at least .5. Ct is sufficient to estimate e by the num
ber of items that the person dominates. Estimation uses an iterative routine. Mokken and 
Lewis (1982) provide an eltample drawn from the personality domain. 

Mok.ken scales are closely related to Likert scales. but they do not assume that indi
vidual items perfectly "cut" the population in terms of e based upon correct versus in
correct responses (and vice versa). We have considered that assumption to be a major 
reason why Likert scales are unrealistic. Mokken scales are also closely related to an
other trend in statistics associated with Clyde Coombs (e.g., Coombs & Kao, 1960). 
Coombs (and others, see Chapter 14) bave stressed that ordinal relations in the data are 
usually sufficient to infer interval properties. 

'This nonparametric approach is extremely valuable in terms of helping describe such 
critical properties as dimensionality, which Mokken and Lewis (1982) define as the abil
ity of each of a set of items to rank-order people in the same way. However. we would 
make the mi1dly critical point that assuming logistic traces is not empirically strong. 
Historically, parametric models in aU areas of statistics (e.g .• the ANOVA) have been 
fairly robust with respect to minor deviations from normality or. in this case, logistic 
form. A IPL mo~el is probably far more likely to misfit because one or mOTe items are 
actually nonmonotone or differ in discrimination than because it has a nonlogistic mo
notone form. One very positive feature of the IPL model is that a simple count of cor
rect responses is sufficient to estimate ability; Mokken's approach to estimating ability 
is far more cumbersome for, it appears, little reward. Both lPL and Mokken scales 
allow test-free measurement, and so the latter has no advantage in that sense. 

A number of different models eltist. but nearly all are special cases of the models con
sidered above, most specifically Bock's nominal model and Samejima's graded re
sponse model. Thissen and Steinberg (1986) provided a classification of models then 
available, but the number is steadily increasing. We have already noted that the IPL 
model is a special case of the 2PL model obtained when the discrimination parameters 
(a) are constrained to equality, and the 2PL model is a special case of the 3PL model 
in which there is no opportunity to answer correctly by guessing (c := 0). Perhaps the 
most imponant development is multidimensional IRT in which an item may be a linear 
combination of several trace lines (Bock & Aitken, 1981; Bock & Lieberman, 1970). 
As we have noted at many points in this section. this highly attractive extension re
quires enormous numbers of subjects to implement. Four other types of models are 
those designed for (1) rating scales (Andrich. 1978, 1982. 1985; Rost, 1988; Wright & 
Masters, 1982), (2) partial credit (Masters, 1982; GIas & Verhelst; L989), (3) continu
ous ratings (Mueller. 1987), and (4) nonmonotone deterministic items. as in Fig. 2-10 
(Formann, 1988). 
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Applications to Nonstandard Testing Conditions 

Scoring Algorithms 

A major point to consider is that the attribute levels of two different people (or the 
same person on different occasions) may be estimated just as well if they answer no 
items in common (or some but not all) as if they respond to the same set of items, the 
principle of test-free measurement. For any given set of items, either the maximum 
likelihood or expected a posteriori outcome for a given pattern estimates e, and these 
values may be compared with values of e determined from other properly scaled items 
in the domain. 

Estimating relevant parameters (e.g., a, b, and 9) is usually very complex. Although 
Eqs. 10-3 and 10-4 are useful approximation methods, especially as a check on com
puter-generated results, extensive use of lRT requires an appropriate computer pro
gram. Because 'Of the idiosyncracies in many programs, reLative lack of users, and, on 
occasion. bugs, IRT programs are more difficult to use than general-purpose programs 
like SPSS-X and SAS. The first author has contacted various program authors who 
were all quite happy to discuss problems. but there is no guarantee on this matter. 

Some of the major differences among algorithms are: 

1 Models analy~ed. BILOG (Mislevy & Bock, 1986) is designed for binary re
sponse models, but programs such as MULTILOG analyze both binary and multi
category data. 

2 Restrictive assumptions. MULTTI...OG assumes that e is normally distributed 
within groups. This allows Bayesian considerations (e.g., prior probabilities) to be in
corporated, but it is not necessary to IRT in general. 

3 Computer suitability. Older programs like LOGIST (Wood, Wingersky, & Lord, 
1976) were written for and are available only for mainframes. Vutually any newer 
program is also designed for use on personal computers. 

4 Cost. IRT programs are generally expensive because they do not have a wide au
dience. However, LOGIST is available through the Educational Testing Service at a 
bargain price. 

S Fonn of numerical estimation. Older programs like LOGIST use joint maximum 
likelihood estimation, but newer programs like lVIULTILOG use marginal maximum 
likelihood (Bock & Aitken, 1981; also see Orchard & Woodbury, 1972; Dempster, 
Laird, & Rubin, 1977) or conditional maximum likelihood (Wainer. Morgan. & 
Gustafsson, 1980) estimation. The latter two methods are generally preferable, as they 
are more efficient (yield smaller errors of estimate in a given sample) and provide ex
plicit inferential (G2) tests. Most algorithms are called full-information methods be
cause the computations use response patterns; in contrast, limited-information meth
'ods (Mislevy, 1986) employ item means. variances, and covariances. Despite the 
somewhat negative term "limited information," these methods are not necessarily infe
rior. Maximum likelihood approaches have dominated. but generalized least squares is 
possible, as is ordinary least squares when inferential tests are not needed (Muthen, 
1988). Computational details are beyond the scope of this book. 
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One usually obtains joint estimates of the abilities (9) and the item parameters (0, b, 
and c) from the same sample. However, it is generally preferable to develop the test 
and calibrate items on normative samples and then estimate 9 separately in the target 
popUlation to avoid capitalizing upon chance. This is no different from classical psy
chometrics where item pretesting and cross validation are highly desirable. 

DIFFERENTIAL ITEM FUNCTIONING (ITEM BIAS) 

Differential item functioning exists when two or more groups differ in their trace lines, 
Le., when parameters differ among groups. Thus, it is present if an item is relatively 
more difficult, discriminating, or easily guessed for one group than for the otber. DIP 
is an itern-by-group interaction in the analysis of variance sense. It may be evaluated 
by means of IRT, by classical assumptions, and by methods that are different from 
both, although most developments reflect the IRT tradition. 

In particular, DIF implies that IRT's essential concept of conditional independence 
does not hold. Pattern information will not be random at a given level of 8, as it will 
relate to group membership in a manner dependent upon the form of DIF. Thissen, 
Steinberg, and Wainer (1992) provide a detailed comparison of these approaches. 
Using the notation of the previous chapter, we will be concerned with item parameter 
differences between a reference group and a focal group. If two groups can be as
sumed equal in ability, classical methods can be used to detect certain forms of DIF 
very simply. For example, a difference in p values obtained from the same item in dif
ferent groups of equi valent ability does imply DIF. However, equality of p values does 
not imply absence of DIF, since the item may not discriminate equally within the two 
grOUP!? The problem becomes more difficult if the groups are not assumed equal in 
ability. 

Some have used the term "item bias" in place of DIP. This is improper because if 
two items show DIP, one usually cannot determine where the bias lies unless one 
knows what the parameter differences should be, e.g., by having a suitable criterion or 
reason to believe [hat the groups are equal in ability. For example, suppose that item A 
is equally difficult for a focal and a reference group, but item B is more difficult for the 
focal group. If the two groups can be assumed to have the same ability, item B will be 
biased rather than item A. However, suppose the focal group is less able than the refer
ence group. Item A might fail to assess that difference, but item B properly does. A 
third possibility is that neither difference in difficulty is proportional to the group dif
ferences in ability, so that both are biased. Similar considerations hold for differences 
in discrimination or guessing. . 

Even when a suitable criterion allows group differences in the attribute to be as
sessed, detennination of where the bias lies may be difficult because individual items 
usually relate poorly to the criterion as compared to composite scales. Similarly, a 
test that mixes items with and without DIF may appear not to exhibit bias at the 
total-score level because of the low correlations between most predictors and criteria. 
Moreover. the word "bias" has pejorative connotations which are not always suitable. 
Suppose one group of subjects is taught by one method and a second group is taught 
by an alternative method. Items may and should be easier for the group taught by the 
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more effective method. The term "bias" seems less appropriute than the term "DIP' 
here because the difterences are due to a manipulation and not an inherent subject 
variable. 

Unless one has evidence to the contrtU'}', ethical and scientific considerations such 
as the Law of parsimony dictate, assuming that there are no group differences in the at
tribute being measured. Similarly, one should choose items whose parameters are most 
similar across groups, whether these parameters are defined classically or through IRT. 
This is especially true when the groups differ in gender or ethnlcity. However, differ
ences in the distribution of the attribute (usually of unknown magnitude) clearly must 
exist in some situations, e.g., normal and pathological subjects certainly differ in level 
of pathology. Problems involving DIF are therefore often concerned with whether 
observed differences in either classical statistics (e.g., total scores, p, and riJ or 
IRT-derived statistics (e.g., a, a and b) are of appropriate magnitude. We will 
first consider DIF from an IRT perspective and further assume that the measure 
is valid (see Steinberg, Thissen, & Walner, 1990). The basic logic in determining 
validity from the IRT perspective is generally the same as it is from a classical 
perspective. 

A Substantive Example 

Thissen, Steinberg, and Gerrard (1986) used IRT to evaluate possible DIF by gender in 
Mosher's (1966, 1968) Forced Choice Sex Guilt Inventory. They compared the fit of 
one model whose parameters were constrained to equality between groups, thus ignor
ing gender, with a second in which these parameters could differ between groups, thus 
controlling for gender (alternative tests will be considered later in the chapter). The 
difference in fit of the two models was substantial, implying that DIF was present. 
Males had higher thresholds (b) and were therefore less Ukely to report feeling gUilty 
about prostitution or adultery but were more likely to report feeling guilty about ho
mosexuality. Statements about gender differences in sex-ual gUilt are therefore con
founded with whether the items deal with prostitution and adultery or homosexuality. 
However, one cannot say whether prostitution and adultery items were biased, homo
sexuality items were biased, or both were biased relative to the remaining items. There 
were no gender differences in item discrimination (a) even though these values did 
vary, requiring a 2PL model. 

An overall gender difference affecting all sexual behaviors does not imply DlF (see 
Chapter 3 and, especially, Chapter 9). For example, females may be more tolerant of 
homosexual behavior than males because they are more liberal than males. If overall 
'differences in sexual gUilt were the only detenninant of the gender difference among 
particular items, there would be no DlF since the gender difference would disappear 
'whea e (level of sexual guilt) was controlled. However, females cannot be more liber
al toward some items and conservative toward others in the same domain. The critical 
finding is the lack of conditional independence-iterru; differed in b holding a con
stant. The "crossover" exhibited by prostitution and adultery versus homosexuality 
items is interesting but not necessary for DIF since any group difference in b (or a) 
suffices to establish this effect. 
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A SImulated Example 

The following computer simulation conducted by the second author illustrates DIF. As
sume two populations. One group is average; 9 is normally distributed with a mean of.O 
and a standard deviation of I. The second group is skilled; e is normany distributed with 
a mean of .5 and a standard deviation of I. Subjects (n = 500 per group) responded to 
five items in a manner consistent with a 1 PL model, Eq. to- L The respective item diffi
culties (b) were -I, -.5, 0, +.5, and + lo5. For example, a given subject's skill (9) might 
be 0 in either group, though there are more average subjects near this value than skilled 
subjects. Thls value of e then detennined each p value (e.g., .84 for item 1) regardless of 
group membership, and the specific response was determined by a random process. 
These are data without DIP because the same item parameters describe both groups 
even though, on average, one is more skilled (has a higber mean value of 9), Figure 
1O-9a shows the obtained probabilities of a correct response (p) for each item. The aver
age and skilled groups correctly answered 2.31 and 2.90 items, respectively. 

Even when data do not have DIF. one should n.ot expect the differences between the 
groups in p to be the same for all items because p and e are not linearly related. How
ever, if the items fit a 1 PL model so that they differ only in the discrimination (b) para
meters, differences in the normal deviates (<:) corresponding to these p values will be 
equal within sampling error. This is the basis of the delta plot method of detecting DIP. 
as described below. If the items fit a 2Pt model and thus also vary in slope (a), the 
largest difference will be found with the most discriminating item. The obtained group 
differences in z for each item are all approximately .35. For enmple, the p values 
were .76 and .85 for item I in the average and skilled groups. respectively. The corre
sponding values of <: were .7l and 1.04 for a difference of .33. 

A data set with DTF was then created. The data for items I to 4 were the same as 
above for both groups, as were the data for item 5 in the average group. However, item 
5's difficulty was reduced to .0 for the skilled group, making it considerably more 
probable that they would answer the item correctly. Their resulting increase in p to .62 
appears in Figure 1O-9b. The skilled group's average for the five items consequently 
increased to 3.32. The DIF is analogous to what was referred to as intercept bias in 
Chapters 3 and 9 because item 5's difficulty was manipulated. Items could have dif
fered in discrimination and produce a slope bias, but they did not in this case. 

Differential Alternative Functioning 

A particular form of DIF may arise on multiple-Choice tests when an incorrect alterna
tive (dlstractor) is disproportionately more attractive to one group than to another at a 
given attribute (8) level. For example, suppose a test of cognitive ability included the 
question "Which word is misspelled?" (a) technicolor, (b) trivial, (c) acedemic, and (d) 
modem." White males may have more exposure to computer-related concepts than 
others and be less likely to choose distractor d, which would make them miss the cor
rect alternative, c. Bock's nominal model provides the most detailed analysis. The 
principles underlying the evaluation of differential alternative functioning are basically 
the same as those involved in overall OtF. This is difficult to evaluate in small samples 
where Bock's model lacks power. 
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FIGURE 10-9 Correct response probabHltJes p for five items in an average group (mean a = 0) and in a skilled 
group (mean 9 = 1). (a) Data without OIF and (b) data wIth OIF (simulated data). 

IAT Approaches to Assessing DIF 

As in any area of statistics, there are issues of both description and inference to be 
considered. Rudner (1977) defined DIF as the area difference between the focal and 
reference groups' trace lines, symbolized A. Although an exact solution requires inte
gral calculus, Eq. 10-10 provides a satisfactory approximation: 

( F R)l A = .0051: Pe -Pi (10-10) 

where p(FI9) = focal group's trace line 
p(RIB) = the reference group's trace line 



420 PART 3: CONSTRUCTION OF MULTI·ITEM MEASURES 

The limits of Ilummation are from -4 to +4. An alternative is to sum the simple dif. 
ference instead of the squared di fference. This provides a signed measure, but its prac. 
tical value is limited when the trace lines cross, i.e., when one group is superior at low 
levels of a but the other group is superior at high levels. Linn, Levine, Hastings, and 
Wardrop 098l) developed a more complex weighted difference (cf. Levine, 1981' 
Levine, Wardrop. & Linn. 1982; Linn, Levine, Hastings, & Wardrop, 1981). For mor~ 
I'ecent technical discussion, see Raju (1988) and Rosenbaum (1987). Measures based 
upon group differences in the trace lines have the advantage of not ex.aggerating the 
differences that may arise if one simply looks at the item parameters. Recall from the 
earlier classroom test e:<ample that the 3PL trace lines looked very different from their 
lPL and 2PL counterparts yet made very similar predictions. If a IPL model fits rea. 
sonably well, the ordinary difference in difficulties (b values) describes the magnitUde 
ofDIF. 

Perhaps the simplest IRT inferential test for DIF is based upon the di.fference be· 
tween corresponding focal and reference group parameter estimates when the two 
groups are fit separately (Lord, 1977, 1980). For example, let bF and bR denote the dis
crimination estimates for a particular item in the focal and reference groups and as 
and a~ denote their associated standard errors. Equation 10-11 describes a test of th~ 
differe~ce. Technically, this is a t test since the estimated difference is divided by the 
estimated standard error of that difference, but because the error degrees of freedom is 
usually quite large, the statistic is approximately distributed as z when bF = bR' 

(10- U) 

Slope and guessing differences may be tested analogously by substituting corre· 
sponding pairs of a or c values and their associated standard errors. Unfortunately, this 
approach provides no overall test of differences between the lines: It operates on an 
item-by-item, and, in more complex models, parameter-by-parameter basis. Perfonn
ing this test for each item and parameter leads to the usual statistical problems of mak
ing multiple comparisons-the more comparisons you make, the more likely you wiU 
find evidence for DIF because of a type I error. Lord (1977, 1980) developed an om
nibus test that uses a measure of multivariate distance between sets of trace lines, but 
this ex.tension will not be considered here because it is difficult to implement. 

Thissen, Steinberg, and Gerrard's (1986) above example used Thissen, Steinberg, 
and Wainer's (1988) likelihood ratio approach bused upon the difference 0 1 between a 
model in which corresponding parameter estimates are constrained to group equality 
versus one in which they are free to vary. In general, first choose the appropriate 
model by ignoring groups; i.e., decide among a IPL, a 2PL, or perhaps another model. 
The chosen model (e.g., a 1PL) provides one 0 2 value and a set of parameter esti
mates. Nex.t. fit the same model to each group separately to obtain individual a2 val
ues and sets of parameter estimates for each group. The difference 0 2 is the first G2 

value minus the sum of the latter 0 2 values. Muthen and Lehman (1985) used this ap
proach with limited information, generalized least-squares estimation. Thissen et a1. 
(1988) suggest selecting items with known properties as anchors and constraining 
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them to equality between groups. Differences among the remaining or studied items 
are then evaluated to obtain a somewhat more powerful test. 

We fit the data in Fig. 10-9 without DIF to a 1PL model in which the b parameters 
for all five items were constrained to equality between the two groups versus a model 
in which the b parameters of items 1 to 4 were constrained to equality but the b para
meter for item 5 was allowed to vary. The difference 0 2 was a nonsignificant .9, with 1 
dlfar the data without DIP. The separate estimates of b for item 5 were 1.76 and 1.65 
far the average and skilled groups, respectively. The respective standard errors were 
.14 and .11. The .11 difference in b is therefore small compared to the standard errors 
(Eq. 10-11 provides a nonsignificant value of z = .67). In contrast, the difference G2 

value for the data with DIP was a highly significant 95.6, and the separate estimates of 
b were 1.82 and .06, with standard errors of .14 and .06. Lord's z statistic was a highly 
significant 11.55. 

Alternative IRT Approaches 

Thissen et al. (1991) note that DIF may be evaluated using log-linear analysis (Tjur, 
1982; Cressie & Holland, 1983; Thissen, Steinberg, & Mooney, 1989), a form of cate
gorical modeling (Bishop, Fienberg, & Holland, 1975; Wickens, 1989) which is de
scribed in Chapter 15, or by certain forms of item factor analysis (Mislevy, 1986; 
Muthen, 1988), discussed in Chapter 13. These approaches are widrin the broadly de
fined IRT tradition. Unfortunately, categorical modeling requires items to have equal 
discrimination (i.e., to fit a IPL model) and is therefore of limited applicability. 

Classical Approaches to Assessing OfF 

Although we have stressed IRT approaches to the study of DIF, classical psychometri
cians have also examined this issue. Indeed, there are many similarities between rn.T 
and classical approaches. Both recognize the importance of looking at perfonnance 
conditional upon the estimated magnitude of the attribute rather than unconditional 
data (some classical approaches use unconditional data). The major difference is that 
IRT conditionalizes on the hypothetical entity 6, whereas classical approaches condi
tionalize upon the observed (total) score or, sometimes, an external criterion (Angoff, 
1982). One problem with matching on the basis of observed scores is that their fallibil
ity may induce artifact Moreover, the elegant likelihood ratio-based model testing 
possible with IRT is not possible with classical approaches, although some inferential 
techniques are available which w~ will present later. 

The problem with describing DIF through classical methods is greatly simplified if 
it can be assumed that items are equally discriminating. We will show how differences 
in ability to discriminate (in effect, item reliabilities) may mimic DIF (Hunter & 
Schmidt, 1976). This is really no different from IRT because spurious evidence for 
DIF can arise from testing the wrong model, e.g, a IPL with items that require a 2FL. 
Equal discrimination is not necessary in rn.T since 2PL models can be contrasted with 
constrained and free parameters as well as IPL models. However, life is much simpler 
when a IPL fits the separate group data since there are fewer parameters to worry 
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about. and the individual tests wilt have more power in a population of fixed size. 
Moreover, although the assumption of equal discrimination appears to be strong, care. 
ful item selection often allows this assumption to be met satisfactorily. To be specific. 
we previously noted that the z-score differences between the p values for each item in 
Fig. 10-9 were each approximately .35 save for item 5 in the data with DIF. That dif. 
ference (l.5S) was disproportionately large. We know it reflects DIP because we know 
the data were generated to be equally discriminating, but the problem is that it can 
arise in other data from differences in discrimination. 

For example, suppose item 5 was nondiscrirninating (ril = 0) but did not have DIP. 
The proportion of subjects in both groups passing that item would equal the item's p 
value. The disparity would be zero even if the groups differed on the underlying at. 
tribute. On the otber hand, if the item discriminated perfectly, the disparity would 
equal the mean true score disparity. which would be larger than any disparity observed 
with more typical, fallible items. Conversely, a nondiscriminating item with DIF could 
produce the same disparity between groups as a discriminating item without DIF if the 
magnitude of DIF matched the disparity in the attribute. The difference would be that 
the item with DIP would be answered correcc1y by random subsamples of subjects in 
each group rather than those higher in the attribute. Moreover, the item could combine 
DIF and validity so that it produced a disparity of "appropriate" size and was discrimi
nating. though less so than other items. 

Delta plots are one way to evaluate DIP. Convert the ,-transformed p values fOr 
each item to delta values by the relationship 6. = 4z + 13 and plot the 6. values for the 
two groups against one another (Angoff & Ford, 1973), though the z scores themselves 
obviously tell the same story as 6. since the two quantities are linearly related. Note 
that this method uses unconditional data. Figure lO~lOa and to-lOb shows the respec
tive delta plots for the data without and with DIP. A regression analysis (or, preferably, 
a structural analysis as introduced in Chapter 4 since neither group's data is error~free) 
can provide more detailed results. The distance from the line of best fit to each item 
may be used to describe the amount and direction of DIF. A delta plot does assume 
equal item discrimination. 

It is better to see whether p values (or item means for multicategory items) are the 
same within observed (total) score levels for focal and reference groups, as this does 
not require equal discrimination. Table 10-4 lists the frequencies with which subjects 
in the average and skilled groups passed each item at each total-score level in the two 
data sets. (These are the same for the average group in both cases, and so their data are 
presented only once.) Note that the percentages of average and skilled individuals 
passing each item in the data without DIP are approximately equal (±10 percent) for 
each item at a given total-score level. Any disparity due simply to sampling error de
creases proportionately as sample size increases. Using total score to partial out the 
level of the attribute largely eliminated the overall disparities in the p values. Average 
subjects obviously answered fewer questions correctly, but there is no difference be
tween groups at any given total-score level; i.e., there is conditional independence. 

Now consider the data with DIF. There is a large disparity between groups for item 
5 at total score levels of 1 to 4. The total score did not panial out the disparity for this 
item. No disparity is possible at 0 items correct because aU these subjects bad to have 
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FIGURE 10-10 Delta plots tor the data In FIg. 10-9. (a) Cata without CIF and (b) data with CIF. 
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OVERALL FREQUENCIES (f) AND PERCENTAGES OF INDIVIDUALS PASSING EACH 
ITEM AS A FUNCTIONOF TOTAL SCORE (SIMULATED DATA) 

Item 
Total 

Group score f 1 2 3 4 5 

Average 1 113 66 17 12 4 1 
Skilled, without DIF 1 64 56 19 16 6 3 
Skilled, with OIF 1 49 47 24 8 0 20 
Average 2 103 82 67 33 16 3 
Skilled, without DIF 2 121 88 63 25 20 3 
Skilled, with OIF 2 72 83 33 28 19 36 
Average 3 121 93 93 80 29 5 
Skilled, without OIF 3 117 97 96 79 22 7 
Skilled, with OIF 3 101 87 87 48 27 51 
Average 4 82 98 100 98 88 17 
Skilled, without OIF 4 130 98 100 98 85 18 
Skilled, with DIF 4 117 98 99 92 38 72 

Note: There were 52 In the average group, 30 in the skilled group without OIF, and 22 In the skilled subjects 
with OIF whose total score was 0 therefore missed all live items. Conversely, 29 In the average group, 66 in the 
skilled group without OIF, and 139 in the skilled group with OIF had a total score of 5 and therefore answered all 
live items correctly. 

missed the item, and no disparity is possible at 5 items correct because all subjects had 
to have gotten the item correct, by definition. 

Note that item 4 is apparently biased against the ski.lled group at a total score level 
of 4 since only 38 percent of these subjects answered the item correctly versus. 88 per
cent of the average subjects. This illustrates one problem with using total score, which 
includes the response to item 4. Item 4 is the most difficult item for the skilled sub
jects, though not for the average subjects. Consequently, most skilled subjects with a 
score of 4 missed this particular item. This problem would be minimized somewhat by 
eliminating a given item from the total against which it is conditionalized, as in com
puting item-total correlations. It will not be eliminated, however, since DfF affects the 
rank orderings of the p values. Consequently, even when one can detect DIP, it is not 
simple to locate the offending item. 

Jensen (1980) suggested dividing subjects randomly into "pseudogroups" indepen
dently of whether they are in the focal or reference group. Evidence for DIP in the 
pseudo groups simply reflects sampling error. Such data could then be compared to that 
obtained from real groups. Jensen's procedure belongs to a growing class of tech
niques for estimating measurement error in the absence of well-defined statistical theo
ry by random sampling from a data base. Efron's bootstrap (Efron & Gong, 1983) pro
cedure and Edgington's (1969; also see Noreen, 1989) randomization procedure are 
similar procedures. 

Both Scheuneman (1979) and Camilli (1979) have proposed "X: tests for data of the 
form of Table lO-4. LetJi denote the frequency with which a member of group i passes 
a given item at a given total score level (e.g., 1 = average and 2 = skilled) or the re
verse, nj denote the number in that group, and pj denote the probability of responding 
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correctly = j;1n.i' Now let p denote the overall proportion of people pussi ng the item at 
that total-score interval. This is the total number of people passing that item divided by 
the total number of people at that level, i.e., ifl + f2)/(nl + n:J (a second subscript de
noting the score level is implicit in all cases). Equation 10-12 defines Scheuneman's 
statistic: 

(IO-12) 

where summation proceeds over both Score levels and groups. 
Likewise, Eq. to-13 defines Camilli's statistic: 

(10-13) 

Summation proceeds over categories but not groups since this is reflected by the 
expression (PI - p,i. Omit tota! scores ofD from tbe summation in Scheuneman's sta
tistic and omit both D and perfect scores from Camilli's statistic since their presence 
would cause the denominator to be undefined. One problem is that scores on long tests 
need to be grouped to avoid small cell frequencies. This makes the outcomes some
what ambiguous because the results depend upon how one forms the categories (Iron
son, 1982). 

Both measures are based upon group differences in p at each observed score level. 
Scheuneman's statistic lIses the squared difference between each p and tbeir mean, 
whereas Camilli's squares the difference between the two p values. They are closely 
related algebraically but not identical. The most crucial difference is that Scheune
man's formula divides by a mean, whereas Camilli's divides by a variance. Scheune
man (1979) originally suggested that the inferential decisions be based upon k - 1 de
rrrees of freedom, where k is the number of categories, but Baker (1981) and others 
(. ~l:~n.ged the inferential standing of the measure. Camilli's statistic is tested with k 
dt .) ..... of freedom and has a sounder inferential basis . 

. : euneman's statistic will be illustrated using the data with DIP for item 1. Table 
10-4. -.dicates that 113 average subjects and 49 skilled subjects achieved a total SCOre of 
1. Of these, 7S average and 23 skilled subjects passed the items, and so Pi = .66 and .47 
and P. = (75 + 23)/(113 + 49) = .60. The result ofEq. 10-12 at this level is [75 - (.605) 
(113)]2/(.605)(113) + [23 - (.605)(49)] = .65 + L.49 = 2.14. The comparable sums for the 
remaining totals are .01, .24, and .00. Consequently X: is a nonsignificant 2.39 with 3 df 

Camilli's statistic is [n.I n2(P I - P2f/[(n, + n2)p.(t - p)] = [(113)(49)(.66 -
A7)2]/[(1l3 + 49)(.6)(4)] = 5.40 at a total score of l. The results for the other observed 
scores are .09, 2.52, and .13 for a total X2 of 8.14, which is nonsigificant with 4 df. 

Table 10-5 lists the values of both statistics in both data sets. The data without DIF 
are correctly identified as such in all cases. Both indices are very large for the item 
containing OlF (5), but they are also modestly large for the other items. This further il
lustrates the problem of specifying which item has DIP when it affects the classical 
observed score. 
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TABLE 10-5 VALUES OF SCHEUNEMAN'S "1.2 AND CAMILLI'S "1.2 FOR FIVE HYPOTHETICAL ITEMS 
WITHOUT AND WITH DIF 

Content Bias 

Items without DIF Items with DIF 

Item Scheuneman Camilli Scheuneman Camilli 

1 .99 4.93 2.39 B.14 
2 .24 1.45 10.27" 23.10" 
3 1.49 2.29 10.05" 29.60"" 
4 2.42 3.32 22.17-- 50.82" 
5 1.64 1.69 122.30" 173.87'"' 

One variant on the above is to employ the sign of each discrepancy. A given com
ponent of the "1.2 will be positive if PI is greater than P2 and negative if P I is less than 
Pz. The result, however, will clearly not have a "l distribution. Several studies have 
compared the various classical and IRT indices. such as !ronson and Subkoviak 
(l979). In general. these indices do not correlate highly with one another. However. 
most item parameter differences are small. Consequently lack of correlation may be 
simply due to range restriction. To the extent that this is true. it is difficult to specify 
DIF in real applications. These do not exhaust the many approaches to DIF. Two that 
space does not permit us to consider are Holland and Thayer's (1988) use of the 
Mantel-Haenszel procedure, a fonn of chi-square. and Domns and Kulick's (1986) 
standardization procedure. 

As noted in the previous chapter. standardized tests are often criticized for being bi
ased because reference group members have had more exposure to the content than 
focal group members. Jensen (1980) is a basic reference to the data we will consider. 
We have delayed discussion of that point until we could survey empirical methods. 
Three issues need to be distinguished. 

The first of these is that some items are biased and others are not, which impUes ac
ceptance of the concept of standardized testing with suitable items. The above proce
dures can be used to address hypotheses on the subject. The common finding is that 
items presumed to have the most differential exposure typically do Tlot produce the 
greatest focal group deficit; these deficits are far more likely to arise on more abstract 
"culturally fair" items. Perhaps the major factor is the phenomenal role played by the 
mass media in exposing a diversity of individuals to common elements-vastly more 
people can recognize a Mercedes than are ever likely to own one. Obviously, one 
could choose vocabulary and other items for which there is differential exposure, e.g., 
perhaps by asking the general population to define the critical point on an F distribu
tion for a = .05 with 3 and 40 rJf. It is probably true that more whites have gotten far 
enough in statistics to answer that question than members of other groups. However. 
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the proportions will likely be so smull in all groups that the item will never meet inclu
sion criteria in a well designed ability test (it would, of course, be quite suitable for a 
statistics achievement test, which is another story). The major point, though, is tha[ 
procedures which allow this to be tested, which include the test construction criteria 
cited in earlier chapters, overwhelmingly tend to falsify the proposition. 

There is a contrasting position which deals with disparities due to the overall test
ing process. Assume that the reference group consists of English speakers and the 
focal group consists of native French speakers. If the test content is predominantly 
verbal, the items on a test written in English might well appear to be fair in the sense 
of not showing DIF-items that are relatively easy for English speakers might also be 
relatively easy for French speakers even though the English speakers would consis
tently do better. The superiority of the English speakers could, of course, be reversed 
by using a test written in French, but this test could also be fair in the sense that differ
ences in item difficulties between groups are relatively consistent. 

It is doubtful that many people would be silly enough now to conduct such a study, 
but some data purportedly demonstrating the "inferiority" of immigrant groups in the 
early part of this century contained this blatant artifact (the "genetic" differences pro
posed to account for this were truly miraculous since they disappeared as soon as the 
immigrants~ offspring had the chance to learn English). It is difficult to imagine any
one with the skill to conduct a research study who is ignorant of differences in lan
guage per se. However, certain overall differences certainly can and do exist with re
gard to such factors as test sophistication even within a language group, particularly as 
regards practice with multiple-choice tests and, perhaps ironically, the material found 
on a culturally fair test. These differences may also affect employment and educational 
criteria used in predictive validity. This empirical question goes well beyond the scope 
of this book, but it is important to keep in mind the wisdom of the term "differential 
item functioning" as opposed to "bias." The relative neutrality of the concept of DIP 
allows one to recognize that group differences may arise from artifact yet be consis
tent. In other words, a test may be fair by statistical criteria yet reflect artifactual over
all differences. 

The third issue relates back to the definition of fairness in terms of group equality 
(see Chapter 9), but this time the issue involves individual items rather than Whole 
scores. It deals with attempts to mandate the "Golden rule," named after the Golden 
Rule Insurance Company. This company sued the State of Illinois over the ex.amina
tion they required to sell insurance because black applicants tended to do badly. The 
suit was settled in 1984 when the Educational Testing Service (ETS), who developed 
the test, agreed to changes that would increase the black pass rate. This basically in
volved choosing items that showed the least racial disparity. ETS later called the set
tlement "an error in judgment" (see Haney & Reidy, 1987, for a discussion), and the 
American Psychological Association's Committee on Psychological Tests and Assess
ments (1988) condemned the item selection procedure. One major effect of the settle
ment is for the test and tests constnlcted under the Golden rule to employ relatively 
easy items. It is quite likely that items which are content-valid and perhaps even high
ly important to the field would be eliminated. Similarly, it seems quite likely that the 
procedure might eliminate the most highly discriminating items. 
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TAILORED TESTS AND COMPUTERIZED ADAPTIVE TESTING 

We previously mentioned giving individuals a test where subjects receive different 
items. This is unlike conventional testing where all subjects receive all items. When 
this is done according to some plan. the result is known as a "tailored" or "adaptive" 
test. If. in addition, testing is under computer control, the tailored test is called a Com
puterized adaptive test (CAT). A CAT can be administered on even tpe least expensive 
personal computers now available, but such accessories as light pens and a hard disk 
are useful-the more rapidly the computer responds. the easier it is to sustain the test 
taker's motivation. The limited exposure and consequent fear that people once had of 
computers is disappearing, though probably not equally in aU groups. Multiple-choice 
items can be used, but they introduce the complication of guessing. Short-answer 
items avoid this problem, using text processors to handle incidental problems like ty
pographical errors. From a technologlcal standpoint, CAT is quite feasible at (relative
ly) little expense in testing small groups, and so it is not as esoteric as it seemed a 
decade ago. Tailored testing may be approached from a classical perspective, but near
ly all recent developments have come from the IRT perspective. Wainer (1990) pro
vides a comprehensive coUection of recent papers on the topic. Hulin et al. (1983) pro
vide an excellent summary, but much of the material they cite consists of technical 
reports that are difficult to access. Developing a tailored test is a highly complex. pro
cedure requiring the expertise of a specialist, but it is not difficult to present the infor
mation needed to make the nonspecialist an effective "consumer." 

Conventional tests employ many items that generate little information. especially 
foc subjects at the extremes of the attribute. Very able students are asked too many 
easy, time-wasting questions. Even worse, low ability students are asked too many dif
ficult questions that may enhance any lack of self-confidence they may have. Tailored 
tests, in general, attempt to maximize the number of informative questions. That is, ig
noring guessing for the moment, the selected items are intended to have p values that 
are near .5 for the test taker so that they are at the most appropriate difficulty leveL 
Tailored tests can be thought of as extending the concept of equidiscriminating testing 
considered in Chapter 8 in a very significant way. Abler students are asked relatively 
difficult items, and less able students are asked easier items. In principle, even though 
an individual is asked fewer questions than under conventional test administration, es
timates should be at least as stable under tailored testing, if not more so. 

Tailored testing is itself not new. If you have ever administered an individual intel
ligence test, you are familiar with the use of vocabulary items to get an approximate 
idea of the subject's intelligence. This information is then used .to select the difficulty 
level of items on the remainder of the test. It would be obviously too time-consuming 
to ask the subject every quescion on the full test, e.g., to ask a normal adolescent ques
tions that the average four-year old could answer. This use of a short test to determine 
items to be selected from a longer test is common to many forms of tailored testing. 

Tailored testing is often but not necessarily a two-stage process. The first stage is a 
brief routing test. equivalent to the vocabulary test, that is used to direct a measure
mem test, equivalent to the rest of the individual intelligence test. However, tailored 
testing is possible without a routing test. 
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Tailored Testing and Psychophysical Thresholds 

Chapter 2 introduced the important concept of a threshold in psychophysics and its ap
plicability to psychometrics. In psychophysics, the basic idea is to· find a scimuius en
ergy that is reported as being sensed half the time, e.g., to find a sound pressure level 
that is reported as being heard 50 percent of the time. Figure 2-2a portrayed the results 
as an ogival psychometric function relating the magnitude of the stimulus to the proba
bility of responding that it was sensed. We noted at a later point in that chapter that the 
psychometric function and the trace line portray the same basic data. The paint at 
which the psychometric function crosses the 50 percent point on the ordinate is the 
threshold, which is the difficulty (threshold) parameter (b) of IRT. Likewise, the slope 
of the psychometric function is the discrimination parameter (a). The major difference 
noted was that the abscissa in psychophysics was observable (cP, which was weight). 
whereas the abscissa in IRT is hypothetical (9). 

In that example. the threshold was close to 200 grams, the magnitude of the stan
dard, which it need not always be. The important point is that the subject hardly ever 
said that the 18S-gram weight was heavier than the standard or that the 215-gram 
weight was lighter than the standard. The slope of the psychometric function is fiat at 
these points because these points are uninfonnative about the threshold. These two 
points contribute one-third of the total number of trials and therefore one-third of the 
time required to obtain the threshold. Although we could have simply excluded these 
points from the experiment for this particular subject. we could not know this in ad~ 
vance. Had the subject's threshold been located somewhere else, these points might 
have been informative. 

Considerable time can be saved using some form of the staircase method. Imagine 
selecting a magnitude (Xl) for comparison at some point along the continuum. Al
though it does not matter a great deal where Xl is relative to the threshold, some time 
will be saved if the two are near one another. The subject responds as above, e.g., by 
pressing keys corresponding to the responses "yes" and "no" if the process is con
trolled by a computer. The basic algorithm is quite simple. 

1 If the subject responds yes, decrease the stimulus magnitude by amount k. 
2 If the subject responds no, increase the stimulus magnitude by k. 

Assume that Xl is below the subject's threshold. This leads to a sequence of "no" 
responses and corresponding increments in the magnitude of the stimulus. However, 
once the threshold is crossed, the subject responds yes and a downward sequence be
gins which is probably shorter than the first sequence. As soon as the stimulus falls 
below threshold, a third sequence of ascending magnitude begins. If allowed to contin
ue indefinitely, ascending and descending sequences will alternate. However, the 
process need not continue indefinitely. A stopping rule, such as "SlOP at the fifth oscil
lation," can be adopted. Also, the magnitude of the change (k) can be decreased along 
the line to allow for a more precise determination; e.g., each time the subject reverses, 
k can be reduced by some fraction such as 20 percent. The name "staircase" describes 
a "walk" up and down stairs of unknown height, in effect, and the process is used to 
determine the location of the middle "step." Data of this form can be used to construct 
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a psychometric function that is just like that in Figure 2-2a. The major difference is 
that each trial involves a comparison stimulus that is generally closer to the threshold 
than a trial in the method of constant stimuli. Because each staircase trial is more in
formative, being nearer the threshold, fewer trials wi11 be needed to estimate the psy
chometric function than in the method of constant stimuli. 

Applying the Staircase Principle to Psychometrics 

Aexllevel Tests 

In psychophysics, it is quite easy to select stimulus magnitudes in both the convention
al method of constant stimuli and the tailored staircase method. quite literally, the 
"turn of a dial" provides a desired stimulus of repeatable magnimde. Unfonunately, 
this cannot be accomplished exactly with ordinary test items. The CAT process nor
mally begins with a nonned conventional test. Nonning provides a pool of items of 
known threshold and discrimination. The more discriminating the items, the more effi
cient tailored testing will be compared to conventional methods. In short, the develop
er cannot simply take a piece of equipment off of a shelf and dial to select items; items 
must be developed with even more care than in an ordinary test, although some meth
ods are more demanding than others. 

Lord's (1971, 1980) fiexilevel test illustrates a simple way to accomplish tailored test
ing without using a computer. The test requires an odd number of items, say 81, that 
are arranged in order of difficulty [or the population as a whole. Item 1 is the easiest, 
item 81 is the bardest, and item 41 is of median difficulty. Subjects begin at the median 
item and score their own responses. They proceed forward to a more difficult item if 
they are correct 'and backward to an easier item if they are incorrect, i.e., to items 42 
and 40, respectively. If they get the first item correct and thereby proceed to item 42, 
they (1) attempt item 43 if they were correct a second time or (2) proceed back to item 
40 if they were incorrect. Conversely, if they get the first item incorrect and thereby 
proceed to item 40, they (1) next attempt item 42, the item they would have attempted 
jf they had gotten the first item correct, if the response to item 40 was correct or (2) pro
ceed down to item 39 if incorrect. The process continues until half the number of items 
on the test have been attempted. The score for a subject who answers the last item cor
rectly is the item's serial position in the test, and the score for a subject who answers 
the last item incorrectly is the serial position of the last correctly answered item plus 
.5. (In the unlikely event that the items formed a Guttman scale, the test could be 
stopped when an incorrect response followed a correct response, or vice versa.) 

One problem with this method is that subjects may not foUow the directions cor
rectly. However, computer administration can overcome this problem. Another prob
lem is that the method is less efficient than other tailored testing methods since the 
items asked in later stages are not necessarily near threshold. The method is relatively 
robust and requires relatively little normative data since it does aot employ complex 
IRT estimation. All one basically needs is to trust the stability of the rank orderings of 
the item's p values. 
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More Complex Forms of Tailored Testing 

The forms of tailored testing that are most similar to the staircase method of psy
chophysics are knOWJl as branching methods and normally require a computer. 

1 In "up-and-down branching," each change in difficulty (increase following a cor
rect response or decrease following an incorrect response) is of constant magnitude 
(k). Assuming an IRT metric with k = .2, the first item would have a difficulty level 
near the group average (b = 0 and so p = .5). The second item would have a b of +.2 if 
the first item was answered correctly, and the third item would have a b of +.4 if the 
first two items were answered correctly. However, if the subject missed the firSt item, 
the item second item would have a b of -.2, etc. 

2 In "H-L branching," the increases and decreases are of different but fixed magni
tudes, and so items might become .2 units easier following an incorrect response but 
only .1 unit more difficult following a correct response. 

3 In "shrinking-step (Robbins-Monro) branching," changes in difficulty become 
progressively smaller. For example, items might be presented with steps of.4 until the 
first reversal (error following a string of correct responses or the converse), at which 
point the step size would decrease to .2. For example, a subject who gets the first fOUT 

items correct but misses the fifth will have been presented with items of difficulty b == 
D, .4, .8, 1.2, and 1. 

Shrinking-step branching theoretically provides the best ability estimates but is the 
most difficult to implement (Lord, 1970). 

Choosing the first item presents 11 problem since there is no information about e at 
this point. The usual assumption is that the subject is of average ability (9 == 0). How
ever, tailored testing would not work very well if the eventual outcome was heavily 
dependent upon this initial estimate. Computer simulations (Lord, 1917) suggest that 
the final estimate of e is relatively independent of the starting item. In addition, alter
native methods need not lead to radically different item selections in a pool of fixed 
size since the same item is often chosen by different methods. After the first item. 
there are three common methods of determining working estimates of e on successive 
trials. 

1 The simplest approach is to choose the item whGse b is nearest the working esti
mate of e. This may select items that are too difficult if guessing plays a major role, 
but Birnbaum (1968) developed a correction for guessing (also see Hulin et a1., 1983; 
Lord,1980). 

2 Maximum information item selection chooses the item that has the most expect
ed information using Eq. 10-6 and the estimated 9. 

3 Bayesian methods (Chapter 4) incorporate what is known about the population 
distribution of a by choosing items with the largest product of (a) item information 
and (b) the prior probability of e in the population. This prior probability is simply a 
weighting factor which is omitted in the maximum information method. Bayesian 
methods attempt to produce the maximum reductio!l in uncertainty about e (Owen, 
1975; Jensema 1974, 1977). 



432 PART 3: CONSTRUCTION OF MULTI·ITEM MEASURES 

After the subject has responded, the new estimate of e is used to choose the next 
item. 

Tn addition to the rules governing item selection and branching, stopping rules are 
also obviously needed. One issue is the number of items. Simulated data presented in 
Hulin et al. (l983) suggest that the standard error decreases approximately linearly 
with the number of items. The simplest rule for deciding when to stop is to present a 
constant number of items. However, this produces wide differences among subjects in 
the stability of their e estimates. An alternative is to compute the standard error (or, 
equivalently, its reciprocal, the test information) and stop testing when a criterion is 
reached. In all these methods, the computer records the items passed and failed and 
can estimate a as described earlier in the chapter even though no two subjects may re
spond to the same items. This application most clearly illustrates the utility of IRT. 

Perspectives on Tailored Tests 

Tailored testing is moving out of its highly experimental phase because computer tech
nology is gerong cheaper and IRT is becoming easier to use. Some (Urry, 1977; Lord, 
1980; Wainer, 1990) suggest that it will replace conventional testing. Nonetheless, it 
still exists largely as potentiality. There are several major reasons why the death of 
conventional testing is not imminent. 

1 Tailored testing may not be justifiable or even possible in many areas. Develop.. 
ment demands require material that is relatively stable over time and large normative 
samples. Much testing is in the classroom where textbooks in large-enrollment courses 
are now revised every 4 years and lectures are hopefully updated even more frequent
ly. Given the diverse ways in which most courses are taught, it is difficult to pool data 
across instructors, let alone institutions. The problems are more severe in advanced 
classes since normative groups are much smaller. 

2 Legal challenges are quite likely to arise in employment and, to a less likely ex
tent, education. People fired or not hired may well claim discrimination because they 
were asked different questions than successful individuals. Although using different 
questions makes perfectly good psychometric sense, it is difficult to explain IRT's 
logic or, equally important, to show that the data have met its assumptions to a judge 
or jury. They may not be convinced that the complainants probably would not have an
swered the more difficult items correctly because they could not answer simpler ones. 

3 The cost of tailored testing is still appreciable compared to that for traditional 
testing. A class of 200 individuals is not unusually large. Obviously, no one would ex
pect 200 computers to be provided, but whatever the number involved, the cost would 
exceed that for traditional reproduction and scoring. 

4 Since students can be tested conventionally in one setting, the time factor is also 
not significant. 

5 Classical testing. while inefficient, does not require the e:<tensive norming tai
lored tests do. 

6 Classical testing is also robust. A long traditional test is not affected by even sev
eral poor items. 
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7 Even though the number of individuals who do not have even minimal computer 
literacy is diminishing, it is still far from zero and is likely to remain so given the de. 
creases in funding of education. Many individuals with limited computer experience in 
general have extensive experience with playing games on computers, but the relation 
of this experience to educational testing is unclear. 

At the same time, tailored testing can be quite feasible in countless circumstances. 
For example, large numbers of people may apply for jobs involving the same skills or 
cognitive abilities in large companies. It may be quite feasible to use a small number 
of computers, which may even serve other roles. The time saved can be used to broad· 
en testing or to allow more people to be tested in greater depth. 

COMMENTARY ON IAT 

One must consider both IRT's present state of implementation and its large possibility 
for improvement, especially in the efficiency of numerical estimation, to make a prop
er evaluation. These improvements will allow more sophisticated models to be applied 
to data bases obtainable by the average investigator. 

1 There are certainly many who are skeptical about various features of IRT and 
many others who ignore it. An increasing number of individuals are "friends" in the 
sense of being supportive and are often contributors to the growing literature in such 
sources as psychometrika and Applied Psychological Measurement. However, there 
are very few sophisticated "enemies" in Bekesy's (1960) sense-individuals with suf· 
ficient motivation and an ability to detect problems that a friend would overlook. 

2 Too many users of IRT (or other) programs like MULTILOG probably treat 
them as "black boxes" and accept their output on faith. However, they must know the 
details of the solution and the meanings of the various options to prevent "garbage 
in-garbage out" analyses. In contrast, output from a classical psychometric analysis is 
relatively easy to understand. 

3 The step between the theory of estimation, especially that applicable to hypo
thetical large samples, and the reality of actual data is not trivial. Actual use of IRT 
may strain its assumptions, though not necessarily fatally. 

4 One of IRT's strongest points is its emphasis upon choosing items with a spread 
of difficulties in order to discriminate acroSs levels of e. As noted previously, Lord 
(1952b) pointed out how a peaked test maximizes reliability. This led many, especially 
those who were unaware of the small magnitudes of difference, to seek to maximize 
coefficient a by choosing items of similar difficulty. Existing tests were often criti
cized unfairly andlor new tests were often made too hard for less able students and too 
easy for able ones. IRT stresses maximizing the test information, a different criterion 
which encourages spreading item difficulties. 

5 IRT's greatest potential lies in nonstandard testing situations like tailored test· 
ing or when repeated testings of the same individual are needed. However, this does 
not mean that classical methods, such as the construction of parallel forms, are inap
plicable. Indeed, more data, perhaps in the form of computer simulations, are needed 
to delineate circumstances where IRT estimates might be unstable. 
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6 IRTs utility is much more limited if the goal is to scale individuals with a COm_ 

mon ~et of items in a single testing like ordinary classroom examinations. Despite the 
curvilinear relation between e and ordinary total score, their ordinary PM correlation 
will be extremely high and both will correlate to about the same degree with criteria. 

7 Although there are theoretical advantages to a and b as measures of discrimina_ 
tion and difficulty instead of their classical counterparts, 'It and p. the practical advan
tages are much less. An instructor who finds that a given question was answered by 60 
percent of the cJass knows that p would be higher in a more able class and lower in a 
less able class. The question of "how much" is rare. Moreover. the instructor is proba
bly most interested in comparing items within a class to see which points were made 
effectively and which were not, and p is satisfactory to this end. 

S rRT has considerable to offer in evaluating differential item functioning (DlF), 
a topic of both social and academic concern. 

9 Potential users of IRT need to be aware of which assumptions are likely to 
work broadly and which may not. Despite the theoretical importance of such develop
ments as nonparametric models (Mokken, L971; Mokken & Lewis, 1982), there is lit
tle reason to worry about logistic, cumulative normal, or other possible trace line 
shapes because real data are likely to be so noisy as to preclude convincing empirical 
selection. This detail can probably be safely left to mathematical convenience. Indeed, 
it seems possible to construct a workable model with three-segment linear trace lines, 
though this possibility has not been pursued (see Stevens, Morgan. & Volkmann 
(1941), however, for a related situation where linear functions fit at least as well as 
ogives]. 

10 On the other hand, existing IRT models assume trace lines have right asymp
totes of 1 so that subjects at high levels of e never make false negative responses. 
Clearly, they do, even jf through carelessness, which Lord (1980) clearly recognized. 
Consequently, all estimates of e are probablY multidimensional because of variations 
in carefulness. Likewise, only three-parameter models allow the left asymptote to 
begin above 0 and thus allow false positives among the low~e subjects. Unfortunately, 
we have seen how difficult estimation is in a three-parameter model. It would probably 
be nex.t to impossible in a four-parameter model with samples of realistic size. 

11 The demands for large normative bases in more sophisticated models limit most 
users to models that offer the least relative to classical psychometrics. Recall that 
number correct is a sufficient estimator of e in a one-parameter model if all people an
swer all Hems. This is also true in a practical sense of two-parameter models since 
weighted and unweighted sums usually correlate very highly. 

12 ~RT strongly favors short tests of extremely high homogeneity, in contrast to 
classical psychometrics. Consider the development of a symptom-oriented scale of a 
condition like depression. The scale will probably include items on sleep disturbances, 
sudden enhancement of reUgious tendencies, etc. An IRT analysis might indicate that 
these form separate scales. Unfortunately, the user may not be interested in assessing 
attributes defined that narrowly. Chapter 8 considered the important role of method
ological heterogeneity. 

13 Bock and Lieberman (1970; cf. Bock & Aitken, 1981) introduced multidimen
sional IRT models which are implemented in Mislevy and Bock's (l986) BILOG and 
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Muthen's LrSCOMP (1988) programs. It is not clear how practicable it is to test 
multidimensional models in normal-sized samples because of the added number of 
parameters. Moreover, it is also not clear how informative the results would be. Con
sider a scale fit initially to a one-parameter, one-dimensional model. A two-parameter, 
one-dimensional model or a one-parameter, two-dimensional model with the same 
number of parameters might fit better. What could be concluded about dimensionali
ty if both improvements were similar in magnirude? 

14 Like many procedures that have recently become popular, IRT model testing 
stresses statistical inference. Sophisticated users will recognize tbe limited utility of 
adding parameters based upon a marginally significant reduction in G2 in a large sam
ple. However, not all users are that sophisticated. Descriptive measures are important 
to put significance tests in proper context (Bentler & Bonnett, 1980). 

15 IRT can offer much to experimental psychology, particular perception and 
memory, by affording a better metric for what are commonly termed strength models. 
For example, students of memory since Ebbinghaus (see Crowder (1976) for a discus
sion of his work] have been aware that words at the beginning. and end of a list are 
easier to learn than words in the middle, the serial-position effect. Some argue that 
items at extreme positions have "stronger memory traces," although there are alterna
tive explanations. Many have attempted to quantify this 'celationship in tenns of p. 
Such models should take into account the nonlinear nature of the scale. IRT could well 
be used to scale stimuli in terms of a rather than p. 

ACHIEVEMENT TESTS FOR MASTERY LEARNING 

Mastery learning appears in two distinct but related contexts in psychometrics (Lord. 
1980, chapter 11). 

1 Deciding whether a person is a "master" or a "nonmaster, It e.g., should be re
tained or not retained on a job based upon test scores. This is a traditional problem of 
binary classification which has been discussed most extensively in psychophysics. The 
issue involves determining one's ability to discriminate between pairs (usually) of 
stimuli that differ in a subtle manner (see Chapter 15). 
. 2 Training aU or most people to an acceptable level of performance. According to 
one view, one would then not discriminate once the material had been masteced, e.g., 
law school graduates are attorneys once they pass the bar examination, no matter how 
many times they take it. An alternative view is to use trials to criterion rather than 
score on a one-shot testing as a basis for subsequent classification. 

The former view was generally popular as a philosophy of education in the 1970s. 
Many stressed skill acquisition rather than evaluation. Part of the movement has be
come mainstream in the interim oc was accepted even before that time. Recent de
mands for educational accountability have renewed interest in measuring competency 
in basic skills in the public schools. At the same time, there is probably more emphasis 
on evaluation (grades) now as opposed to then because of admission to professional 
schools, etc. Although a test designed for mastery can employ lRT principles. work 
has come from both classical and modem sources. 
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Mastery learning has been most extensively stressed in education (e,g., reuding and 
mathematics), but it applies to all types of training programs (e,g" psychotherapy out
come), Quite apart from social philosophy, trials to critedon has t1 long history in labo
ratory research on learning and memory. Although mastery learning is traditional in 
one sense, it is also a recent development and thus a part of this chapter even if it is 
"recent" in a somewhat different sense than lRT. The main points of this section apply 
to both classically developed and IRT-based tests. 

Nature of Mastery Learning 

Test Construction 

A common coronary of using mastery learning to train people to an acceptable level of 
performance is the idea of giving individuals additional training and practice until a 
specified revel of mastery learning is reached if their performance is unsatisfactory. 
The term "mastery learning" thus becomes somewhat of a misnomer in that the usual 
goal is to produce a satisfactory performance rather than true mastery (outstanding 
perfonnance). A problem that is incidental to our discussion but important in practice 
is the strong tendency to change the definition of "mastery" rather than the individual 
when the educational process is costly. 

Mastery learning-what it means, how it should be appUed, which subject matters 
are suitable, if any, practicability of the goals, anel problems of measuring results-is 
still controversial. Cronbach (1990) is a good source on these philosophical issues and 
the related topic of criterion referencing or tying mastery to the ability to perform spe
cific behaviors. OUf purpose is therefore limited to psychometric rather than philo
sophic issues. These measurement issues can be illustrated with simple arithmetic 
skills which might involve a gr-ade school child's understanding of long division, in
cluding "carrying," use of decimals, and backward multiplication to check division. 
These are subgoals in an overall mastery of arithmetic at that level. The teacher in
tends for all students to demonstrate these skills, and students continue to receive prac
tice until they all clearly showed a mastery of the concepts. Tests. including alternative 
forms, are easily developed for these simple skills. 

Mastery learning is basically a problem in achievement testing which is usually 
content-validated (see Chapters 3 and 8). That is, the test is constructed by rational ap
peal to the appropriateness of the content rather than el{perimentation or statistical re
sults as in predictive Dr construct validation. 

It may seem puzzling that there will be no test score variance in the ideal situation 
where all people master the material tei the point of getting perfect scores and little 
variance in any real situation where people eventually perform at a high Level. Conse
quently, the meas~re will not cocrelate with alternative forms or ex.ternal criteria, and 
internal-consistency measures like coefficient Ct. will approach zero. One should not be 
puzzled-tests constructed in terms of content validity need not be internally consis
tent or predictive. Moreover, this situation almost never occurs because (t) mastery 
learning is applicable to only certain types of subject matters, (2) abler students wiU 
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outperform less able students even after mastery learning to provide at least some vari
ance unless there is an artificial ceiling on test performance, and (3) mastery learning 
is frequently defined in a partly normative ~ense rather than purely in terms of instruc
tional goals regarding particular skills. Furthermore, trials to criterion can have predic
tive validity, as quick learners on one task are typically quick learners on related tasks. 

For these reasons, one may obtain large, reliable individual differences in mastery 
learning tests even with the best instructional efforts. There is nothing wrong with at
tempting mastery learning in any situation, and the appropriateness of the instruments 
is minimally dependent on empirical evidence and statistical results. At the same time, 
there is also nothing wrong with ex.amining the variance actually obtained from 
achievement tests for that purpose to study internal-consistency reliability and predic
tive validity as incidental properties of the measure. 

Definition of "Mastery" 

Mastery is not defined unequivocally in most situations, as any instructor who has had 
to defend a grading system to a student can attest. Mastery is typically defined in at. 
least partly normative terms. This is most obviously true for nearly all types of speed
ed abilities. For example, the success of most athletes depends llpon their foot speed, 
but many slow runners have a compensating skill and many fast runners do nothing 
else well. Foot speed is only probabilistically related to success. In the classroom situ
ation, there i.s an irreducible component that must be Left to the discretion of the in
structor or, at the least, of a grouP. of instructors. 

A colleague told the first author about one form of mastery learning in a course in 
introductory psychology. The colleague gave three hour-long tests plus a final exami
nation dUring the semester. All tests used four-alternative multiple-choice items. Mas
tery was defined as 80 percent correct based upon prior ex.perience with the material. 
Consequently, any student who reached this level was given at least a C grade in the 
course. Higher grade levels were given B's and A:s depending upon the instructor's 
judgment. Students falling below the 80 percent criterion were allowed additional 
study and could be retested up to five times per examination with alternative forms. 
The instructor reported that most students improved upon retestings to reach the mas
tery criterion, so that nearly all students received at least a C in the course. This situa
tion is typical of mastery learning-the standards depend partly on the judgment of the 
instructor's definition of acceptable levels of performance and partly on nonnative data 
from previous uses of general-purpose tests. We neither approve nor disapprove of the 
above grading practice, but we will make some suggestions about appropriate methods 
of test construction when mastery learning depends partly on normative standards. 

1 The original normative information may come from well-standardized general
purpose achievement tests developed by experts or less formal classroom tests con
structed by one instructor. However, these tests must possess good content vali.dity. 

2 Auxiliary information (see Chapter 8) from the item analysis (the p and r\t values 
for each item) may also be helpful in helping improve discrimination at the point 
defining mastery, e.g., 80 percent correct. 
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3 If item-total correlations are not available. the test can be slanted toward the dif
ficulty level that is most discriminating at the mastery level. 

The basic idea is that the test should be highly peaked because one is interested 
only in discriminating at the mastery point. 

Whereas the logic for measuring mastery learning is reasonably clear. there are defi
nite practical problems in carrying out that logic because mastery learning inherently 
requires much more performance assessment than conventional "one-shot" testing. 
This was obviously the case above where the instructor allowed students to be retested 
up to 20 times (five fonos on four testing occasions). which entails a great deal of ef
fort. Because of course revisions, the tests had to be updated continually. The sheer 
difficulties of scheduling. grading. and providing feedback to students required addi
tional effort. Students may be happier when their grades run higher. as they often do in 
such courses, but it is often difficult to document that they have learned more. 

One must assess performance levels continually in order to properly monitor in
struction in testing for mastery learning of simple elementary school skills. This might 
require many brief tests to ensure that most students have mastered each subgoal of 
the overall unit of instruction. For the fotegoing reasons, careful assessment obviously 
requires (1) considerable effort on the part of teachers to measure progress adequately. 
(2) "canned" testing materials for use by teachers, and/or (3) tailored testing such as 
CAT, discussed above. 

Item response theory (IRT) employs the concept of a trace line as introduced in Chap
ter 2 which relates ability (9) to the probability of a designated response. Estimating e 
in turn commonly requires the subject's pattern of responses rather than simply the 
number answered in the keyed direction. Four arguments made by proponents of IRT 
for its importance are the following. 

1 It provides test-free measurement: People or the same person on different occa
sions can be meaningfully compared even though they answer different items. 

2 Under fairly plausible assumptions, individuals who get the same number of an
swers correct can be shown to differ in underiying skill (9). 

3 Again under fairly plausible assumptions, number correct and a are not linearly 
related. 

4 IRT provides better estimates of item difficulty and discrimination than the clas
sical measures, proportion correct (p), and item-total product-moment correlation (riJ. 
The mT measures are statistically independent; the classical measures have built-in 
dependencies. 

Conditional (local) independence is a basic assumption for IRT models. It states 
that responses to the various items become independent once a Is controlled even 
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though they should be highly related if e is ignored. Most IRT CUITent models aSRume 
that the trace line is a logistic ogive (alternative models assuming the nOlmal ogive 
make the same fundamental predictions but are more mathematically cumbersome). 
Following standard practice, the location of this function, also called the threshold or 
intercept, is symbolized b, and the slope is denoted o. The b and a parameters, respec
tively, describe the difficulty and discrimination of the item. The simplest IRT model 
is associated with Rasch (1960) and assumes that items vary in difficulty but have the 
same ability to discriminate, and so the b terms vary across items but there is a single 
a tenn. This is called the one-parameter logistic (lPL) modeL The trace lines therefore 
have the same slope but (possibly) different locations. Two special cases are the paral
lel (equivalence) model in which the items are also equallY diffi~ult and the Guttman 
scale on which the items are infinitely discriminating (a = 00). 

Estimating the parameters of an IRT model such as the lPL is usually complex and 
iterative (open form). Each pattern of correct and incorrect responses provides a series 
of trace lines. At any point along the ability (9) axis, the joint probability of the pattern 
can be obtained as the product of the individual probabilities, a consequence of condi
tional independence. This joint probability is the probability of the pattern for a given 
9. The maximum value (mode) of the function relating this joint probability to 9 is the 
maximum likelihood estimate and a common best estimate. An alternative is the aver~ 
age value or ex.pected a posteriori estimate. The parameter estimates (b and perhaps 9) 
are basic outcomes, as are the standard errors of estimate. 'The overall fit of the model 
~ay be tested by means of a maximum likelihood chi-square (G2) in very large sam~ 
pIes. Hierarchical testing of nested models is also imponant (see Chapter 4) and ap
plicable to smaller samples as well as larger ones. Assuming a IPL model is appropri
ate, one may compare a model in which values of b are all allowed to vary versus a 
model in which some or all are constrained to equality or, perhaps less likely, are as~ 
signed specified values. In particular, comparing a general IPL model with one in 
which the b values are constrained to equality tests for parallelism. The difference in 
G2 (difference G2) tests the significance of the reduction in fit produced by the con
straint(s). If it is large, the constraint is unreasonable; if it is small, the constraint is 
reasonable. The IPL has several important properties. The rank ordering of item diffi~ 
cuI ties is the same for all values of 9 because the trace lines are parallel. The converse 
is also true; the rank ordering of abilities is the same regardless of the item difficulties. 
Although the scale for number correct differs from the scale for 9, number correct is a 
sufficient estimator of ability; the two measures bear a oae~to-one relationship; sub
jects with the same number correct will obtain the same estimated e. 

In a two~pararneter logistic (2PL) model, item discriminations (0) may vary as well 
as the difficulties. Lord's pm'adoK arises in 2PL and more complex models-because 
the trace lines cross, a relatively discriminating item may be more di,ffi.cult than a less 
discriminating item for someone of low ability but easier for someone of high ability. 
Both 1PL and 2PL models allow fairly simple parameter estimation. In a 2PL model, 
two subjects with the same number correct may achieve different values of e as the es
timated ability is related to both the number of items answered correctly and their dif
ficulty. However, a weighted linear combination of correct answers using the biserial 
item-total correlation as the weight is sufficient to estimate ability. Hierarchical testing 
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is also applicable to the 2PL and more complex models. as ooe can fit a 2PL and then 
constrain all values of a to equality. If the difference in G2 is small. a l PL can be 
adopted. 

A three-parameter logistic (3PL) model incorporates guessing, as would aCCount 
for performance on multiple~choice tests. The role of each item in estimating e de~ 
pends upon its item infonnation which is a function of the acceleration or rate of 
change in the slope of the trace line. The greater the item information, the larger the 
role played by the item for that subject. Assuming conditional independence. the test 
information is the sum of the item informations. The relative efficiency of one test rel
ative to another is the ratio of their test information functions. Because three parame
ters are needed per item, a 3PL is difficuLt to apply to any but extremely large samples 
wi.thout constraints, such as fixing the guessing parameters at 11K, where K is the num
ber of alternatives. 

Additional models were then discussed. Ex.amples were presented of Bock's norni~ 
nal model and Samejima's model for graded (ordinal) responses. Bock's model allows 
one to study changes in individual response alternatives on a multiple-choice test as a 
function of ability, and Samejima's allows one to study analogous changes for each re
sponse category on a Likert scale. Unfortunately, both are rarely used because of they 
require very large dara bases. In contrast to preceding models that aU assumed a partic~ 
ular (usually logistic) shape for the trace line, Mokken (1971; Mokken & Lewi.s, 1982) 
present a non parametric approach. Items are said to be doubly monotonic when they 
are (1) all monotonically increasing and (2) do not cross. Data that fit a IPL, including 
Guttman scales, fulfill Mokken's criterion, but the converse is not necessary. Ability 
can be estimated as the number of items the subject dominates by having at least a .5 
probability of answering correctly. Other models were cited to illustrate the range of 
situations to which IRT has been applied. The application to nonstandard testing situa~ 
tions where subjects do not necessarily answer a common pool of items was discussed. 
The section ended with a consideration of some of the various differences among IRT 
algorittlms. 

The next topic considered was differential item functioning (DIF), which occurs 
when trace lines differ among groups. Items may be more difficult, discriminating, or 
more likely to be guessed by chance, holding e constant. It is an item~by-group inrer~ 
action in the ANOVA sense. DIF is preferable to item bias as a term since one does 
not necessarily know which items are responsible for the difference when DIF arises, 
and DIF may be present when the term "bias" is in applicable. Two examples were 
presented. One Is based upon real data (Thissen, Steinberg, & Gerrard, 1986), and the 
other is simulated. 

Differential alternative functioning is an extension of DIP and refers to group dif
ferences in choice of response alternatives on a multiple-choice test, again twiding 9 
constant. Some variants on IRT approaches to DIP were discussed. One common pro~ 
cedure is to compute the difference in trace line area. One highly recommended infer~ 
ential test is to compare the 0 2 values for a model in which the item parameters vary 
freely among groups versus being constrained to equality. Procedures based upon clas
sical approaches are then noted. These generally involve comparing the correct re~ 
sponse probabilities among groups cooditional upon ability defined in terms of ob~ 
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rained scores rather than inferred ability (9). A delta plot is another method in which 
p values are converted to ?; scores which in turn are transformed to ~ ::: 4;:: + 13 for 
historic reasons. The resulting values for the various items obtained from the focal and 
reference groups are then plotted against one another. Deviations from linearity imply 
DIF. In general, it is more difficult to detect group differences in disclimination thun 
differences in ability. Two X2 tests developed by Scheuneman (1979) and Cami Iii 
(1979) were then presented. The section ended with a consideration of the popular 
tenn "content bias." We stress that one should look for group differences empirically 
and not simply assume them by inspecting content: Many empirical studies have 
shown that focal groups often do relatively better on presumed biased items than on 
fair items. 

Tailored tests present different items to different individuals. One particular fonn of 
tailored test is the computerized adaptive test (CAT) in which a computer algorithm 
chooses items based upon the subjects previous responses. Conventional tests ask too' 
many easy questions of high-ability subjects and, worse, difficult ql;1estions of low
ability subjects, which may affect their self-confidence adversely. A tailored test "ften 
begins with a routing test to provide a preliminary estimate of 9. This then directs the 
actual measurement test. The idea is the analog of a psychophysical threshold in the 
sense of locating items with a 50 percent chance of being answered correctly. One par
ticularly useful approach to finding the threshold is the staircase method: When the 
subject perceives the stimulus in a psychophysical situation (responds correctly to a 
test item), the next stimulus (item) is made more intense (difficult) and, conversely, 
when the subject fails to perceive the stimulus (responds incorrectly). Finally, stopping 
rules, perhaps based upon a constant number of items or a criterial standard error of 8, 
terminate the process. 

The simplest way to estimate a threshold for test items is Lord's tlelCilevel test, which 
uses an odd number of items that are ranked in order of increasing difficulty. Subjects 
begin with the median item and move forward to a more difficult item when correct and 
backward to an easier item when incorrect. Subjects answer half the number of items on 
the test. The score is the serial position of the last item attempted for someone who an
swers it correctly and the serial position of the last item correctly answered plus .5 for 
someone who misses the last item. More complex forms of tailored testing use bmnching 
methods. The change in difficulty (an increase or decrease depending upon the correct
ness of the response) may be (1) a constant (up-and-down branching), (2) greater in one 
direction than another (H-L branching), or (3) of progressively smaller magnitude 
(shrinking-step or Robbins-Munro branching). Tentative estimates of e are achieved in 
several ways. The simplest chooses an item whose difficulty is nearest the working esti
mate; alternative methods choose the item that has the largest item information at that 
point (maximum information item selection) or the product of the item information and 
prior probability (Bayesian selection). 

It has been suggested that tailored testing may replace conventional testing. How
ever, there are several reasons why this is not likely to be the case. The greater devel
opmental costs, the need for constant revision of test material, and possible legal chal
lenges are but a few reasons. Traditional testing's much greater simplicity cannot be 
ignored, especiaUy among subjects with limited computer experience. 
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We then put IRT in a broader perspective. The large number of advances have 
clearly been felt, but the enthusiasm of its proponents needs to be tempered by 
the need for more critical evaluation of such factors as the greater simplicity of the 
classical test model and its sufficiency in the vast majority of applications. Sample 
sizes required for some of the more complex and most interesting IRT models are be
yond the availability of most potential users. More efficient algorithms, requiring 
fewer subjects, may change this. One of IRT's strongest points (which also applies to 
classical testing) is its emphasis upon chOOSing items with a range of difficulties rather 
than maximizing internal consistency reliability.lRT cle!lI'ly can be used to address is
sues such as DIP better than classical methods. However, One should be cautious about 
the tendency of IRT-based tests to be too short and overly narrow with regard to sam. 
pling methods. Some proponents of IRT have also exaggerated the role of statistical 
inference as opposed to description. We suggest that someone who is not well versed 
in psychometric-theory begin by constructing a test classically. A test that is good by 
classical standards will probably fit a suitable IRT model, and aU the IRT in the world 
will not save a bad test. 

The final section of the chapter dealt with achievement tests for mastery learning. 
Lord (1980) has noted two meanings of the term: (1) deciding whether someone who 
has met a criterion for mastery or not and (2) training people to reach a suitable level 
of proficiency. Recent trends in education, most specifically the need for accountabili
ty. have reawakened interest in mastery learning. One main issue is what constitutes 
mastery. In practice, it often means satisfactory rather than outstanding performance 
(true mastery). Recent trends have stressed criterion rllferencmg--defining mastery in 
terms of the ability to perform specific behaviors. Specific test construction usually in
volves content validation. Moreover, tests producing uniformly high levels of perfor
mance might range-restrict individual differences and thus reduce internal consistency. 
In practice, this is not likely to be the case since the test is unlikely to eliminate all in
dividual differences. The test is likely to require a normative definition of mastery. 
Careful selection of content is especially important. Item analysis is useful in selecting 
items of proper difficulty. A test designed for mastery learning should be peaked at the 
desired level of proficiency. Practical problems must be handled. Specifically. suitable 
items need to be generated, either as alternative forms or. perhaps. as an item pool for 
CAT, and performance standards need to be monitored. 
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PART FOUR 
FACTOR ANALYSIS 

Much of ps¥,=hometric theory is concerned with properties of linear combinations
the general linear model. Factor analysis is one application of this general linear 
model, as is mllltiple regression. Because of its importance and complexity, three 
cbaptets are devoted to it. The first chapter describes the factor analytic model in gen
eral in both algebraic and geometric terms. The chapter also considers how one may 
reduce most of the infonnation contained in a large series of measures to a smaller 
number of variables (variance condensation). The next chapter concerns additional as
pects of this process of exploring the structure of relations amopg a series of variables. 
The final chap" in this part deals with how one may test hypotheses about the organi
zation of factors, which is known as conlirmatory factor analysis. 
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CHAPTER OVERVIEW 

FACTOR ANALYSIS I: 
THE GENERAL MODEL 

AND VARIANCE 
CONDENSATION 

Regardless of whether a set of items has been developed into a scale by classical or
modem procedures, the ultimate worth of that scale or any other measure is defined by 
its relations to other variables, as noted in Chapter 3. Factor analysis describes a broad 
category of approaches to determining the structure of relations among measures. 
Among other applications, it may be used to determine 

1 Groupings or clusterings of variables 
2 Which variables belong to which group and how strongly they belong 
3 How many dimensions are needed to explain the relations among the variables 
4 A frame of reference (coordinate axes) to describe the relations among the vari

ables more conveniently 
5 Scores of individuals on such groupings (considered in the next chapter). 

In all cases, the variables are defined as combinations of entities known as factors. 
However, combinations appear in three contexts: (1) as what BoDen and Lennox 
(1991) call "effect indicators," where observable variables are regarded as outcomes 
of an underlying latent variable; (2) as components, w.here variables are s:in1ply traos
formed to other variables for convenience; and (3) as what Bollen and Lennox (1991) 
call "causal indicators," where the latent variable is regarded as the outcome of the ob
servables. Common factor ~ysis is an example of the use of effect indicators. Also, 
some applicatioos are exploratory in that the factors are defined to meet such mathe
matical objectives as maximizing the variance accounted for, but others are confirma
tory in that the factors describe proposed substantive properties. Factor analysis is not 
one simple, statistical method that can quickly be described and exemplified with a 
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few equations. Consequently three chapters are devoted to it. One key assumption w. 
will make in this chapter and the next is that the variables are continuous. In particUl: 
we will limit discussion to scale-level factoring until Chapter 13, at which point w~ 
will consider item-level factoring (factoring of categorical variables). 

We. first consider factor analysis as a general method of inquiry in an attempt to 
minimize some of the misuses that have occurred in the past. The key to a successful 
factor analysis is careful choice of variables ~nd, to a somewhat lesser ex.tent, subjects 
to ensure that all variables of interest correlate highly with other variables. One impor_ 
tant strategy is to include marker variables whose properties are known. If each vari
able correlates highly with at least one other variable or if there are a large enough 
number of variables, most of the technical differences among methods of factOring, 
such as the difference between common factor analysis and component analysis, dis
appear because the various methods will produce very similar results. 

This section introduces factor analysis as a general method of decomposing the 
variance of a measure into one or more common factors reHecting what variables share 
plus additional unique factors which normally describe variance in a measure that can
not be shared with other variables. Variables are expressed as weighted linear combi
nations of factors where the weightings are termed pattern elements. The component 
model is a special case of the general model that ignores unique factors. Although fac
tor analysis is defined in terms of individual measures, computations are actually per
formed upon measures of relationship, which are usually, but not necessarily, correla
tions, and we compare the results of uSin& different forms of rel.ationships. The key 
concept of the correlation between a variable and a factor (structure element) and the 
important distinction between uncorrelated (orthogonal) versuS correlated (oblique) 
factors are presented. We then show how factor analysis may be viewed both alge
braically and geometrically. The unique variance is then broken down into two parts
measurement error (unreliability) and specific variance which is systematic but not 
shared with other variables in the analysis. This leads to a distinction between other 
types of factors, such as a general factor which relates to all variables and a group fac
tor which relates to some, but not all, variables. 

Exploratory factor analysis usually involves two stages. The first or direct solution 
condenses the variance shared among the variables and typicaHy defines the number of 
factors. As initial factors are typically difficult to interpret, a second stage of rotation 
then makes the final result more interpretable. This chapter is limited to variance coo
densation (direct solutions, which are nearly always uncorrelated) in exploratory 
analyses. 

Three approaches to condensation are discussed: (1) defining a factor's content in 
advance, e.g., as the sum of the variables in the analysis (centroid analysis); (2) maxi
mizing a property of the sample data, e.g., by accounting for the most possible vari
ance (principal component and principal axis analysis); and (3) estimating population 
parameters, e.g., choosing the most probable outcome given the data (maximum likeli
hood analysis). Additional ways to condense data are also discussed briefly. 

We then present several rules for determining the number of factors to be retained 
for rotation from an initial solution. Part of the discussion is intended to show that one 
rule, the number of principal components whose eigenvalues exceed 1.0, may be very 
misleading even though it is the most popular default rule in computer packages. 
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Finally, we consider causal indicators. Many of the features required of causal indi
cators are less applicable, or different requirements arise in developing causal indica
tors. 

USES OF FACTOR ANALYSIS 

Factors as Groupings of Variables 

Despite the diversity of what may be called factor analysis, there is one unifying prin
ciple to be kept in mind: factors (called composites, constructs, dimensions, indices, or 
axes depending upon the context) reflect combinations of observable variables (also 
called measures, tests, indicators, or simply observables). If everything to be known 
about anxiety could be summarized by a single observable measure (XI)' there would 
be no need to have the two classes of terms; the need for factor analysis arises because 
no single physical measure suffices. 

Linear combinations are used in three different ways in tbe literature. Bollen and 
Lennox (1991) contrast two of these. but the third has at least equal significance. 

1 "Effect indicators" are linear combinations in which the observables are the re
sults (effects, outcomes) of the factor. The observables are dependent variables, and the 
factor is an independent variable as in the discussion of regression theory in Chapter 5 
(Bollen and Lennox do not imply a temporal relation in the sense of cause preceding the 
effect). As in any regression model. the factor, as an independent variable. is assumed to 
be error-free, but the observables contain error. A subject who does well on a test that is 
a good measure of the factor of verbal fluency does so as a consequence of being verbal
ly fluent or because of luck; doing well on the test does not cause the individual to be
come verbally fluent. The factor is also broader in meaning than any of its fallible ob
servables in that it is not completely defined by them individually or in combination. 

2 "Components" are simply linear combinations of observables and therefore ob
servables in their own right. If XI and X2 are two measures, their SUIll, X3 = XI + X2, 

and difference. X4 = XI - X:h are one possible pair of components (there are an infinity 
of others and they need not equal the number of variables). Although the equations de
scribe XI and X2 as dependent variables, they can be rewritten so that the two observ
abies become dependent variables with no loss of meaning, e.g., XI = 112(XJ + X4). 

Neither pair of variables contains any meaning that the other does not; knowing One 
pair implies knowing the other through a simple transformation, and if only one term 
in a given pair is unknown, the other pair is indeterminate. The transformation is 

. largely made for convenience. For example, the sum and difference scores based upon 
a pretest and a posttest may be more useful in describing overall perfonnance and 
learning. Bollen and Lennox. (1991) do not discuss the component model. 

3 "Causal indicators" are linear combinations in which the factor depends upon the 
observables. The factor thus becomes the criterion in a regression analysis sense. 
Bollen and Lennox (1991) use socioeconomic status as an example. People have high 
socioeconomic status because they are wealthy anellor well-educated; they do not be
come wealthy or well-educated because they are of high socioeconomic starus. Al
though their model identifies error solely with the factor, the fact that me observables 
(predictors in this case) can be observables implies mat they may also contain error. 
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Most conceptions of factors in psychological research imply the first or secone! 
meaning, and so aU but the last section of this chapter will be concerned with effect in~ 
dicators. Moreover, we will see that viewing observables as effects of factors Or as' 
components leads to similar numeric outcomes in most well-designed studies. 

Exploratory and Confirmatory Analysis 

To illustrate another way in which factor analyses differ, suppose that Prof. Adamik: 
believes that a series of measures all involve some fonn of reasoning ability but does 
not propose any more precise organization. This investigator is concerned with discov_ 
ering factors by ex.ploration. On the other hand, assume that Prof. Brown proposes two 
major types of anxiety: (1) anxiety OVer possible physical harm and (2) anxiety Over 
social embarrassment. Each proposed type of anxiety is measured by three tests which 
have distinct content but are assumed to share a common core. The hypothesis propos. 
es two anxiety-related factors which factor analysis can confirm or elisconfinn. If the 
average correlation of tests within each of the two sets was high both in an absolute 
sense and relative to the average correlation of tests between the two sets, the hypothe. 
sis would be supported even if the correlation between sets was not zero. Prof. Brown 
may use factor analysis to confirm or disconfirm the hypotheses about anxiety, and the 
specific methods should be somewhat different from Prof. Adamik's. 

Prof. Adamik raised more of an open question about the number and kinds of fac. 
tors derivable from a collection of variable~, which leads to exploratory factor analy
sis. In contrast, Prof. Brown illustrated how a factor analysis may begin from a hy. 
pothesis stated before the data are gathered. A propel' evaluation would involve 
confirmatory factor analysis. However, this distinction is a continuum rather than a 
sharp dichotomy. Some hypotheses are even more well developed than Prof. Brown's. 
For example,' the hypothesis might involve parallelism-each test within the two sets 
is proposed to measure the respective attribute equally and contain the same propor
tion of error. Nlost investigations are somewhat more confirmatory than Prof. 
Adamik's and more exploratory than Prof. Brown's. Investigators usuaUy have hunch
es, perhaps implicitly, about at least some of the underlying factors, but these may not 
be completely fum. Moreover, the results of any study may force initial hypotheses to 
be modified; e.g., one of the anxiety measures might be found to measure both pro
posed types of anxiety. However, the extremes of this continuum of confirmatory ver
sus exploratory analysis are important to keep in mind. Totally exploratory analyses, 
in which there is no theoretical rationale for even having selected the variables, should 
be undertaken with extreme caution, if at all. Second, most factoring methods are 
clearly applicable to one or the other need, but not to both. 

From another point of view, an ex.ploratory analysis defines factors in the purely 
mathematical terms of best fit, typically "most variance accounted for," and eventually 
leads to factors which the investigator then interprets. It tends to be stepwise (data
driven) rather than direct (theory-driven). The analysis first condenses the variables 
into a relatively small number of initial (original) factors based upon the chosen statis
tical criterion. These initial factors are usually difficult to interpret; the goal is to ex
plain the most variance (or related property) with the smallest number of factors. For 
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example, five factors might explain 80 percent of the variance among 20 tests. This 
suggests that these factors described the relations among the initial 20 variables weI!. 
After condensation, the factors are usually transfonned by rotation. A rotated factor is 
simply a linear combination of the initial factors. 'The rotated factors will ex.plain ex.~ 
actly the same total variance as the initial factors even though the variables will relate 
to the rotated factors differently than they relate to the initial factors. Rotated factors 
divide up the variance more usefully. 

In contrast, factors are defined directly in a confirmatory analysis. The intent is to 
have the factors incorporate the properties that have been hypothesized and then deter
mine how well these fit the data. The properties that are tested include, but are not lim
ited to, the number of factors and their contents of each factor-which variables be~ 
long to which factors. For example, six measures of introversion might be 
hypothesized to be explained by one factor. The hypothesis thus proposes one factor to 
which all measures belong. Using criteria to be described, this might or might not ex
plain the data well. 

The past 20 years have seen impressive developments in confirmatory factor analy
sis, even though some useful procedures are rather old. Testing reasonably explicit hy
potheses offers many obvious advantages, but many previous investigators were un
willing to formulate hypotheses, did not trust their hypotheses, had so many variables 
that they could not anticipate their end result, or felt factor analysis could "magically" 
organize their data for them without their having to' think, which it cannot. They often 
started with a large collection of "interesting" measures and let the results say what 
factors were present. Even worse, many studies were conducted simply because the 
data were there. Contemporary factor analysis is much more strongly confirmatory. 
Both authors view this as a generally healthy trend because it forces investigators to 
think about the organization of their data ahead of time and allows them to incorporate 
the very reasons they selected the variables. Of course, not every contribution to a 
rapidly developing area turns out to be useful, and more than a little of the contempo
rary confirmatory factor analysis literature is bogged down in details of using comput~ 
er packages rather than interesting substantive findings. The remainder of this chapter 
will be concerned with condensing variance in el<.ploratory factor analysis, which in
cludes deciding how many factors to retain for rotation. 

Factor Analysis and Scientific Generalization 

In general. relating variables to underlying groupings, testing for groupings, or discov~ 
ering groupings can involve anything from a broad, essentially atheoretical, data
driven search to testing a highly developed theory. Different forms of factor analysis 
are well suited to these diverse needs. Articles about factor analysis appear in such 
sources as Psychological Bulletin, Multivariate BehavioraL Research, Applied Psycho
logical Measurement, and Educational and Psychological Meosllfement with great 
regularity. Any book on quantitative methods will contain at least one chapter on fac~ 
tor analysis (see Suggested Additional Readings). We recommend Gorsuch (1983) and 
Harman (1976). 'The fonner explains relevant principles well; the latter excels at out
lining computations. 
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Although they are usually wedded in practice, one must distinguish between factor 
analysis as a set of concept" and factor analysis as u set of abstract mathematical pro
cedures. Various the01;es of human ability and personality characteristics relate to fac
tor analytic concepts without explicitly employing the associated mathematical tech
niques. For example. many aptitude test batteries have been constructed to measure a 
number of underlying factors, but the tests themselves were not formally developed 
from factor analysis. 

Prof. Adamik verges closely toward the misapplication of applying factor analysis 
without any rationale, but the element of theory inherent in limiting the study to ability 
measures is an important consideration. Obviously, other procedures, such as stepwise 
mUltiple regression (which rivals if not surpasses factor analysis as the most misused 
multivariate procedure) can be criticized in similar ways. However, it should become 
clear why factor analysis is so often misused. The conceptual and mathematical mod~ 
els are both carefully thought out and interwoven in better factor analysis investiga
tions. How to do this will be discussed at numerOus points. 

Because of the well-developed, elegant, highly complex methods of factor analysis 
that already exist. some have stressed the mathematics of factor analysis at the ex
pense of empirical research. This can lead to the "tail wagging the dog." The experi~ 
menter should ask, "How much will this help my research program?" in judging the 
utility of any approach such as factor analysis., M~Y",mathematical iss~es in the'litera~ 
ture on factor analysis (or other areas) concern poth vital and inconsequential topics 
from an empirical perspective. It is all to easy to subvert an important empirical prob
lem by unnecessarily complex mathematics. Sometimes. very complex mathematical 
methods are required for the scientific problem at hand. However, most situations 
allow much simpler, direct, and practicable approaches. 

We hope to show in the pages ahead that the basic ideas and principles underlying 
factor analysis are easy to understand. When particular problems are encountered that 
require specialized mathematical methods, the reader will have to do what nearly all 
psychometricians have done-go to the detailed accounts listed in the Suggested Ad-
ditional Readings or to other referenced sources. . 

Factor analysis is a natural outgrowth of all topics that have been discussed so far 
in this book, specifically (1) the basic logic of measuring individual variables (test 
construction), (2) the statistical characteristics of individual variables. (3) the reliabili
ty and validity of individual variables, and (4) the relations among variables as mani
fest in the correlation of sums, mUltiple correlation and regression, and other multi
variate measures of relationship. For example, both multiple correlation and factor 
analysis relate a linear combination of variables to a criterion. The difference is that in 
multiple regression the predictors and criterion are distinct entities, but in factor analy
sis the predictors (factors) are at least partially defined by the criteria (variables) .. 

Factor analysis is a basic tool faT explicating constructs-Chapter 3 noted that a 
major aspect of this e:<.plication is to determine the extent hypothesized measures of a 
construct measure the same thing versus break up into clusters of variables that mea
sure different things. Another aspect is to study the statistical structure of a set of vari
ables that measure a given construct and sets of other variables that presumably mea
sure different constructs. Chapter 3 also illustrated experiments to determine whether 
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presumed measures of a construct meet theoretical expectations. Although factor 
analysis is usually concerned with individual differences, it haS also been used to 
study processes common to a group of people (Watson & TeUegen. 1985). 

Applied psychometric research usually stresses groupings of measures rather than 
individual measures. For example, subrests used in achievement test batteries for the 
primary grades are commonly named reading comprehension, mathematical skills, 
language usage, etc. These names imply that the individual differences generalize be
yond the chosen sub tests. Thus, if it is proper to name a particular sub test "reading 
comprehension," that subtest should correlate substantially with other measures given 
the same or similar names. It should thus possess "convergent validity" in Campbell 
and Fiske's (1959) terminology and also relate strongly to a factor in an actual factor 
analysis. This discussion should make it clear that factor analytic concepts and meth
ods are intimately related to scientific generalization. Hypotheses about factors can" 
cern the extent to which results go beyond specific variables given the same name. 
Such hypotheses require confirmation even if the initial hypotheses are rather vague, 
and so the specific analyses are exploratory. It js vital to ascertain the extent to which 
groups of variables go together empiricallY so that they can be given the same name. 

We have thus far stressed the use of factor analysis to identify groups of variables 
and thereby define various constructs. However, such analyses of internal strUcture are 
only a prelude to more extensive investigations of the extemal correlates of these con
structs, which may also involve a factor analytic design. Factor analysis is useful only 
to the extent that it aids in the development of prinCiples of human behavior, and the 
best methods of analysis aid most in the search. 

Variable and Subject Selection 

We cannot emphasize the importance of the selected variables enough. Factor analysis 
never has and never will succeed in finding a magical structure of any generality in an 
ill-defined set of variables. The following criteria for defining variables used in an 
analysis were adapted from Gorsuch (1988). 

1 The more variables in the set that a given variable correlates with and the higher 
the general level of correlation, the better. In general, the higher the level of intercorre
lation, the easier it is to determine patterning of correlations, which is the general goal 
of factor analysis. 

2 Variables should be reliable. Chapters 6 and 7 considered the problem of attenu
ation due to unreliability. Attenuation affects measures of relationship like r, which we 
will show are basic to factor solutions. However, we have also seen that simple unreli
ability does not have the extreme effects upon measures like r as much as many feel it 
does. Consequently, this point is subsidiary to point 1. 

3 The analysis should contain variables with known properties called marker vari
ables. Quite often an investigator may be confronted with a largely unknown set of 
variables. In order to make sense out of these variables, include others which have 
been thoroughly studied. This will make the knowledge gained by the analysis cumu
lative with respect to prior analyses. 
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4 Large sample sizes should be used to ensure that groupings are not simply ef
fects of sampling error. 

Gorsuch (1988) also properly notes the interaction between the nature of the vari
ables chosen and factor analytic procedures appropriate to that situation. This particu
larly applies to rotation, considered in the next chapter. 

The more observations there are relative to the number of variables, the better. We 
will downplay inferential testing because most major aspects of the data turn out to be 
significant; e.g., it is rare that all the correlations in a matrix can be assumed to be 
zerO. [nferential criteria used to define factors tend to provide too many rather than too 
few. However, one should take advantage of the increasing availability of statistical 
tests for cases that may tum out to be exceptional. Statistical significance is necessary, 
but it is not sufficient. 

The composition of the sample is also important. Suppose a series of measures that 
have previously been found to reflect equal amounts of verbal and quantitative abili
ties in a general population are administered to a sample that is range-restricted on one 
of these dimensions. Someone who is inexperienced in factor analysis may easily con
clude that the tests measure different factors in this second population, which is proba
bly not the case. Similarly, if the sample is more-or-less homogeneous, correlation 
magnitudes will be affected. Arbitrary use of criteria to define the number of factors, 
especially computer defaults, can easily lead one astray. £n fact. studies which apply a 
previously studied set of variables to a new population are really not exploratory, and 
the investigator should cODsider the methods described in Chapter L3. 

It is very important to understand the meanings of some key terms and watch carefully 
how such terms are used in the literature. A slight change in terminology may make a 
very large difference in meaning. There are also some inconsistencies, especially in 
notation. Editors of the more empirically oriented journals often pennit authors to em
ploy terms loosely if not incorrectly. Some of the most important issues are as follows 
(others of somewhat lesser importance will be described later). We hope that succeed
ing generations of behavioral scientists do a much better job than the present one has 
in discussing the theory and results of factor analysis and in using its deh vocabulary. 

Begin by assuming a data matrix of the form described in Fig. 2-1. Following COQ

vention, we will define this by a boldface X. The rows of X describe different subjects, 
and the columns describe different variables. Again following convention that the row 
SUbscript precedes the column subscript, Xlj describes a particular score on the ith sub
ject andjth variable (measure), and so XlI is the score of subject 2 on measure XI' In 
general, X with two subscripts denotes an observation on a particular subject, and X 
with a single subscript denotes a variable (XI)' "Subject" can refer to any class of ob
jects on which measurements are made, and so it may denote insects, vegetables, 
countries, rocks, or rivers as well as humans. Likewise, "variable" can refer to any 
quantifiable attribute, as has been the case throughout this textbook, so that it might be 
a standardized test, perfocrnance on a memory cask, an autonomic response, etc. It is 
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very important that there be a score for each subject on each measure and that the data 
matrix be much "taller" than it is "wide" (have more 5ubjects than measures), but there 
are exceptions to both these points. The section on holes in the matrix. in Chapter 2 ap"
plies to factor analysis, and the end of Chapter 12 will consider some alternative factor 
analytic designs where there may be more measures than people. 

In addition, assume that (1) the number of observations is large relative to the 
number of variables and (2) no variable entered into the model is a linear function of 
the other variables. In particular, do not include the sum or average or a series of 
measures aleng with the individual measures. Both introduce spurious dependencies 
into the results, but methods for handling situation 1 will be considered in the next 
chapter. These basically involve reversing the roles of subje~ts and variables in the 
analysis. 

The General Factor Model 

Earlier in this chapter, we contrasted three types of linear combinations. What Bollen 
and Lennox (1991) called effect indicators, because the observed variables are effects 
of the factors, are historically called common factors. Because a factor is viewed as 
broader in meaning than any specific variable, common factor analysis separates the 
variance that each variable can contribute to factors, called common variance, from 
tbe variance that is u;nique in itself. Unique variance is not, however, simply measure
ment error, as we wi'll note in a later section of this chapter. In contrast, components 
are simply linear combinations of observables and therefore observables in their own 
right. All variance is considered systematic in a component model. An alternative way 
of saying this is that component models estimate the unique variance to be .0 for every 
variable. 

Both models estimate the observed variable (10) as a weighted combination of fac
tors (Fp). For example, Prof. Adamik's tests might be representable as a combination 
of a reasoning factor (Fu and a verbal fluency factor (Fa). Some of this investigator's 
tests might be primarily a measure of FI ; others might be primarily a measure of F[l; 
still others might be nearly equal combinations of both, and the remainder may be un
related to the two factors. The variance of each variable is analyzed into portions at-
tributable to each factor. . 

Perhaps ironically, certain common factor algorithms produce unstable solutions 
when variables have little unique variance because they are highly intercorrelated, but 
high intercorrelations are highly desirable in component analysis. Proponents of com
mon factor and component approaches disagree with one another strongly. However, 
as we hope to show, the two approaches will lead to very similar substantive outcOmes 
when either (1) the number of variables is large or (2) each variable correlates highly 
with at least some of the remaining variables. The latter is an explicit goal (and the 
former perhaps an implicit goal) of any well-designed factor analytic study. Moreover, 
although some investigators limit the term ''factor'' to common factors as they do not 
consider component analysis to be factor analysis, we find it far more useful to think 
of component analysis as a special case of the more general factor analytic model in 
which error is ignored. 
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The weightings are called pattern (b) elements, which may be viewed as regression 
weights in the sense of Chapter 4, bLlt not necessarily in the least-squares sense. The 
combinations will be assumed linear, even though nonlinear forms of factor analysis 
have been proposed (see McDonald, 1986). However, we will allow nonlinear trans
formations of variables to be made before they are entered into the analysis, as by 
defining a variable as the product or power of others (see Eq. 5-1d). 

Equations 11- l describe the general model: 

~ = bjlFt + bjuFIl + billIFm + ... + bjuF" 
= IbjpFp 

(ll-la) 

(11-1b) 

The subscript i will index. any subject (which we ignore fOT now), the subscripts j and 
k will index any two different variables, and the sUbscripts p and q will index any two 
different factors. However, as in Eq. 1 i-la, we will denote particular common factors, 
such as the first in a series and the unique factor Lt. Keep in mind that each variable has 
its own unique factor in common factor analysis; more precise notation would de
scribe the unique factors as Fu. , F "'1' F "'J" .• , and their pattern elements as bit , b"'1' 
b"'J' . ; .. It is extremely useful to think in terms of matrices (arrays). Just as X de
notes the entire set of observations, we will denote the entire set of common factor 
pattem elements as B, the entire set of unique factor pattern elements as Bu. and the 
entire set of factors as F. Formal matrix. theory is not necessary for these chapters, but 
it provides an extremely compact way to describe Eqs. 11-1. The Suggested Addition
al Readings lists matrix~oriented mathematical presentations. 

Factor analytic models are usually not designed to fit the data exactly, and so the 
equal sign in Eq. 11-1 is a misnomer in practice. The usual intent is to provide a good 
approximation. Each variable is predictable from the factors to a certain extent 
whether these factors are common factors or components, and the squared multiple 
correlation in predicting a given variable from the factors defines the communality of 
that variable, denoted h2• Conversely. the estimated unique variance in a common fac
tor model may contain some common factor variance that has not been included in the 
model if some factors have not been extracted. There are several possible measures of 
fit that have been used to describe the results of a particular model. Historically, the 
most popular, but not necessarily the best, is the proportion of variance accounted for. 
wruch is simply the average communality. One limitation it has is that the communali
ty of each variable and therefore the proportion of variance accounted for generally in
creases as the number of factors increases for the same reason that all mUltiple correla
tions are biased with respect to number of predictors. This is true even when the 
additional factors are meaningless. There are several other measures of fit which we 
will consider later. 

In contrast to the h2 values reflecting the proportions of variance in the variables 
that are explained by the factors, it is also possible to compute multiple correlations 
that reflect the proportions of variance in the factors that are explained by the vari
ables. These will always be 1.0 for components (even though the h2 values for 
variables will generally be less than 1.0) because components are nothing other tha.n 
linear combinations of the variables. Conversely, they will be less than 1.0 for 
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common factors because they are broader than the variables that define them. Factors 
with low mUltiple correlations require additional variables for their definition. The 
same principles that applied to multiple correlation in Chapter 5 apply here-adding a 
variable that is highly correlated with other variables in a grouping does not add ap
preciably to the factor definition. 

Also, do not think of factors as fixed entities; they may be rotated to form new fac
tors, a process that will be discussed in the next chapter. For example, if ~1 and Fare 
pairs of factors, F~ can be defined as .71 Fp + .71Fq, and F~ can be defined as .71Fp -
.71Fq, among an infinity of other possible rotations. Although the weights for the new 
factors will also be changed so that B becomes transformed into B' , the new factors. 
F; and F~, are just as proper to use in the model and are just as much facrors as the 
original ones, Fp and Fq. Rotation does not affect the individual h2 values and overall 
indices of fit such as the proportion of variance accounted for. 

The Unit of Measurement 

Factor analysis may be applied to data that have been standardized so that each vari
able has a mean of zero and a standard deviation of lover subjects, and so J0 = 'Gj. It is 
also commonly applied to deviation scores, where Xl = Xj' as well as raw scores. His
torically, factor analysis has most commonly used standardized scores, but certain 
problems, such as comparing the factor s,tructures of different groups, require alterna
tive procedures. These alternative ways of defining the basic data have the following 
general effects: 

1 Standardizing the measures totally eliminates the effects of differences in the 
unit of measurement. It is common to denote the matrix of scores as Z in this case. 
This chapter and the nex.t will assume that variables have been standardized. 

2 Expressing the measures as deviation scores eliminates effects of differences in 
the location of the variables (means) from the analysis but allows dlfferences in vari
ance to playa role. Certain inferential tests assume that these variance differences re
main, i.e., the data being analyzed are raw or deviation scores. There is no standard 
symbol to denote the data matrix as a whole in this case. 

3 Expressing the measures as raw scores allows difference in both location and 
variance to affect the results. 

4 A logical possibility, which has not been used to our knowledge, is to divide raw 
scores by their standard deviation and thereby analyze Xis. This eliminates differences 
in variance but allows differences in location to remain. 

Estimating Correlations 

This chapter will assume that the data have been standardi2ed ex = Z) and so. follow
ing standard notation, the scores for variables X; and Xk may be denoted ?j and Zk. and 
the pattern weights are beta (~) weights. If we take .pairs of scores, obtain their prod
uct. add the products over the N subjects, and divide by N, the result, Lzjl.kIN, is the 
ordinary PM correlation of Eq. 4-6 (factor analysis has also been applied to the PM 
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estimates discussed in Chapter 4, e.g., biserial and tetrachoric r, which we will discuss 
in Chapter 13). The right side of Eqs. U-l becomes a series of terms of the form 
"i.bj,PkqF' pF'qlN = bjpbkqI.F ,J'qIN, which describe factor correlations. The set of all pos
sible correlations among factors fonns another matrix which we will symbolize as <P. 
Factors may be chosen so that all possible factor correlations are zero, which is known 
a') an orthogonal (uocorrelated) solution. Transforming a set of cGrrelated variables 
into a set of uncorrelated factors illustrates a second common goal of factor analysis. (f 

one or more pairs of factors are correlated, [he solution is known as oblique (correlat
ed). Initial solutions obtained in exploratory analyses are neady always orthogonal, 
but rotated factors and factors obtained in confirmatory analyses mayor may not be, at 
the user's discretion. Historically, unique factors were assumed to De orthogonal with 
respect to one another and the common factors. This assumption is still made in most 
situations. However, more recent formulations allow the unique factors to be correlate 
ed with one another but still orthogonal with respect to common factors. The need for 
correlated error arises in special circumstances, as when one group of variabl~s is ob
tained under one set of conditions and another group is obtained under a ctifferent set 
of conctitions . 

. Equations 11-2 hold for the special case of orthogonal. factors: 

rjle "" ~jl~Jd + ~J1IPkU + ~JIU~kl!l + '" 
:os E~jp~kp 

(11-2a) 
(1l-2b) 

Summation in Eq. 1l·2b proceeds over the F factors. The relation is e;{act when there 
are as many factors as variables, and so "" replaces "', but the result is not that impor
tant for reasons given earlier. It is useful to denote the matrix of estimated correlations 
as R to distinguish it from the matrix. of actual correlations R. Various measures of 
disparity between Rand R serve as loss functions in the sense of Chapter 4 in describ
ing how well a particular model fits the data. These serve the same general role in de
scribing fit as the proportion of variance accounted for, but are increasingly replacing 
this latter measure because they have superior mathematical properties. For example, 
one loss function provides maximum likelihood estimates of the factors. One popular 
loss function is the square root of the average squared discrepancy between it and R, 
discounting the diagonal elements, or root-mean-square (RlVIS) error. 

Analogous results can be obtained even if the raw data are not standardized. If de
viation scores (:'1) are used in the analysis, covarianc~ are estimated instead of corre
lations, and so the resulting matrices become C and C (which are reiati vely standard 
symbols). Likewise, if raw scores are used in the analysis, mean sums of products are 
estimated. and the resulting matrices become SP and SP, which is less standard nota
tion. Computations are performed upon correlations (co variances, mean sums of prod
ucts) rather than z scores (deviation scores, raw scores). The diagonal elements of R 
will contain communality estimates. These are 1.0 .in a component analysis but are less 
chan 1.0 in a common factor analysis. Communality estimates (elements of the form rjj 

in R) are not the same as communalities (h2 values). Alternative ways to define com
munality estimates are considered in the next chapter. 
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A factor can be correlat~d with an individual variable using the methods of Chapter 5. 
The factor structure consists of the PM correlations between each of the F factors and 
each of the V individual variables, and the individual correlations are called structure 
elements. The symbol S will denote the complete matrix of structure elements. Its 
columns, which describe the con·elations between each variable and a given factor, 
wil1likewise be denoted s .. SIlo Slih etc. It is perfectly logical to symbolize individual 
structure elements as s followed by appropriate subscripts to denote the factor and 
variable, but we will use the symbol' to remind the reader that it is a correlation. For 
example, the correlation between variable X, and factor I is denoted 'II. Thus, s, con
tains the correlations between each variable and factor 1. 'II, rllo ..• , rid, and so on for 
the remaining factors. In particular, rll is the correlation between XI and the average of 
all variables in a centroid solution. Depending on the nature of the variables and the 
method offactor analysis employed, some of the correlations might be high and others 
low; some might be positive and others negative. 

As Chapter 5 noted, the beta weight for a predictor equals its correlation with the 
criterion (validity) when the predictors are uncorrelated. Consequently, the structure 
elements in an orthogonal solution are identical to the pattern elements: S = B, but this 
will not hold in an oblique solution. Thus, variables defined by orthogonal factors may 
be described as linear combinations in which the weights are the structure elements. 
Likewise, correlations may be estimated by the products of corresponding structure el
ements. These two very important results are stated algebraically as 

Zj '" r.1j"pp 

rjl' == r.r1pr kp 

where Zj = standardized score on variable j 
rip' 'k = structure elements for variables j and k 

Fp = pth value of a series of orthogonal factors 
r1k = estimated correlation between variables j and k 

( 11-3) 
(11-4) 

Successive versus SimultaneoUs Factoring 

Most problems require several factors to explain the data. The number of factors to be 
obtained is suggested by the first set of structure elements. If all variables have a high 
correlation with the first factor, this may be the only factor needed. If these correla
tions are near zero, there may not be any factors in the data. If they are moderately 
high (e.g., around .60), several factors may be needed. The end of the chapter presents 
common rules for determining the number of factors. 

One way to obtain a series of factors, which is the way exploratory factors are nor
mally obtained, is to define the first factor (1) and partial it from the data (see Chapter 
5). The steps needed use the formula for a partial correlation (Eq. 5-14). The only dif
ference is that the covariate is a linear combination rather than an individual variable. 
By definiti~n, factor I will not only be linearly independent of the individual variables 
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in the analysis (X" )(1' ... ) but win also be independent of any linear combinations of 
these variables, Le., additional factors. One result of this parualling is that it is possible 
to obtain a residual covariance matrix. Each element of this matrix (Cjk.l) may be ob
tained using 

(1 L-5) 

where Cj1c.I = residual covariance between variables ~ and X" after adjusting for factor I 
'jt = correlation between variables Xj and X/r 

'jl, r,d == structure elements for variables Xl and Xi< (which numerically equal the 
paEtern elements) 

This residual covariance matrix C, may be transformed into a residual co.crelation ma
trix, which we denote as RI• However, computations are usually performed On C1 

rather than Rl because the correlations in the laner present an inflated picture of the 
residual variance. Nonetheless, Eq. 11-16 is useful in describing the relation between 
elements of the two matrices. Each element (rjk.() is defined by 

cJkl 
(11-6) 

Factor IT can be defined by any linear combination of (partialled) variables in Xl, al
though some linear combinations are more useful than others, as was true of factor 1. 
This process may be repeated until all F factors have been extracted, and the succes
sive residual covariance matrices may be denoted Cn, CUI,,, .. The absolute values of 
the elements of the successive matrices will shrink toward zero as more of the vari
ance is explained (the RlVIS error may also be defined as the square root of the average 
squared residual value). Specifically, all terms must be zero in the last residual matrix 
in which F = V. The average value of the diagonal element of a given residual matrix 
(Ec.o.[IV, Icu.J1IV, !.Cjj.mIV, etc.) describes the proportion of variance left to explain (by 
definition it is 1.0 for R in a component solution because all diagonal elements are 
unity). The final result will be tha[ the original matrix. of correlations (R) can be ex
pressed as the sum of an estimated correlation matrix (ll) plus the residual co variances 
that represent error in the model plus unique variance. 

This method of successive extraction is the basis for obtaining the uncorrelated (or
thogonal) factors of exploratory factor analysis. More than one factor can be extracted 
in a given step, but the factors extracted at that step will usually be correlated. This 
process of extracting simultaneous factors, which may be orthogonal or oblique, is 
characteristic of confinnatory approaches. 

Geometric and Algebraic Interpretations 

There are some very useful analogies among geome[ry, algebra, and factor analysis. A 
vector can be thought of (1) as a line segment having both direction (orientation) and 
length (magnitude) in geometry and (2) as a set of numbers, such as test scores, in 
algebra. 

Assume two line·segments (vectors) are made to touch at a point so that they form 
an angle. If they are oriented in the same general direction, their angle will be small. 
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The cosine or this angle will be close to 1. This cosine can be obtained directly from 
trigonometry books, most hand calculators, and mose computer languages. The more 
different the vectors are, the larger the angle (up to 90°) and the smaller the cosine. If 
two vectors are separated by 45°, the cosine of their angle is .71. Two unrelated vec
tors form right (90°) angles; their cosine will be O. The cosine of the angle between the 
two vectors viewed geometrically is totally equivalent to their correlation if they ace 
defined algebraically as two sets of numbers. 

Components can be expressed as vectors sharing a common origin which are of 
length 1 (unit length). Each vector can be tbought of as a "correlation yardstick" with 
the numbers 0, .1, .2, ... , .9, 1 along it. The correlation between any cwo variables may 
be obtained by extending a perpendicular line from either vector to the tip of the other. 
In Fig. 11-1, variable X'! correlates .70 with variable XI> and variable Xl correlates .30 
with XIt as can be seen by lowering perpendiculars from Xl to XI and from Xl to XI' In 
this figure, X2 and Xl are separated by an angle of 24°. The cosine of this angle (which 
can be measured with a protractor) is .91, and so their correlation is also .91. If the 
separation was 0°, their cosine, and consequently their correlation, would be 1. Con
versely, if they met at right angles, their cosine and correlation would be 0, and they 
would be orthogonal. 

Angles between 90° and 1800 have negative cosines, and so negative correlations 
are represented by angles between 900 and 180a • For eltample, an angle of 1800 has a 
cosine of -1, and an angle of 1350 (450 beyond a right angle) has a cosine of -.71. 
Figure 11-2 illustrates a correlation of -.50. Each vector can be thought of as extend
ing in both directions from the origin, so that it has both a positive and a negative di
rection. The negative direction is illustrated by the dashed line to the left of the origin 
at the end of variable Xl' Usually, only one end of the vector is illustrated, but vectors 
are understood to have a unit length on both sides of the origin. This permits the depic
tion of positive and negative correlations. 

FIGURE 11·1 Geometric representation of the correlations among three variables. 

Xl 

o .1 .2 .3 .4 .5 .6 .7 .8 .9 
XI 
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L __ ~ ___ L __ J ___ L __ ~ __ ~~ __ ~ __ ~--J 

4 ~ ~ ~ ~ 0 ~ A ~ ~ 1 
XI 

FIGURE 11·2 Geometric representation of a negative correlation between two variables. 

TABLE 11·1 

By extension, a matrix can be regarded as a set of vectors as well as an array of 
numbers. Any correlation matrix, such as Table 11-1, can be thought of as a matrix of 
cosines among a set of vectors, where each vector represents oae of the variables. The 
geometric configuration of these variables is shown in Fig. 11-3. Such configurations 
have an arbitrary frame of reference. That is, as long as the cosines among angles are 
left the same, the whole configuration can be rotated about the origin without changing 
the problem. Whereas XI ap~ars below and to the right of the origin, Xl could appear 
in this location by rotating all variables to the right through equal angles. The vector 
for x'a would then slope downward to the left. It is important only that the configura
tion correctly show the relationships among the vectors. 

The correlation matrix in Table 11-1 is an idealization of what is found in practice. 
It is unusual in that all the cosines (correlations) can be represented in two dimensions 
(a 2-spac~). This many correlations usually require more than three dimensions, mak
ing it necessary to represent the correlations in a hyperspace or a space of more than 
three dimensions. The fact that we cannot physically represent spaces of more than 
three dimensions does not hinder the use of geometric conceptions. 

The use of unit-length vectors in physical space to portray correlation matrices as 
corresponding matrices of cosines is part of a more general geometric analogy. The re-

A CORRELATION MATRIX (R) FOR FOUR 
VARIABLES (SIMULATED DATA) 

X1 Xt X3 X4 

XI 1.00 .73 -.04 -.67 
X2 .73 1.00 .66 .05 
X3 -.04 .66 1.00 .78 
~ -.67 .05 .78 1.00 
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XI 
FIGURE 11-3 Geometric representation of the correlations in Table 11-4. 

lationship between any two variables may be expressed as the cosine of the angle be
tween their vectors multiplied by the leng;ths of the two vectors, known as the vector 
product. Variables in a common factor model may assume lengths that are both differ
ent from each other and less than unity because only pan of a measure's variance is in
cluded in the analysis. The length of a common factor is the square root of its variance 
accounted for. In general. the lengths (ht and h.,J are the square roots of the corre
sponding diagonal elements of R and may be viewed as standard deviations. These di
agonal elements. h~ and hi. are the squared lengths of the corresponding vectors and 
are variances. The relation between the two variables (vector product) is h1cOSl7.hl in 
this general case. It is in actuality a covariance (see Eq. 4-10, but note that the order of 
terms in that equation is equivalent to COS12hlh.,). For example. if hI is .8 and hl is .9. 
then a correlation of .5 corresponds to a vector product (covariance) of .69 since 
(.8)(.69)(.9) ... . 5. The diagonal elements are 1 in a real correlation matrix such as 
Table 11-1 and in component analysis, so that hI and h'}. are also unity. Consequently. 
they need not appear in the vector product, and the covariance reduces to the earlier 
noted cosine of the angle between vectors. Le., correlation. 

Regardless of whether the vectors are all of unit length (component analysis) or of 
different lengths less than 1 (common factor analysis) and therefore regardless of what 
is placed in the diagonals of R, R can be depicted in terms of vectors in space. The 
discussion of multidimensional scaling in Chapter 14 will show how factor analysis 
can be applied to any system of vectors as depicted in Fig. 11-3. This is true regardless 
of variations in lengths of the vectors and whether the relationship h,-cosuh, is based 
upon correlation coefficients or other measures of relationship. This geometric model 
is perfectly general, although we will also note some of its limitations. The component 
model depiction of R (unities in the diagonal) as cosines among unit-length vectors is 
a highly useful special case. 
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Factors are often spoken of as dimensions, and factoring is spoken of as dimension. 
alizing a space of variables, one of the initially stated goals of factor analysis. Imagine 
for example, that the vectors for 20 variables all lie in a three-dimensional space. Fac~ 
tor analysis can be thought of as inserting a framework of three new vectors (factors) 
that elCplain the correlations (cosines) among the variables. Because aU 20 vectors lie 
in a 3-space, the variables are redundant in the sense that they all can be "explained" 
by three factOrs. 

In the present example, Fig. 11-4 contains the same variable vectors as Fig. L 1-3, 
but two orthogonal factors have been inserted to serve as the two dimensions of the 
plane. Their roLe in providing a frame of reference to these data will be expanded upon 
in this chapter and the next. Similarly, the next chapter will show how rotating these 
two factors in the plane will preserve all relations among the vectors. Recall the hypo
thetical nature of these data; all vectors have unit length in the 2-space, and so two fac
tors perfectly explain the data. If more than two factors are required, the vectors Would 
not have unit length because they would also project into other dimensions. 

The following are some useful principles regarding relations between factoring and 
hyperspace geometry. 

1 If a set of variables can be represented in an F-dimensional space, any linear 
combination of these variables is also a vector in that F·dimensional space, e.g., as in 
the above example where 20 variables fall in three dimensions. This is true regardless 
of the coefficients in the linear combination. Some of these coefficients can be zero, 
and some can be negative. In other words, a factor is a vector in the same space as the 
variables themselves, and factoring thus puts new vectors into the space. The impor
tant point is that these new vectors cannot "get out of' the space formed by the vari
ables themselves. 

FIGURE 11-4 Plot of centroid factors obtained from Table 11-4. 
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2 If any set of variables lies in an F-dimensional space, any F independent linear 
combinations of these variables constitutes a basis for the space. The term "indepen
dent" means that no vector can be expressed as a linear combination of the other vectors. 
In other words, no variable has a perfect multiple correlation with any other variable. 

3 It is easiest to visualize a basis when all factors are uncorrelated with one anoth
er. The factors (vectors) wiu all be at right angles to one another, and we are more 
used to dealing with right-angle coordinate systems than oblique systems. Moreover, if 
the factors lie in three dimensions, any three uncorrelated (orthogonal) factors will ex
plain all the correlations among the variables. 

4 The number of factors (dimensions) required to represent a correlation matrix 
defines the rank of that matrix. Consequently, the goal of common factor analysis is 
sometimes described as finding the minimum rank of a matrix of correlations by a 
suitable choice of diagonal elements (communality estimates). 

5 The structure element relating a variable to a factor may be represented by the 
cosine of the angle between the vector for the variable and the vector for the factor. If 
the variables lie in an F-dimensional space, any F orthogonal factors will explain the 
vectors for all variables. In that case the sum of the squared elements in each row of 
the structure matrix (S) will equal 1, and the Sum of cross products in any two rows of 
S will equal the correlation between the two variables (see Eq. 11-5). Thus a row of 
strUcture elements can be thought of as a set of cosines between a variable and a num
ber of factors, and a column of structure elements can be thought of as a set of cosines 
between a factor and a number of variables. 

6 Because the number of factors usually does not explain correlations perfectly, 
the space of variables usually has' more dimensions than there are factors. The factors 
then form a semibasis (approximate basis) of the space of variables rather than a true 
basis. Suppose, for example, that 10 variables require 10 dimensions, but only 5 fac
tors are used. Some variables might lie almost entirely in the sernibasis produced by 
the 5 factors, but others might lie mainly outside that space. The sum of squared struc
ture elements for any variable (h2) measures the extent to which that variable lies in 
the space defined by the factors and is the squared length of a vector in that space of 
factors. If, for example. the h2 for a variable is .64, the length of the variable in tbe 
semibasis (factors) is .8. 

As useful as these geometric interpretations are. they may be carried too far. First, 
there is nothing necessarily geometric about factoring. Factor analysis can be devel
oped and used without ever discussing cosines of angles, dimensions, and the like. The 
geometric model is a useful isomorphism which may help one understand factoring. 
but it should be invoked only when it is useful. Chapter 14 and, especially. Chapter 15 
will consider some limitations upon geometric approaches to measurement. Second. 
discussing the rank and the basis for a space can easily mislead one into assuming that 
these are frequently obtained. In fact, the rank of the correlation matrix in component 
analysis almost always equals the number of variables because each variable has some 
unique variance which cannot be explained by other variables. However, these con
cepts do play an important role in some applications. 

The rank of the correlation matrix will probably equal the number of variables even 
when a small number of factors explains the variables in the population because 



466 PART 4: FACTOR ANALYSIS 

sampling error usually prevents a perfect fit in the sample correlation matrix. Howev
er. investigators rarely try to explain the correlations among variables completely. 
They are usually more interested in prominent factors with moderate or large structure 
elements. A variable which correlates highly with a factor is called a "salient" for that 
factor. A value of .3 is a minimum value for a salient; a criterion of .5 or higher usual
ly is better. In the language of hyperspace geometry. factor analysis is usually em
ployed to establish a semibasis rather than a basis for a space of variables. From a sta
tistical point of view. a good factoring method therefore explains as much variance 
(hl) of the variables in the smallest space possible. Empirically, a good semibasis 
is one that (1) is easily interpreted and/or (2) relates most clearly to psychological 
theories. 

Components of Variance 

If a factor model fit perfectly. it would partition the total variance of any variable (1.0 
in standard score form) into the three terms of Eq. 11-7. 

cr; = variance due to measurement error + specific variance 
+ common variance (11-7) 

The measurement error of variable Xi is simply the squared standard error of measure
ment (cr!eas) from reliability theory and equals 1 - '/I. where rif may be defined as co
efficient a. Thus, if the reliability of variable Xl is .80, its measurement error variance 
is .20. and the systematic variance (the sum of common variance and specific vari
ance) is .80~ Specific variance is nonrandom but cannot be explained by relationships 
with other variables in the model. Common variance reflects covanation with factors. 
Although factor analysts differ as to how this is measured, one possible definition is 
h2• Any measure therefore has some random variance due to unreliability. some vari
ance that is repeatable but specific to the test itself (in the context of the model), and 
some variance that it shares with other tests. 

Most actual analyses make no effort to separate specific variance from error vari
ance. Consequently. these are lumped together and called unique variance (u2). Equa
tion 11-5 reduces to Eq. 11-8: 

(11-8) 

A standardized variable's unique variance is 1 - hl. 
Factor analysis is frequently described as partitioning variables into common and 

unique variance. Component analysis attempts to el{plain common variance with linear 
combinations of the variables; unique variance becomes in effect the residual not ex
plained by obtained factors. We have previously mentioned that most studies allow 
some unanalyzed common variance co remain in the residual variance. Unfortunately. 
there is no foolproof way to distinguish common variance from unique variance. Com
ponent analysis also allows some unique variance of each variable to be included in 
the factors. confounding the two sources of variance and inflating structure elements 
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(Snook & Gorsuch, 1989; but also see Veticer & Jackson, 1990). Common factor 
analysis attempts to separate common variance from unique variance, but there are 
several methods for so doing that lead to distinct results in studies. where the average 
communality is low. 

Even though u? is usually not broken down into specific and error variance, a good 
argument can be made for doing so. If good measures of reliability are available and 
one is confident about the number of common factors underlying the data, this can be 
done by placing reliability coefficients rather than unities in the diagonals of Rand 
using one of the methods of condensation to be discussed. Failure to make at least a 
conceptual definition between measurement error and spccific variance leads to a com
mon error in drawing conclusions from a factor analysis. Even if a test contains a se
ries of scales which may be described by a single common factor, the various scales 
need not be redundant. They might be if all their unique variance is measurement 
error, but this is unlikely. It is quite possible that variance which is specific to a given 
scale on the test relative to other scales may be predictive of external criteria. For ex
ample. one of the scales on a maladjustment inventory might denote somatic com
plaints, and another scale might denote anxiety. The scale as a whole might be de
scribed by a common dissatisfaction factor. However, the somatic complaint scale 
might have incremental validity in predicting the outcome of, say, pain management. 
Indeed, whether the scale measures one or multiple factors is largely irrelevant to this 
Olltcome. Seeing how much of a difference exists between the reliability, as indexed 
by coefficient a. and the Variable's h2, as infeaed by using these reliabilities as com
munality estimates, is one way to make this determination. 

In keeping with the principle we espouse that conclusions should not depend heavi
lyon anyone method of factoring. reestimate the specific variances using other com
munality estimates. In particular, put (1) unities (principal component analysis) and (2) 
squared multiple correlations in the diagonal. Both are standard options in every major 
computer package. The reliabUities will be smaller than 1.0 but larger than the squared 
multiple correlations (whose role is explained more thoroughly in the next chapter). 
Consequently, jf the estimates are highly similar under all three procedures, you can 
feel more confident about the result. assuming your hypothesis about the number of 
common factors is correct and the reliability estimates are reasonable. 

The distinction between common and unique factors is a very fundamental, mathemat
ical one. Other important distinctions reflect the number and signs of the salients, 
which are admittedly somewhat vaguely defined as to magnitude. 

1 A "general factor" is one on which all measures are salients. 
2 A "group factor" is one on which some but not all variables are salients. 
3 General and group factors are collectively called common factors. even in a 

component analysis, because what they measure is common to more than one variable. 
4 If all salients on a common factor have the same sign, the factor is said to 

be unipolar. 
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5 Conversely, if some salients are positive and others are negative, the factor is 
said to be bipolar. Polarity may be an artifact of how the variables are scored. For ex
ample, if one abilitjes measure is scored as number correct and a secund is scored as 
errors. they will tend to correlate negatively. In this cuse. reverse (reflect) the direction 
of scoring of one of the variable!! (e.g .• the error measure) because readers tend to as
sociate better performance with higher numbers. On the other hand, affinnutive out
comes may relate to each pole. particularly in the personality domain. e.g, introver
sion-eKtroversion. Introverts actively engage in certain behaviors. and extroverts 
actively engage in other behaviors. Finally. we will also see that bipolarity is an arti
fact of initial factor extraction, another major reason for rotation. 

6 A factor with only one salient is called a "singlet factor." For example. the 
masculinity-femininity (Mf) scale on the MMPr often appears as a singlet because it 
tends to coo'elate ~oorly with the other major scales. Singlet factors are similar to the 
unique factors of common factor analysis. However. singlet factors reflect an empiri
cal outcome rather than a mathematical constraint. 

7 For completeness, a null factor has no stllients. 

The goal of finding groupings can be translated into a search for group factors. 
However, because abilities measures tend to intercorrelate positively. a general factor 
may also be prt:.s~nt. A general fudOl' is ortell lliso appropriate, e.g., many believe that 
there is a meaningful component that underlies all abilities measures. However, one 
does not k.now the limits of a general factor. Le .• what doesn't belong to the factor. 
Differences in methods of rotation will cause a general factor to have a more or less 
prominenc role. Many historic differences in interpretation of data reflect this method
ological difference. Bipolar factors are typically difficult to interpret since the factor is 
defined by the difference between what positively weighted variables have in common 
and what negatively weighted variables have in common. Many forms of rotation are 
designed to produce only group factors and eliminate bipolar factors which are artifac
tual. Finally. singlet and null factors are undesirable olltcomes. They indicate that too 
many factors have been extracted or that a variable has been included which is unrelat
ed to the others in the analysis. 

CONDENSING VARIANCE IN EXPLORATORY FACTOR ANALYSIS 

Different methods fat' deriving e;<ploratory factors may be defined in terms of the 
ways that weights are used to obtain linear combinations. There are three general ap
proaches to this process. Each has a counterpart in confirmatory factor analysis that 
will be discussed in Chapter 13. 

1 In a rational approach. factors are defined before analyzing the data. Centroids 
are ~e simplest example in which a factor (usually a component) is the equally 
weighted sum of the variables. 

2 One may'seek to optimize some property of the sample data. The most important 
example is principal component factor analysis. The symbol PrC will be used to denote 
a principal component. The abbreviation PC is traditionally more common, but most 
people now associate' the latter with "personal computer." Each Pre maximizes the 
amount of variance that can possibly be explained, among many other useful properties. 
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A CORRELATION MATRIX (R) FOR SIX VARIABLES (SIMULATED DATA) 

X, X2 X3 X4 Xs Xs 

X, 1.00 .75 .83 .32 .28 .36 
X2 .75 1.00 .70 .25 .31 .32 
X3 .83 .70 1.00 .39 .25 .33 
X4 .32 .25 .39 1.00 .79 .82 
Xs .28 .31 .25 .79 1.00 .76 
Xs .36 .32 .33 .82 .76 1.00 

3 One may use sample data to predict the results in a population. The most popular 
such approach is maximum likelihood (:NIL) exploratory factor analysis. It differs from 
methods like PrC in stressing statistical inference rather than assuming an indefinitely 
large sample. 

Each of these three general exploratory approaches will be discussed in major sec
tions of this chapter, and their confirmatory councerparts will likewise appear in major 
sections of Chapter 13. The essential point common to all three is that all seek to ex
plain as much about the variables as possible with the fewest factors and thereby best 
condense variance. Table 11-2 is a matrix of correlations (R) generated by the hypo
thetical Prof. Brown to test the earlier stated hypothesis about the variables forming 
two groups of factors that measure separable aspeccs of anxiecy. The measures pre
sumed to form the first group (possible arutiety over harm measures) are XI! X2, and 
X3• and the measures presumed to form the second group (possible anxiety over social 
embarrassment measures) are X", Xs, and X6• Even though we suggest that the investi
gator's hypothesis be tested with a confirmatory' approach. as in Chapter 13, these data 
will be used throughout the next two chapters to illustrate exploratory factor analysis, 
which is the way many investigators would test the hypothesis. 

The Role of the Correlation Matrix 

As we have noted, factoring usually begins by cm:nputing a correlation matrix (R) 
even though basic equations such as Eq. 11~1 define factors in terms of observations. 
The R should be looked at in four different ways. 

1 Look to see if the data even warrant factoring. Factoring is not worthwhile un
less there is a substantial number of large correlations even though determining how 
many large correlations there are or how large is large is somewhat arbitrary. There are 
statistical tests for sphericity (Bartlett, 1954) in which all correlations are zero. These 
test the null hypothesis that there are no factors in the data versus the alternative that 
there is at least one. Sphericity is far too liberal a criterion. It does not require many 
subjects and/or variables to reject the sphericity hypothesis even when all correlations 
are trivially low. (See the section titled "How Tb Fool Yourself with Faccor Analysis" 
toward the end of Chapter 12.) You will rarely, if ever. obtrun a spherical correlation 
matrix with real data because it requires almost random selection of variables with 
nearly total unreliabilicy. This does not make the resulting R worth factoring. Six of 
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the 15 correlations in the table are at least .7, which suggests that there is enough com
mon variance to examine. 

2 Look for groupings in the data; These will probably eventually form factors. In 
the present case, the correLations among variables Xl. Xl. and X3 are all rugh. as are the 
correlations among X4• Xs• and X6• 

3 Look at the signs and sizes within groupings. For example. if all signs are posi
tive, as is true in the example, the variables all probably have something in common 
and may be given positive weights in the factor. The variables may still have some. 
thing in common if some variables correlate negatively with other variables, but these 
variables might be given negative weights. The size of the correlations defines how 
strongly the factor (grouping) is defined. 

4 Look at the correlation between groupings to help decide about the type of rota. 
tion you will use. If these are all very low. say .3 or less. you will be able to benefit 
from the simplicity of an orthogonal solution, as we will demonstrate. If these are 
higher, the strategy is more open to debate, as you will have to make an eventUal 
choice between an orthogonal or an oblique rotation. 

One additional. but less important, thing to note about a correlation matrix is 
whether the column sums are all positive. 1£ this is the case, as is true in Table 11-2. 
the matrix is said to have positive manifold. This will usually be true of abilities mea· 
sures, but not necessarily of personality measures. When this occurs, most elCploratory 
factoring methods will cause the first factor to be a general factor, and all later factors 
to be bipolar. Moreover. half of the weights that were positive on one of the later fac
tors will be positive, and half negative on another of the later factors, and the same 
will be true of the weights that were negative. These are examples of bipolar factors. 
which were previously shown to be difficult to interpret in many situations. They may 
also be artifacts of the method of factoring. 

Properties of a Factor Solution 

The data of Table 11-2 were factored by several methods, and the results appear in 
Table 11-3 [a similar demonstration appears in Jackson & Chan (1980)J. Chapters 12 
and 13 will make further use of these data. We will use the three columns representing 
the centroid solution as an example of initial condensation. 

1 Since initial solutions are nearly always orthogonal. the data in the first two 
columns of the first six rows can be regarded as either pattern elements (regression 
weights) or structure elements (correlations). They are often referred to as "loadings," 
but we will avoid this term because it becomes ambiguous in an oblique solution. Vari
able XI can be estimated as .77 times factor r plus .53 times factor n. Eq. 11·1; vari
ableXt also correlates .77 and .53 with factors I and II. Eq. 11·3. 

2 The h2 value in an orthogonal solution equals the sum of squared structure (or 
pattern) elements: .88 = .772 + .532• Recall that it may be interpreted as the squared 
multiple co[i:elation in predicting the variable from the factors. 

3 The first two columns of the last row contain the factor variance or proportion of 
·variance accounted for by each factor. These are obtained by averaging the squared 
structure (or pattern) elements over the number of variables, e.g, .58 = (.772 + .732 + ... 
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TABLE 11-3 CENTROID, PRINCIPAL COMPONENTS, PRINCIPAL AXIS, AND MAXIMUM LIKELIHOOD 
STRUCTURE ELEMENTS OBTAINED FROM THE CORRELATIONS IN TABLE 11-2. 

Principal Principal 
component axis Maximum 

Centroid method method likelihood 

Variable II h2 II h2 II h2 II h2 

X, .77 .53 .88 .77 .54 .88 .77 .55 .89 .81 .49 .89 
X2 .73 .51 .79 .72 .52 .79 .66 .44 .63 .69 .40 .63 
X3 .77 .51 .85 .76 .52 .85 .74 .49 .78 .77 .42 .77 
X4 .78 -.52 .88 .79 -.51 .88 .78 -.49 .85 .75 -.55 .86 
X5 .74 -.54 .84 .74 -.54 .84 .71 -.48 .73 .67 -.53 .73 
Xs .78 -.49 .86 .79 -.48 .86 .77 -,45 .79 .74 -.49 .79 
Prop. var. .58 .27 .85 .58 .27 .85 .55 .23 .78 .54 .23 .78 

Note: The proportion of variance accounted for by each factor (Prop. Var.) is the average 01 the squarad structure elements. The total 
variance accounted for is the sum of the individual values and [s given in the column [abeled hZ • 

. 782)/6. Some computer programs (e.g., SAS) provide the sum rather than the average. 
Adding over factors in an orthogonal solution provides the pro~ortion of variance ex
plained by the model as a whole, .58 + .27 = .85 in this case. This figure also equals 
the average of the h2 values. Explaining 85 percent of the variance among six vari
ables with only two factors often implies a good fit of the model, but other considera
tions also apply. 

4 Equation 11-2 or 11-4 may be used to estimate correlations. For example, rl2 

= (.77)(.73) + (.53)(.51) = .83. It is slightly larger than '12 (.75), which is characteristic 
of component solutions, as we will see. 

5 As noted above, the positive manifold in the original correlation matrix causes 
factor I to be a general factor and factor II a bipolar factor. 

6 Although rotation is needed to make the factors more interpretable, the variables 
proposed to form the physical harm group (X" X2, and X3) have a similar structure (rJI 
= +.75 and Ijn "" +.:50), whereas the variables proposed to fonn the social embarrass
ment group (X4' Xs• and X6) also have a similar structure (rjI = +.75 and rjII "" -.50). 
This is highly consistent with Prof. Brown's hypothesis. 

Although the data in Table 11-3 provide the most important results, they do not 
. provide the only results. The most important additional result is the matrix. of resid

ual correlations. If these are not both small and without apparent pattern, additional 
factors may be present in the data. This does not necessarily mean that the solution is 
wrong but rather that it is incomplete. Moreover, residual correlations in a compo
nent solution are larger in absolute value than residual correlations in a'common fac
tor solution with the same number of factors. In the present case, some of these cor
relations wete quite' large (>.50). Be careful to distinguish between this matrix of 
correlations (which SAS refers to as "partial correlations controlling factors," which 
they are) and the matrix of residual covariances (which SAS unfortunately tenns 
"residual correlations"). The latter consists of differences between correlations which 
are not correlations themselves. The covariances will be quite small whether or not 
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there is any pattern left to the data, as they can be only as large as 1.0 when a carre. 
lation matrix is factored. 

CENTROID CONDENSATION 

We have noted that each variable is weighted equally in the centroid method. so tbat 
the factor is the equally weighted sum (or average, since they have the same properties 
in this case) of the variables. The first centroid is therefore the sum of all variables; the 
second centroid factor is the equally weighted sum of the variables after the overall 
(observed) average has been partialled, etc. This equal weighting can be applied to raw 
or deviation scores, in which case variables with greater variance will playa larger 
role in the sum, or it may be applied to standardized scores, making the raw Score 
units irrelevant. As in any solution, structure weights define the magnitudes of correla
tions of variables with the factor, and so in this case they are correlations of individual 
variables with the average (or sum, since they have equivalent properties) of all 
variables. 

The centroid method is basically obsolete because other methods to be discussed 
have somewhat superior properties. It is not implemented on any major computer 
package. However, it is useful to describe it briefly because it does have some advan
tages, especially for the student who is just beginning to explore the details of factor 
anaj.ysis. 

1 It is the easiest method to visualize because it defines a factor as an equally 
weighted sum of variables. 

2 It is very easy to calculate the solution by hand or with a spreadsheet, as it is one 
of the few methods that is noniterative. Instructors differ on the value of hand calcula
tion, but both authors learned much about the process of factoring by calculating cen
troid factors on a small matrix.. The appropriate steps may be found in Harman (1976). 
In particular, the first set of structure elements equals the sum of a given variable's 
correlations with all other variables (the sum in a given column or row of R) divided 
by the square root of the sum of all the entries in R 

3 Because the factors are not estimated from sample data but defined in advance as 
equally weighted sums, centroids should be more robust in small samples than factors 
derived from estimated optimal weights. 

4 The centroid method maximizes the sum of the absolute values of the structure 
elements for each factor. It is therefore not devoid of useful mathematical properties. 

5 The logic of the centroid method follows directly from the straightforward logic 
of the correlation of sums (see Chapter 5). 

6 Geometrically, the variable vectors balance in all directions about the centroid. 
The two factors in Fig. 11-4 are actually centroids. Centroid factor I goes from left 
to right and can be seen to fall precisely in the middle of the variable vectors. The 
correlations of each variable with centroid factor I (the structure) are the vertical pro
jections from the tips of the respective variable vectors to the factor axis in any 
method. 

7 The' item-total correlations (not correctec;l for overlap) in an item analysis 
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are structure elements on the first raw-score centroid (see Chapters 6 through 8). 
The idea of correlating a variable with the sum also appears in generulizability theory 
(Chapter 7). 

PRINCIPAL COMPONENT AND PRINCIPAL AXIS CONDENSATION 

The PrC method was cited as the major example of an approach to condensation that 
optimizes a property of the sampl~ data. Specifically, it maximizes the sum of squared 
structure elements so that each PrC explains more variance than any other type of 
component. Common factor approaches known as principal axes include several vari
ants upon Pre factoring, differing only in the elements placed on the diagonals of R. 
Nearly all the options found in a typical computer package involve some form of one 
of these two methods, and the maximum likelihood method, considered in the next 
main section, uses many of the same basic computations. 

Principal Components 

PrC analysis invoLves what is known by the rather foreboding name of "'eigenanaly
sis," the solution to the characteristic equation of a matrix. The matrix in this case is R 
with unities in the dlagonals. The mathematical rationale for the PrC method and vari
ous computational approaches are discussed in works listed in the Suggested Addition
al Readings. Although the concepts underlying Pre analysis have been long known, 
Hotelling (1933) first specified both the rationale and a practicable computational ap
proach. The computations use one of several similar iterative algorithms which are 
generally easy to program but laborious to do by hand. 

If you have been eltposed to the multiplication of matrices (this paragraph may eas
ily be skimmed if you have not), the steps to obtaining Pres are quite simple. Multiply 
any arbitrary vector of v elements into R. The result is a new vector. Normalize it 
(make it of unit length by dividing each elem.ent by the square root of the length). 
Multiply this normalized vector into R. The process of repeatedly taking the output 
vector (vo), normalizing it, and using it as the input vector (Vi) on the next step will 
converge in that v(t will equal Vi times a length parameter CAl. At this point either Vo or 
Vi is the first eigenvector. Technically, it does not matter which because only the rela
tive and not the absolute magnitudes of the elements are important. These relative val
ues will be the same for the two vectors, even though computer programs usually out· 
put the normalized eigenvector. The A. is the first eigenvalue. Multiplying the 
normalized eigenvector by the square root of A. produces the first Pre. This first PrC 
can be partialled from R just as the first centroid factor can to produce a residual ma~ 
trix. The iterative process can then repeated to provide up to V eigenvectors, eigenval
ues, and their associated PrCs. 

We will denote the successive eigenvectors as V[, Vn, .... Likewise, the associated 
eigenvalues will be denoted as A.[, A.n, ... , and the PrCs as PrCb PrCu, .... All three sets 
of results are commonly provided by major computer packages, but the eigenvectors 
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are largely unnecessary since the data they provide about the relative contribution of 
the variables is provided in the PrCs. The eigenvalues define the proportion of vari
ance accounted for by each prc. PrC( explains the most variance in R and therefore X; 
PrCu explains the most remaining variance, and so on. 

Mathematical Properties of Principal Components 

Table 11-3 compares these Pres with their centroid counterparts. These particular re
sults are extremely similar-carried further, the total variances they account for are 
.8507 and .8506, respectively. A given number of Pres must account far more vari
ance than that number of centroids, by definition, and the difference can be much larg
er when factors are not so apparent. 

The Pre method is the ideal way to condense variance in many respects. Some in
teresting and useful mathematical properties of PrC factoring are as follows: 

1 Each factor maximizes the variance explainable from the observed (unity diago
nal) correlation matrix (R). This has several important implications: Ca) The sum of 
squared structure elements on that factor is as large as possible. (b) The sum of 
squared structure elements in the residual macrix (RMS error) is as small as possible. 
In other words, (c) the sum of squared partial correlations obtained from the first resid
ual matrix is at a minimum, and Cd) the first Pre el(piains more of the actual standard 
score variance in the data matrix X than any other linear combination. Each PrC factor 
thus explains the most variance possible in a sample of subjects. 

2 Any F prinCipal components (F ::; V) explains as much or more total variance 
than any F components obtained by any other method. This fortunate circumstance 
does not necessarily follow from the first statement above because a method cauld de
rive the most variance possible in an individual factor of R but not be best for any set 
of factors. In fact, the PrC method does maximize the variance explained for any num
ber of factors. 

3 Each eigenvalue defines the total variance explained by that Pre, i.e., its sum of 
squared structure elements. Dividing each eigenvalue by V provides the variance 
explained by each factor and, since eigenvectors are orthogonal, the sum over the F 
factors defines the total variance explained. 

4 All component eigenvalues are either zero or positive (within rounding error) be
cause eigenvalues are interpretable as variances. 

5 The number of positive (nonzero) eigenValues represents the number of PrC fac
tors needed to explain all the variance in a correlation matrix. For example, if only five 
eigenvalues are greater than zero in a 20 x 20 correlation matrix, then (a) five factors 
provide a complete geometric basis; (b) all residual correlations, including the diago
nal elements, will be zero after extracting the fifth factor; and (c) all scores in X will 
be zero after five factors are partialled. Normally, all component eigenvalues are posi
tive. Consequently as many components will be needed as there are variables to re
duce the residual matrix totally ta zero and thus totally explain the original X and R 
matrices. However, since the usual goal is approximation, some eigenvalues may be so 
small that the associated factors can be ignored. 
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6 The sum of the eigenvalues equals the sum of the diagonal elements in R, called 
the trace. The sum of eigenvalues in a Pre analysis equals the number of variables (V). 
Since Table 11-3 is based upon six variables, the trace is 6. 

7 The Pres are mutually orthogonal (uncorrelated) in two distinct senses. (a) The 
sum of the cross products of any two sets of structure elements, such as ST and sn, will 
equal zero, which you may verify with the data in Table 11·3. This is known as geo
metric orthogonality. (b) the factors themselves are also uncorrelated, known as statis
tical orthogonality. Other initial and rotated factors may be statistically or geometrical
ly orthogonal, but only Pres are both. Although the two properties are useful, 
statistical orthogonality is more important than geometric orthogonality, and the two 
concepts must be kept distinct. 

8 The product of all eigenvalues in R equals its determinant, an important quantity 
used in the solution of systems of equations and. specifically, in factor analysis as a 
multivariate measure of variance. Because the number of factOrs required to explain a 
matrix of correlations exactly (Le., the matrix rank:) equals the number of positive 
eigenValues, at least one root will be zero if there are more variables than factors. The 
product of the roots, and therefore the determinant, will be zero in this case, but, as we 
have noted, this is unlikely in a component solution. 

9 The eigenValues, eigenvectors, and other by·products of PrC analysis have use
ful inferential properties. Harris (1985, pp. 260-264) provides a particularly good dis
cussion; also see Morrison (1976). For example, one may te.st that the population 
eigenvalue corresponding to a given sample estimate is 1 or greater (the reason this 
test is useful is given below.) Although inferential testing has not been common in 
PrC, Bardett's (1950, 1951) test for the significance of a residual correlation matrix is 
widely used in multivariate analysis. Rippe (1953) developed tests of factor signifi
cance (see Gorsuch, 1983; Hannan, 1976). However, if you require much inferential 
testing, you may find the maximum likelihood method, discussed below, to be of 
greater value. 

Note that despite these advantages, the results of the PrC solution, including the 
residual correlations, are indistinguishable from the centroid solution, which will gen
erally be the case when each variable correlates highly with at least one other variable. 

Since the correlations among variables is so important, it is useful to look at two 
extreme cases in some detail. In one, every variable in the population is perfectly 
correlated with every other variable so each element in R is 1.0. In this case, there 
will be only one eigenvalue that exceeds 1.0, and. its value must be the number of 
variables (V) since that must be the total of all component eigenValues. Such a ma
trix contains but one factor. In the other case, R is spherical, and so all off·diagonal 
values equal O. The sum of all eigenvalues in the popUlation R matrix will still be V. 
but this time eacb of V eigenvalues will have a value of 1.0. However. any sample 
matrix it produces will not be ex.actly spherical. The first few eigenvalues will be 
slightly greater than 1.0, but since the trace of the sample R is still V. the last few 
eigenvalues must be less than 1.0 (Cliff, 1988; Gorsucb, 1983; Horn, 1965). Conse
quently early sample eigenvalues are biased upward and later sample values are bi· 
ased downward. 
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We simulated some data to illustrate these points as well as the effect of sample 
size. Three population data matrices containing six variables were constructed. The 
first was spherical and thus contained no factors. The second contained correlations of 
.5 among all variables and therefore represented a single factor. The third contained 
two groups in which correlations were .5, but correlations between variables in differ. 
ent groups were .0. This therefore represents a two-factor solution. Samples of SO, 
which is far too small, and J ODD, which is probably much larger than a typical investi
gator would use, were generated. Figure 1 L·5 shows the results in a series of what are 
known as scree plots (Cattell, 1966b) that represent the magnitude of each eigenvalue 
as a function of its serial position. The small-sample data are in Fig. Il-Sa. and the 
large-sample data are in Fig. 11-5b. 

The first thing to note that the spherical (no factor) data are far from flat lines at 1.0. 
The first eigenvalue (A.I) is considerably above this point, and the last eigenValue (~ 
is considerably below it, especially in the small sample. This clearly illustrates the bias 
in the sample eigenvalues. Also note that the one-factor data contain one large eigen
value and the two-factor data contain two large eigenvalues, but they appear more 

FIGURE 11·5 Soree plot for six measures representing no factors (diamond), one factor (square), and two 
factors (circle). (a) Data simUlated on a small sample (N = 50). (b) Data simulated on a large 
sample (N= 1000). 
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prominent in the smaller sample because the effects of the structure in the datu are en
hanced by the greater sampling error. These issues play an imporrant role in the issue 
of deciding how many factol'S to retain. which we consider at the end of this chapter. 

Principal Axis Solutions 

If numbers less than 1.0 are placed in the diagonal positions of R and the resulting ma
trix subject to an eigenanalysis, the result in generically known as a principal axis so
lution. Differences among the more common methods of detennining these COmmu
nality estimates will be considered in the next chapter. For now. it is sufficient to note 
that one popular method is to attempt to equate these estimates with the actual com
munalities by iterating the solution. Values of h'2 obtained from a given step become 
the values placed in the diagonal positions for the nex.t step, and the matrix is refac
tored repeatedly until the output and input values converge. Unfortunately. this need 
not occur. 

In a common factor solution, the successive eigenvectors still maximize the avail
able sample variance and will reflect the related properties discussed under the head
ing "Principal Components." The sum of these common factor eigenvalues will equal 
the sum of the diagonal elements (trace of R), but this sum will be less than the num
ber of variables (V). Elttracting V common factors will therefore lead to some mean
ingless ones that have large, negative eigenvalues. Common factor eigenvalues can 
still be thought of as variances accounted for. The only difference is that they are esti
mates of that limited portion of the total variance which is systematic-the common 
variance!. 

Because the variance to be explained is less in a common factor solution than in a 
component solution, the structure and pattern elements will usually be smaller. Table 
11-3 illustrates this expected outcome quite clearly. One way to think of the di.fference 
is that the component elements are biased upward because they capitalize upon the 
error in the measures (Snook & Gorsuch, 1989). As a result, a common factor solution 
containing the same number of factors as a component solution will (1) estimate corre
lations better (note that in this case 1"12 = (.77)(.66) + (.55)(.44) = .75 = '12 to two deci
mal places). (2) produce smaller residual correlations (in absolute value) and, as a con
sequence, (3) produce a smaller RMS error. The common factor residual correlations 
were all less than .24 in the common factor solutions, which is a much more desirable 
outcome than either of the above component solutions. Keep in mind. however, that 
the common factor model estimates V with more parameters (the communality esti
mates) than" a component model. and so the gain in fit is not without a price. In addi
tion, the multiple correlations describing factors in terms of variables will be less than 
1.0, unlike a component solution (both were .91 here). This is why we will need to 
summarize the differences between the two basic models in the next chapter. 

MAXIMUM LIKELIHOOD AND RELATED FORMS OF CONDENSATION 

We have mentioned that the linear combinations of variables in factor analysis may 
be defined to optimize some aspect of the expected relation between a sample and a 
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population. This approach is epitomized by maximum likelihood (ML), generalized 
least-squares (GLS), and, to a lesser ex.tent, unweighted least-squares (ULS) factoring. 
These methods are all based upon the common factor model. Our discussion wil1 focus 
upon the ML method, as it its the most popular. Although all these algorithms are elt
tremely complex, their logic is fairly simple. One usually begins by assuming that the 
indi vidual measures are normally distributed, and so the sample covariance matrix will 
have a multivariate normal distribution (Wishart, 1928) whose properties may be used 
inferentially. Because of the importance of inferential testing, we distinguish between 
Rs' the sample co'rrelation matrix. and Rp, the population correlation matrix. This par
allels the distinction between sand (j in univariate statistics. The Rs is a maximum 
likelihood estimate of Rp if sampUng is random. but (1) RJ is only one of many possi
ble outcomes that could have arisen had different subjecrs been sampled and (2) al
though we are most interested in making statements about Rp. it is unknown. 

Assume that F factors have been proposed to account for the interrelationship 
among V measures. For the present, we assume that the factors are orthogonal so that a 
V x F pattern (B) matrix would completely describe Rp if it were known. Some values, 
of course, are not permissible-elements in B cannot exceed 1 in absolute value be
cause B = S, which consists of correlations. Moreover. some sets of pattern elements 
are equivalent to other sets of pattern elements even though the corresponding values 
are cli:fferent because they are rotations of one another and therefore produce the same 
estimate of Rp. Ignoring these complications, Eq. 11-2 or 11-4 can be used to estimate 
the correlations among the variables from the proposed pattern. We will use the sym
bol Rp to denote this matrix of estimated correlations to emphasize that it is used to es-
timate Rp from a given set of pattern elemen~s. A 

The better the V X F matrix of pattern elements has been chosen. the closer Rp will 
be to Rp. Indeed, the goal of all inferential approaches may be stated in terms of esti
mating unknowns (structure elements in this case) in the best way. Given that observa
tions are in fact drawn from a multivariate normal population. it is possible to esti
mate how likely (probable) any discrepancy between Rp and R. is . .ML factoring 
simply chooses the most probable set of pattern elements. Conventional ML factoring 
maximizes the correlation between factors and variables and is most traceable to 
Joreskog and Lawley (1968). Rao (1955) developed a somewhat different form of rvn.. 
factoring. If you employ ML factoring. be careful which version you use since they 
are not the same. 

As example of the application of ML principles to factor analysis, assume the cor
relations among three variables (R.,) are all .49. The investigator correctly assumes 
that one factor underlies the data. It is much more probable that the three unknown pa
rameters (pattern elements) are .7 •. 7, and .7 than that they are .9, .4, and -.6. You may 
use Eq. 11-2 or 11-4 to verify that the first set of three values produces estimated cor
relations cI-lp) of .49 which exactly reproduces Rs. In contrast, the three correlations 
predicted from the second set of estimates are .36 [(.9)(.4)], -.54 [(.9)(-.6)]. and -.24 
(.4)(-.6)J, all of which are quite different from what was observed. The first set of 
weights will be the ML pattern, in fact, because of the ex.act fit; the second set is con~ 
siderably less likely. 
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The fit is usually not e;{!lct, and so one needs an ML loss function to determine the 
best fit (least [ass). Although this function requires a knowledge of matrix theory to 
define it exactly, it is basically a sumrpary measure of the dissimilarity between the 
data (Rs) and the best~fitting solution (R,) and serves a role similar to that of the RMS 
error. Various iterative algorithms have been developed to minimize this loss function. 
Two chi~square test statistics may also be derived from the loss function to infer the 
significance of (1) the deviation of R from sphericity and (2) the residual variance. De
scriptive measures of goodness of fit are also available based upon the relative magni
tude of the loss function. The standard errors are, as always, important to consider 
since they may suggest simpler ways to define the factor and, if they are large, a poor 
solution. Unfortunately, the ML solution may fail to converge (Jackson & Chan, 
1980), unlike PrCs. A second disadvantage is that they are sometimes biased. Howev
er, they are more efficient in the sense of Chapter 4 than alternati ves. 

Usefulness of ML Factoring 

The ML approach represents the inferential tradition in psychometrics and factor 
analysis in particular. This is in contrast to the descriptive (psychometric) approach 
that was dominant until the late 1960s as represented by Pres. Despite this early domi
nance of the descriptive tradition, the foundations of ML factor analysis have a long 
history (Wishart, 1928; Lawley, 1940, 1941; Lawley & Maxwell, 1963) that predates 
the more recent innovations of Karl J5reskog and his associates (Joreskog, 1962, 1966, 
1969a, 1969b, 1971, 1978; Joreskog & Lawley, 1968; JOreskog & Sarbom, 1989). 
ML's relatively long gestation period was not due to lack of interest in application. 
Applied researchers had long expressed interest in hypothesis testing (although, per~ 
haps oddly, the inferential tests in prc, which have long been known, were and are sel~ 
dom used). The key has been the availability of computers which make the algorithms 
practicable. 

Unfortunately, the user interested in ML as a "litmus test" for the number of factors 
will likely be disappointed. ML is quite sensitive to trivial sources of variance. Sam~ 
pIes of 100 to 200, which are not extremely large in routine research, are quite suffi
cient to make the residual variance significant and may cause users to accept more fac
tors than are practical. At the same time, simulated data that conform perfectly to the 
model's assumptions will generally reveal the mathematical adequacy of lVIL's founda~ 
tions. The algorithms are also insensitive to minor violations of such assumptions as 
normality (e.g., Fuller & Hemmerle, 1966), as long as the distributions are continuous 
(Bernstein & Teng, 1989). However. this overdependence upon significance tests is 
not inherent in the method. Most major figures in the development of ML methods 
e.g., Bentler and Bonnett (1980) and Joreskog and Sarbom (1989), have long issued 
cautions against rigid use of hypothesis testing, but their warnings have gone largely 
unheeded. It is important to determine whether a small but significant source of vari
ance that causes a model to be rejected is important, unimportant, or spurious. 

To take a common ex.ample, suppose one tests a set of measures in order to see if a 
one-factor model fits the data. Because of the number of meas.ures, the set has to be 
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broken down and a.dministered on consecutive days. Unfortunately, tests administered 
on the same day will tend to form separate factors because individuals who are espe
cially motivated on the first day will do slightly better on tests administered on that 
day compared to the second day, and vice versa. This could well cause one to reject 
the notion of unidimensionality even if it contributes only a small amount of variance. 
Its effects could be considered real but trivial. However, some applications make very 
specific hypotheses about the number of factors and thus dictate stricter use of hyPoth
esis testing. 

Two points limit the practical ,!dvantages of "NIL over PIC. First, PrC estimates are 
maximum likelihood estimates if all variance is systematic (unity diagonals). This as
sumption 1s certainly false in any given study, and so ML estimates will normally be 
less than l and thus differ from PrC estimates, but the difference may be small. ML 
can be employed with reliability coefficients or other prespecified communality esti
mates as fixed parameters. However, users most commonly treat the diagonals as free 
parameters in the sense of Chapters 4 and lO. 

Second, all forms of estimation become nearly identical as the communalities in
crease (see Table 11-3). Since the PrC method is more straightforward and guaranteed 
to provide a solution, the:ML method seldom has any advantage purely as an approach 
to condensation when nearly all the total. variance is explainable. In other words, even 
though Pre falsely assumes that all variance is systematic, it tends to be either (1) con
venient when the factor structure is well defined or (2) inappropriate because the vari
ables intercorrelate so poorly apdlor are so unreliable that flO method of exploratory 
factor analysis will be fruitful. 'Moreover, l.V£L solutions can be unstable when vari
ables correlate highly. This is not true of PrC. In sum, proponents of ML favor it be
cause of its inferential properties and its apparent advantages as an estimation device. 
We feel its advantages in exploration are more apparent than real. It may be useful to 
show that a factor does not account for a significant portion of variance, as when an in
vestigator proposes that a set of measures are unidimensional and the residual after ex
tracting this first factor is nonsignificant. However, this support of the nun hypothesis 
is often unlikely because NIT.. inferential tests are so powerful. The real power of ML 
is in confirmatory applications. 

In the present case, the ML and principal axis results were nearly identical, which is 
not uncommon. 

Variants on ML Factoring 

The major difference among ML, GLS, and ULS are in the loss function that they 
minimize. In particular, ULS minimizes the RMS error between R.r and~. We have 
noted that th<! prc method does this when there are unities in the diagonal, so that it 
is a special case 1.1: ULS, but ULS also provides solutions in which these values are 
less than 1 (common factor analysis). ULS is more suitable than NIL or GLS for 
highly nonnormal data. GLS minimizes a weighted sum cif residuals. It gives more 
weight to those variables correlating most highly with the other variables in the 
analysis (having the largest squared multiple correlation) than to other variables. 
Browne (1984, 1987) has noted that ML's chi-square estimates are more likely to be 
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inflated when the distribution is Ratter than normal (platykurtic) and, perhaps, skewed. 
The result is a kind of tradeoff between efficient parameter estimation and accuru[e es
timation of chi-square. 

orHER METHODS OF CONDENSATION 

In adclition to the methods of condensation that have been discussed, numerous others 
are available. Most are now only of historical importance. Some are simply computa
tional shortcuts that are now unnecessary with computers. Others are forms of princi
pal !l;,(es that differ in terms of their communality estimates. Differences among these 
common factor models are generally slight and will disappear as the average correla
tion and number of variables increase. Any method that defines a factor is a potential 
approach to factor analysis, including. in principle, random definition. However, initial 
solutions are useful to the extent that they condense variance efficiently, and so one's 
needs can easily be met with the methods we have presented. Since you may en
counter the names of some of these methods, we will describe them briefly. 

1 The square root method (also known as the solid staircase and diagonal method) 
defines a factor as an individual variable called the pivot. Each variable is therefore rep
resented by its unique variance relative to its predecessors. Thus, factor I is the first 
pivot variable, and 51 is the vector of correlations between each variable with this pivot. 
Factor n is the second pivot partialling out the first pivot, and S1l contains the correla
tions between the variables and this second pivot, partialling out the first pivot, etc. 

2 Image analysis (Guttman, 1953) is a hybrid of component and common factor 
analysis which operates upon scores predicted from the remaining variables in the 
analysis instead of observed scores. Prediction produces an image-score matrix which 
can then be factored by PrC or any other approach. Image analysis is like a component 
solution in that factors are actual linear combinations (of scores in the image score ma
trix), but it is like common factor analysis in that it attempts to limit analysis to com
mon variance. Its major drawbacks are that (1) structure elements are co variances of 
the image vw.iables with linear combinations of the image variables. which are more 
difficult to interpret than variables or factors correlations; (2) it explains the variance 
common to a particular set of variables, whereas common factor.theorists conceptual
ize common variance in broader terms; and (3) computer simulations suggest that it 
may not reproduce data as well as other methods. 

3 Miniml1m residual factor analysis (minres, Harman & Jones, 1966; also see 
Comrey, 1973) basically circumvents communality estimation by operating entirely on 
the off-diagonal elements of R. The resulting h2 values provide the proper communali
ties, by definition. The major difference between the two is that Comrey derives one 
factor at a time, whereas Hannan and Jones simultaneously extract a specified number 
of factors. The criterion for determining sets of structure elements is the obverse of the 
PrC analysis. PrC maximizes the variance explained; mimes minimizes the RlVfS 
error, and so it is effectively an ULS solution. 

4 Alpha analysis (Kaiser & Caffrey, 1965; also see Bentler, 1968) maximizes the 
coefficient ex reliability of the factors. It has some of the flavor of the ML method be
cause it seeks to generalize from a sample to a population. However, NIL estimation is 
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concerned with generalizing to a population of subjects, whereas alpha analysis is Con_ 
cerned with generalizing to a population of measurell. An alpha factor produces the 
highest correlation with the universe of possible variables and is therefore [ne best par
allel form. Unfortunately, these properties are lost following rotation, as they apply to 
only the initial solution. 

These and other approaches to condensation are presented in works listed in the 
Suggested Additional Readings. Gorsuch (1983) provides easily understood descrip_ 
tions of many different factoring methods, and Harman (1976) provides step-by-step 
algorithms. Also see Thurstone (1947). 

DETERMINING THE NUMBER OF FACTORS 

A rule must ~e used to determine the number of factors to be retained in e~ploratory 
factor analysis. This rule is largely independent of the method used to condense vari
ance. Several rules have been proposed, of which the following are the most common, 
but none is a litmus test. 

1 The Kaiser-Guttman (Guttman, 1954: Kaiser, 1960,1970) rule retains Pres with 
eigenvalues of LO or greater. This is probably the most widely used rule because com
puter packages commonly employ it as a default even in common factor solutions. The 
rule simply requires that a component account for at least as much variance as an indi
vidual variable. Unfortunately, the rule applies to the unknown population values 
rather then the observed sample values, and, as was shown in Fig. U-S, earlier eigen
values are biased upward. Moreover, the more variables there are, the less variance a 
factor needs to account for to reach criterion: A faci:or with an eigenvalue of 1.0 ac
counts for 10 percent of the variance when there are 10 variables but only 5 percent of 
the variance when there are 20 variables. Kaiser (1960) presented another rationale: A 
component will have negative reliability if its associated eigenvalue is less than 1. 
However, Cliff (1988; also see Gorsuch, 1973, 1983) has called this rationale into 
question, and it is not recommended, despite its wide use, because it tends to suggest 
too many factors. 

2 Figure 11·5 is a scree plot of successive eigenvalues against their ordinal posi
tion. "Scree" denotes the rubble at the bottom of a cliff. which geologists disregard in 
measuring the cliff's height. Cattell (l966b) used the term analogically to determine 
the number of factors by noting that the problem in factor analysis is to separate im
portant early factors from the rubble of random error. The plot is therefore used to lo
cate a transition point in the function. Whereas the Kaiser-Guttman rule employs ab
solute values of tl,Ie eigenvalues, the scree rule uses relative changt;:s in these values. The 
scree plot typically suggests fewer factors than the Kaiser-Guttman rule when the aver
age level of correlation is low andlor the number of variables is large. Moreover, these 
excluded factors are typically unimportant. One should look at the scree plot even if 
some other criterion is used to determine the number of factors. The main disadvantage 
of the criterion is its subjectivity. See Gorsuch (1983) for further information. 

3 Hom (1969), Humphreys and Ilgen (1969). and Montanelli and Humphreys 
(1976) suggest factoring randomly generated data ~sing the same number of subjects 
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as variables as in the real study. The simplest form of their approach is to compare 
the two resulting scree plots. The earlier eigenvalues for the real variables should be 
larger than their random counterparts, but the later values should be smaller. The 
crossover point indicates where the random factors begin. Figure 11-5 illustrates this 
logic. 

4 It was once common to base factoring upon the proportion of variance accounted 
for, and computer packages still make this an option. There is no magic number, such 
as 90 percent, since this value depends heavily upon the average correlation, which in 
turn depends upon many considerations. Consequently, this rule is basically inapplica
ble as a device to detennine the number of factors, although the data may be relevant 
on other grounds, e,g., comparing across studies. 

5 There are two broad classes of inferential (i or C2) tests usable in ML, GLS, 
and, in weaker fonu, PrC factoring. One can test for sphericity by testing for the 
equality of the eigenvalues either in R itself (Bartlett, 1954) or in the residual matrices 
following factor extraction (Bartlett, 1950, 1951). Testing R concerns whether there 
are any factors to be extracted; testing residual matrices tests whether those already 
extracted are sufficient. In general, these tests often lead to the acceptance of trivial 
factors (Gorsuch, 1973). As we have noted, statistical significance is necessary but not 
suffici~nt to warrant retaining a factor. 

6 One cl:!n use the above data to test the significance of extracted factors. For ex
ample, assume that the residual 0 2 following extraction of one factor is 50 and the 
residual 0 2 following extraction of a second factor declines to 20. The di fference be
tween the two is also a a2 variable with degrees of freedom equal to the difference in 
degrees of :freedom between the original tests. It tests the specific contribution of the 
added factor in explaining the variables. The comments made about residual testing 
also apply here. 

7 We have already noted that a common factor eigenvalue must be nonnegative 
because it is interpretable as a variance. However, this too is a necessary but not suf.fi
cient reason to retain a factor. 

8 Various means of testing the residual (partial) correlations andlor covariances 
have recently gained prominence. Specifically, Velicer (1976; Zwick & Velicer, 1982, 
1986) proposed extracting factors to minimize an index based upon the average 
squared residual correlation (minimum average partial or MAP). The intent is to pro
vide at least two salients per component, i.e., to define group factors whose importance 
we will consider below. It seeks to have a factor most heavily reflect the co variances 
(off-diagonal elements) rather than the variances (diagonal elements) of R. Velicer has 
shown that this method correctly infers the correct number of simulated factors very 
well, and the criterion is incorporated in Gorsuch's UniMult program. Although future 
research may reveal shortcomings, it appears to be a very sensible criterion. 

9 Any results should make theoretical sense. Quite apart from the above criteria, 
you have extracted too many factors for the data when fewer than two variables are 
salients on the rotated factors. Factors of interest describe things that variables have In 
common. By definition, there must be at least two defining variables for the concept of 
common to apply. The next chapter considers simple structure, which is a way to de
fine this more explicitly. 
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Consequences of Choosing a Given Number of Factors 

Exploratory factor analysis is precisely that, a means to explore data for future re
search. The utility of the anal.ysis depends upon the number of factors retained for ro
tation. Many users of factor analysis slavishly adhere to the defaults of their computer 
packages. This often arises because they are not aware of the details of factor analysis. 
Any method can produce misleading results if used in too rigid a fashion, and always 
following the defaults of a cpmputer package is one obvious way to be rigid. We 
strongly urge looking at several alternative factorings, particularly exploring different 
numbers of factors. 

Unfortunately, there is no completely safe way to err in choosing the correct num
ber of factors. Extracting too many factors dilutes the structure of the rotated factors, 
reduces the number of salients, and thereby makes the resulting factors more difficult 
to interpret. Adding a component always increases the variance explained, but it low
ers the average structure loading. On the other hand, you may miss subtle, but poten
tially important, facets of the data if you retain too few factors. 

The structure of a given PrC is not affected by adding more PrCs, but a rotated fac
tor's structure can change dramatically (a given principa{ axis structure may change 
slightly depending upon the method of communality estimation). Moreover, two sets 
of results that differ only by chance can appear quite different. For example, suppose 
two investigators conduct identical studies, but their respective values of A.4 are 1.00 t 
and .999. They will, respectively, retain three and four factors if they follow the 
Kaiser-Guttman rule slavishly, but the essential identity of their results can be demon
strated quite simply using methods discussed in Chapter 13. 

CAUSAL INDICATORS 

As noted earlier in the chapter, Bollen and Lennox (1991) define a causal indicator as a 
combination that is the outcome of its indicators, such as socioeconomic status. Another 
example common to academics is to define merit in tenns of scholarly productivity, 
teaching, and service to the university. Assume that suitable measures of these three 
terms exist. It can be seen that the considerations applying to a causal indicator are quite 
different than those that apply to common factors ("effect indicators" in Bollen and 
Lennox's terminology) and, in usual application, components. Among the differences 
Bollen and Lennox cite between causal and effect indicators, two stand OUt. 

1 Causal indicators need not be internally consistent. Because, in fact, measures of 
the three aspects of academic merit are not well defined, there has been much debate 
about the correlation between scholarship and teaching. From the present standpoint, 
this is irrelevant. Holding the other twa measures constant, someone who has a highly 
scholarly publication record is more meritorious than someone who is less productive. 
The same holds for teaching. It is indeed possible for two aspects of a causal indicator 
to be negatively correlated yet both be appropriate. Negative correlations can arise be
cause individuals have to choose between activities that define the construct. 

2 Breadth of definition is extremely important to causal indicators. [t is again easy 
for many to relate to the idea that equating academic merit with scholarly productivity 
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or, even more narrowly, number of publications, is too narrow by virtually any criteri
on save those applicable to the definition of cornman factors. If the same variables 
defining a causal indicator such as academic merit were effect indicators, they would 
be considered multidimensional and thus would not belong to the same factor. The 
need for a causal indicator, like any other composite measure, arises when a single ob
servable fails to capture the meaning of a concept. But the failure in the case of causal 
indicators is a lack of something systematically measured by the other variables. How
ever, the failure present with effect indicators arises because the observable describes 
something beyond the construct such as random error or another factor. If academic 
merit was equated with the sum of the above three indicators, it would become, in ef
fect a component rather than a causal indicator. Strictly speaking, one would have no 
way to incorporate events that were not provided for in the definition. 

We strongly agree with Bonen and Lennox's (1991) conclusion that investigators 
should be careful in defining the measurement model appropriate to their problem. 
They also note a problem associated with evaluating causal indicators. The criteria for 
good effect indicators can be established in terms of the fit of a factor model. Bollen 
and Lennox suggest that causal indicators be judged by their external correlates. How
ever, causal indicators are often ends in themselves, as in salary and promotion deci
sions, where the idea of a correlate mayor may not be clearly applicable. In such 
cases, one must rely upon a well-defined domain of content to justify the combination. 

Factor analysis is a broad set of procedures designed to accomplish a variety of ends. 
This chapter considered finding (1) groupings or clusterings of variables, (2) which 
variables belong to which group and how strongly they belong, (3) how many dimen
sions are needed to explain the relations among the variables, and (4) a frame of refer
ence (coordinate axes) for describing the relations among the variables more conve
niently (Chapter 12 considers the additional goal of determining scores of individuals 
on such groupings). 

What have been called factors are derived from combinations of variables, but 
combinations play different roles in different applications. In some cases, observable 
variables are viewed as effects of a broader, underlying variable, and so the underlying 
variable is only partially defined as a combination. In other cases, observable variables 
are simply transformed because the transformed variables are more useful than the 
original ones, but the transformed variables collectively have no properties that are not 
implicit in the original ones. As in the first case, an underlying variable may also be 
concei ved of as broader in meaning than the observables that are combined to define 
it, but the underlying variable is viewed as the outcome of the observables. Most of 
this chapter was concerned with the first two of these meanings. Thus, factors may be 
viewed either as abstractions that have meaning beyond the specific variables that de
fine them, or simply as linear combinations of observables and therefore observables 
in their own right. This is the traditional distinction between common factor and com
ponent analysis. Although some authors include only the term "factors" under the first 
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of these headings, we also show that the second is a special case of the first. One con
sideration is that practical differences between the two tend to disappear as variables 
become more highly correlated. 

It is most important that factor analysis not be used as a basis for blind inquiry. 
Successful analyses require variables that intercorrelate highly, are reliable. and are 
defined on large samples. Marker variables (Le., variables with known properties) are 
very useful. In general. considerable care should be given to the choice of variables 
and subjects. 

The distinction between exploratory and confirmatory factor analysis is very impor
tant. Exploratory factors are defined to achieve a mathematical objective, such as max
imizing the variance accounted for. Exploratory factor analysis consists of two stages. 
In the first. variance is condensed, but the resulting factors are difficult to interpret. 
The secorid stage rotates these factors to make them more meaningful. In confirmatory 
analysis. factors are defined to achieve substantive criteria (e.g .• because a theory 
states that particular variables are related to that factor), and the issue is how well they 
fit the data. 

The general model relates a data matrix to factors, and variables are expressed as 
weighted linear combinations of the factors. Common factors relate to several vari
ables. whereas unique factors relate to individual variables. Unique variance is treated 
as 0 in the component model but is an integral part of the common factor model. The 
weightings are provided by pattern elements. The communality (h2) of a variable is de
fined as the squared multiple correlation between it and the set of factors. The average 
of these h2 values is one measure of how weU the model fits, the proportion of vari
ance accounted for. Conversely, one may obtain multiple correlations predicting fac
tors from variables, which describe how well defined the factors are. These mUltiple 
correlations are LO by definition in a component solution. Factors are not fixed enti
ties, as they may be rorated to make them more meaningful, but the process of rotation 
does not affect the individual h2 values nor the overall fit. 

The data matrix that is analyzed may consist of raw scores, deviation scores, or z 
scores, among other possibilities. Choice of data detennines what properties of the 
data affect the outcome. The most common choice is to factor z scores, which elimi
nates differences among variables in their location and variability. Factoring raw 
scores aHows both to contribute to the outcome. and factoring deviation scores allows 
differences in variability but not location to affect the outcome. The actual operations 
are perfonned upon measures of relationship which, in the case of z scores. are PM 
correlations. If raw or deviation scores are used, the corresponding measures are mean 
sums of products and co variances, respectively. The diagonals of the correlation ma
trix contain what are called communality estimates. These are unities in a component 
solution and numbers less than unity in a common factor solution, but alternative 
forms of common factor analysis suggest the use of different communality estimates. 

Factors may be chosen so that they are orthogonal (uncorrelated) or oblique (corre
lated) with respect to one another. [f they are orthogonal, the observed correlations be
tween pairs of variables may be estimated as the sum of the cross products of their 
corresponding pattern elements over vectors. The better the fit of the model, the better 
these correlations are estimated. Discrepancies between observed and estimated carre-
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lations provide a loss function that serves as a measure of fit in several formal models. 
StrUcture elements are correlations between variables and factors. In an orthogonal so
lucion, these are numerically equal to the pattern elements, and so they may be used to 
estimate correlations. 

Factors may be extracted successively by partialling each successive one from the 
data and repeating the process wHh new factors. This will always provide orthogonal 
factors. Alternatively, two or more factors may be obtained in a single step by simulta
neous factoring. Simultaneous factors may be orthogonal or oblique. Exploratory fac
tors are nearly always extracted successively; confirmatory factors may be extracted 
either way, but simultaneous factoring is more common. 

Factor analysis may be considered from either an algebraic or a geometric per
spective. Variables are algebraically vectors because they are sets of numbers, and 
they are geometrically vectors because they may also be expressed geometrically as 
directed line segments. Collectively, they form a matrix since a matrix may be de
fined as a set of vectors. The cosine of the angle separating pairs of vectors is equiv
alent to their correlation expressed algebraically. Components have a total length of 
1.0, and COlll.lIlon factors have a length that equals the square root of their variance 
accounted for in the common factor space they generate. Any set of F vectors forms 
a basis of the space defined by F factors as long as they are independent; i.e., none 
can be expressed as linear combinations of the resL However, they are most easily 
visualized as dimensions when they are orthogonal because we are most used to 
dealing with right-angle coordinate systems. In practice, less than a complete basis 
(i.e., a semibasis) is obtained if it provides a sufficiently good approximation. In ad
dition, one need not think of factoring in geometric terms if it is not useful in a given 
situation. 

The complete common factor model analyzes observed variance into three parts: 
error variance, specific variance, and common variance. Error variance is unreliability 
(measurement error), specific variance is systematic variance that is not shared with 
other variables in the model, and common variance is shared variance. The unique 
variance equals the error and specific variance. Although it is somewhat difficult to 
separate error and specific variance, one measure may be obtained by factoring the 
data using reliabilities as communality estimates. The difference between the resulting 
coefficients €X and h2 values estimates the specific variance, and 1 - €X estimates the 
error variance. Even though a set of measures is urrifactor, this does not mean that they 
are redundant because their specific variances may have incremental validity over the 
common factor(s). 

A salient on a factor is a variable that is highly correlated with that factor. Some
what arbitrarily, a value of .5 is considered high. Different types of factors are denoted 
by the number of salients and their signs. All variables are salients on a general factor, 
which makes them difficult to interpret because one does not know what does not be
long to the factor. A group factor is one on which some, but not all variables are 
salients. They are much easier to interpret because they are defined by the common 
properties of the salients. General and group factors are considered common factors, 
though not necessarily in the common factor sense. They may be bipolar if some 
salients correlate positively and other negatively, or unipolar if all correlations are in 
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the same direction. Bipolar factors may be appropriate outcomes of the relations in the 
data, as when some variables are associated with one pole of the factor and others are 
associated with the other pole. However. they very commonly emerge as artifacts of 
either scoring or the method of factoring. Two unimportant type of factors are singlets 
which are defined by only one salient, and null factors •. which are defined by none. I~ 
neither case is it possible to define a unifying property of the factor; their presence 
suggests refactoring with fewer factors or deleting variables. 

There are three main ways to condense data. One is to define the content rationally. 
For ex.ample, in centroid factor analysis. the factor is the average of the variables. An
other is to optimize a property of the sample data. This is illustrated by principal com
ponent analysis (a component approach) and principal axis analysis (a generic name 
given to several common factor approaches that differ as to communality estimation). 
The third ~ajor way is to attempt to estimate popUlation factors from sample data. 
This is illustrated by maximum likelihood analysis. The correlation matrix plays a 
vital role in understanding the results. One should look (1) at the absolute magnitUdes 
of the correlations to decide whether factoring is appropriate, (2) for groupings of vari
ables in the data. (3) at the signs and sizes of the correlations within groupings, and (4) 
at the size of the correlation between groupings. If the latter are uniformly very low, 
say, less than .3, subsequent rotation should be orthogonal for simplicity. If not, the 
ch.oice of orthogonal or oblique rotation is less clear. The correlation matrix is said to 
have positive manifold when the sum of each variable's correlation with the other vari
ables is positive. 

Centroid condensation is basically obsolete. but it is included here because it ap
pears in other contexts and has some properties of interest. It (1) is eas:i1y visualized. 
(2) is highly suitable to h~d calculation. perhaps being a useful way to understand the 
nature of factor analysis, (3) is robust, (4) maximizes the absolute values of structure 
and pattern elements, (5) follows from the correlation of sums. (6) provides the bal
ance points of the variables, and (7) appears in item analysis and similar sources, e.g .• 
as uncorrected item-total correlations. 

Principal components are obtained from what are called the eigenvectors and eigen
values of the correlation matrix. Its main properties are that (1) it maximizes the vari
ance ex.plained for individual factor loadings in tenns of squared factor loadings; (2) it 
does the same for the collection of factors; (3) the individual eigenValues equal the 
variances accounted for: (4) the eigenvalues are always 0 or greater and never nega~ 
tive; (5) the number of nonzero eigenvalues equals the basis (dimensionality) of the 
correlation matrix; (6) the sum of the eigenvalues equals the matrix trace (sum of com
munality estimates) which. in this component case, is also the number of variables); 
(7) PrCs m:e both geometrically orthogonal (the sum of the pattern elements for pairs 
of factors over variables equals zero) and statistically orthogonal (statistically indepen
dent); (8) the product of th.e eigenvalues equals the determinant of (he correlation ma
trix. a measure of multidimensional variance that has other useful properties; and (9) 
various 'inferential tests are available. In principal axis analysis. similar properties 
hold. However, the matrix: trace will no longer equal the number of variables, although 
it will continue to equal the sum of the communality estimates, and large negative 
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eigenvalues are possible. In general, common faeror solutions differ numerically from 
component solutions in that common factor pattern loading~ tend to be smaller in ab
solute value and a given number of common factors will typically reproduce correla
tions better than a given number of components. However, this is gained at the ex
pense of estimating additional parameters. 

Maximum likelihood factors have properties similar to those of principal axis solu
tions, but they attempt to estimate popUlation parameters and provide more detailed in
ferential (chi-square) tests of significance. They differ from generalized least squares 
and unweighted least squares in telms of the loss function they minimize. Generalized 
least squares may be more suitable in popUlations whose distributions are flatter than a 
normal distribution and perhaps skewed. Other methods of variable condensation were 
considered, but these are basically variations upon the method of principal axes or ob
solete for various reasons. 

The next issue concerned how to determine the number of factors. Perhaps the most 
popular rule was devised by Kaiser and Guttman, which is to select the same number 
of factors (either components or common factors) as the number of principal compo
nents whose eigenValues exceed 1.0. However, the amount of variance a given factor 
that meets this criterion explains depends upon the number of variables in the unalysis. 
In ad~ition, the earlier sample eigenvalues have a positive bias, and the later ones have 
a negative bias. There are other problems associated with this rule. Cattell's (1966b) 
scree criterion involves plotting the values of the successive eigenvalues and separates 
the early from the bite values based on dividing the function into two segments. A 
variation upon this principle is to generate a random correlation matrix with the same 
number of variables and sample size and use the pomt at which the scree plot for the 
real data falls below the scree plot for the random data as the criterion number of fac
tors. Inferential tests upon (1) the residual variance and (2) the significance of extract
ed factors are still other possibilities. It has become increaSingly popular to infer the 
number of factors from the data in the residual correlation matrix, specifically the min
imum average partial. However, the major criterion is that the resulting factors should 
be meaningful after rotati.on. Unfortunately, extracting too many or too few factors can 
cause problems of this type. 

The final section considered the situation in which observable variables are viewed 
as causes of a composite measure, as when income and education are used to define 
socioeconomic status. The considerations are different than the usual application of 
common factor analysis in which the converse is assumed. In this case, internal consis
tency is of minimal importance because two variables that might even be negatively 
related can both serve as meaningful indicators of a construct. A second ru.ajor way in 
which this situation differs from common factor analysis is that the 0bservable indica
tors need to be sampled broadly to capture the meaning of the construct. Evaluating 
the appropriateness of the observables is much more of a problem than it is in common 
factor analysis. If relevant correlates of the construct are available, it is important to 
consider the resulting validities. However, causal indicators are also used in evalua
tions where there may be no obvious criterion. In these cases, one must rely upon care
ful specification of the construct's domain of conteDt. 



490 PART 4: FACTOR ANALYSIS 

SUGGESTED ADDmONAL READINGS 

Bernstein, I. H. (1988). ApplIed muldllariate CIIIlJlysis. New York: Springer-Verlag. 
Gorsuch, R. L. (1983). Factor analysi.J. Hillsdale, NJ: Erlbaum Aasociates. 
Guadagnoli, E •• &: Velicer, W. F. (l988). Relation of sample size to the stability of component 

patterns, Psychological Bullstill, 103. 265-275. 
Hammer, A. G. (l911). Elem8ntary matrix algebra/or psychologi.Ju and social scillnlUts. Rush-

cutters Bay, Austnlia: Pergamon Press. 
Hannan, H. H. (1976). MaderRfactor a1llllysi.J (3d ed., rev.). Chicago: University of Chicago 

Press. 
HIIlTis, R. I. ([98S). A primer 0/ multivariate analysi3. Orlando, FL: Academic Press. 
Hobn, F. B. (J973). Elemmrary matriJ:algebra (3d ad). New York: Macnu11an. 
Huberty, C. J., &: Barton, R. M. (1990). Review of applied multivariate &tatiatica teXt books. Ap

plied Psychological MeaslU'tl11Ulnt, 14, 95-101. 
Searle, S. R. (1982). Matra algebra useful/or sratistic.!. New York: Wiley. 
Note: Gorsuch and Hannan are standard textbooks on factor analysis. If you plan to work exten

sively with factor analysis or any other multivariate procedure, you sbould become familiar 
with multivarlato analysis and matrix algebra. Huberty and Barton (1990) have surveyed the 
several books on multivariate analysis that were published atOund 1988. Hammer, Hobn, and 
Searle are all books 00 matrix algebra written for social scientists. Finally, Guadagnoli and 
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CHAPTER OVERVIEW 

EXPLORATORY FACTOR 
ANALYSIS II: ROTATION 

AND OTHER TOPICS 

This chapter begins by considering the process of rotation or transforming initial fac
tors. Rotations place the variables nearer the factors designed to eK.piain them, concen
trate the variance of variables upon fewer factors, and, usually, provide factors that are 
more nearly equal in importance than the original factors. The problem is first consid
ered from a geometric perspective, using the equivalence of the correlation coefficient 
to the cosine of an angle. Rotation is simplest with two orthogonal factors. We then 
consider several orthogonal factors, followed by oblique factors. Oblique rotations 
often allow factors to fall closer to gl'OUpS of variables than orthogonal rotations, but 
they are more complicated; e.g., the pattern and structure become different. Investiga
tors must decide whether the better factor definition is worth the added complexity. We 
then describe Thurstone's criterion for rotation, simple structure. This led him to the 
use of reference vectors, which are axes orthogonal to all factors save one. The topic is 
discussed because users of factor analysis will encounter it, even though the concept is 
largely obsolete. Rotations are now also usually analytic. We discuss three examples 
of analytic rotations, quartimax and Yarimax, which are orthogonal, and promax, 
which is oblique. 

Factor analysis usually concerns variables and factors, but some applications COD

cern individual scores and factor scores. The basic factor analytic model is easily ex
tended to this situation. The goal is to define factor weights that provide these scores. 
This may be done ex.plicitly in a component solution, but common factor scores can 
only be estimated. and this estimation is not unique, an outcome known as factor score 
indeterminacy. Although this may sometimes cause problems. it is not a reason to 
reject common factor analysis because (1) exact component weights are subject to 
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sampling error and (2) scores on composite variables are usually estimated from 
salient variables and not explicit weight matrices. 

A factor analysis provides a large number of matrices, vectors, and scalars, which 
we summarize. Despite the large number, virtually everything one needs to know can 
be derived from the structure matrix (S), the pattern matrix (B), and the factor correla
tion matrix (cP). This reduces to knowing S or B in an orthogonal solution, as they will 
be equal and an the corretations in <t> will be zero. 

The neltt section concerns the common factor modeL We suggest that the common 
factor model is conceptually superior to the component model. as it reflects many 
users' implicit view that constructs are broader than the measures that define them. 
Alternatively, the component model is superior in practice because a solution is 
guaranteed; even the most widely used common factor algorithms may fail to provide 
a solution. 

Communality estimation involves what entries to place in the diagonals of R. The 
larger the numbers placed in these positions, the more variance there is to be explained 
and, as a result, the more factors that are needed. However, making the numbers too 
small will produce anomalies such as Heywood cases, in which the factors explain 
more than 100 percent of a variable's variance. A factorable matrix has the important 
mathematical property of being proportional to the product of another matrix and its 
transpose (the second matrix turned sideways). Such matrices are called Gramian. A 
Gramian matrix actually can be eltpressed as the product of an infinity of matrices and 
their associaced transposes. For example, R can be derived from a matrix of z scores 
(Z), but it can also be derived from structure matrices (S) of initial and rotated solu
tions. The number of factors needed to explain a matrix: is the rank of that matrix; 
communality estimation can be viewed as a way to minimize the rank of R. 

There are several suggested methods for deriving communality estimates. We first 
consider unities (component analysis). Spearman's (1904) hypothesis that aU tests of 
mental ability share one and only one common factor (g) provides explicit communality 
estimates as the square of each variable's correlation with g. Other commonly used prer 
cedures are ( L) statistical inferences about rank, (2) iterating the soLution until the com~ 
munality estimates equal the communalities' (h2) values, (3) the squared multiple corre
lations between each variable and the remaining ones, (4) the internal-consistency 
reliability (coefficient a), and (5) direct estimation, as in maximum likelihood. The last 
named has become especially popular. 

We then compare the component and common factor solutions. Nex.t, we note some 
difficulties with defining common variance. The general topic continues with an em
pirical discussion of the effects of the communality estimates as a function of the num
ber of variables and their average correlation. This supports our suggestion that a com~ 
ponent model be used to guarantee a solution unless the number of variables is small 
and the average correlation low. 

We have thus far assumed a large number of subjects relative to variables and cor
relations computed among variables. However, in other situations the reverse is true or 
occasions replac~ either subjects or variables as a mode in the analysis. The most com
mon alternative is a Q design in which the roles of subjects and variables are reversed. 
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This raises the question of whether or not to standardize variables to the same mean 
and standard deviation. This should not be done if the variables are measurable on the 
same scale (commensurate) so that differences among variable distributions are mean
ingful, but should be done if these differences are arbitrary. Newer three-mode factor 
analytic models are discussed that allow subjects, variables, and a mode like occasions 
to be included in the same analysis. 

The same method of variable condensation need not be used to extract all factors. 
Ad-lib factoring involves using different procedures to extract different factors. Most 
commonly, some of the factors are individual variables (pivots. as in the square root 
method discussed briefly in Chapter 11). Maintaining the orthogonality of these factors 
with respect to others allows their effects to be partialled. 

Just as a factor may be viewed as an abstraction of variables, so maya higher-order 
factor be viewed as an abstraction of lower-order factors. Examples of this approach 
include such common tests as the Wechsler scales. We then discuss the many ways 
that a factor analysis can be misleading. A short postscript concludes the discussion of 
exploratory factor analysis. 

With some rare exceptions (see Bernstein. 1988. for an example). initial factors are 
usually rotated to make the factor solution more interpretable. As this section will 
show, proper rotarian will 

1 Strengthen the relation between variables and factors in that the factors will bet
ter represent variables that belong to it and not represent variables that do not belong 
to it. Numerically, this means that pattern andlor srructure elements will tend to be ei
ther very high (close to 1.0) or very low. Geometrically, this means that the vector rep
resenting a particular factor will fall closer to groups of vectors that represent particu
lar clusters of variables. 

2 Concentrate the variance shared by two variables that correlate highly on a sin
gle factor rather than on several factors. In particuHlr, if the variables correlate posi
tively. the structure elements on the factor they share will have the same sign as their 
correlation. This pair of variables will tend to have the same sign on some factors and 
different signs on other factors in the initial solution. 

3 Rotation will tend to level the variances of factors. i.e., make them more nearly 
equal in magnitude. The most common methods of condensation produce factors that 
account for progressively less variance and therefore are progressively less important. 
For example, Table 11-3 indicated that the first Pre accounted for over twice the vari
ance of the second (.58 versus .27). Rotating can produce two factors that each ac
count for nearly equal amounts of variance even though they do not change the total 
variance accounted for from .85. This process of leveling often makes the numbers of 
salientS on 'each rotated factor more nearly equal in number. However, most solutions 
will still tend to contain a few major factors that account for most of the variance and a 
series of factors of lesser importance. 
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The rotation of factors makes the analogy between factoring and hyperspace geome
try most useful. Figure 11-4 illustrated the placements of two centroid vectors (fac
tors) in a 2-space of four variables. There is nothing to prevent one from rotating 
these two-factor vectors about the origin where the vectors touch. In an orthogonal 
(uncorrelated) rotation, the initial factors (say, I and IT), which are almost always or
thogonal, are each rotated by the same amount to produce rotated factors l' and ll' 
(primes will be used to identify rotated factors; although it usually matters which ini
tial factor is identified as I, II, ... , since they are usually extracted to account for pro
gressively less variance, it is arbitrary whlch rotated factor is labeled I', II', etc.). In 
an oblique (correlated or nonorthogonal) solution, each factor is rotated by a differ
ent amount. The term "oblique" 1s used because the rotated factors fonn angles that 
differ from 90· . 

Figure 12-1 illustrates the process of rotation geometrically using the two principal 
axes from the six-variable problem in Table 11-2. Figure 12-la contains the initial so
lutions. Note that the two axes are each rather separated from the two groups of vari
ables; indeed, each axis falls roughly midway between the two groupings, PrinCipal 
axis I thus relates to both groups to an approximately equal elCtent, as does principal 
axis II. Figure 12-1b contains two orthogonal factors. l' and II', produced by rotating 
each of the principal axes by 45'. Each of these rotated factors (axes) falls much closer 
to the groupings than the original factors. Because they are at right angles. they fonn a 
new Cartesian (right-angle) coordinate system that can be used in place of the original 
one, Figure 12-1c contains an oblique rotation in which the two original factors are ro
tated by different amounts, T~ese fall still closer to the groupings, but it is mor-e com
plicated because the coordinate system is not Cartesian, It can be used as a coordinate 
system, but with more difficulty. However. the two oblique factors each fall closer to 

the relevant groupings. The outcomes in Fig. 12b and 12c each have advantages and 
disadvantages that we will discuss later in this section. This geometry would be the 
same had the initial factors been obtained through the PCC, ML. or any other method; 
indeed. the ML results look virtually identical to the one presented. 

The structure elements for the six variables can be read from the rotated factors just 
as they were from the unrotated factors by projecting the variables perpendicularly 
onto each factor (see Fig. 11-1 or 11-2). Each variable's structure element on a rotated 
factor is the point where the perpendicular line meets the rotated factor. Equations 
12~1 provide the appropriate solution when two orthogonal factors are each rotated by 
8°, producing a new pair of orthogonal factors. 

rjI' ::: (cos a)(rj)) + (sin B)(rJu) 

')\1' ::: (-sin 9)(rj[) + (cos 8)(rj£I) 

where 'iI" rjll' = structure elements for variable j on rotated factors I' and II' 
rjIt rjIt == structure elements for variablej on original factors I and II 

(12~la) 

(12-1b) 

Note that factors I' and II' are each affected oy both 'initial factors. The signs of all the 
structure elements for a given factor may be reversed, a process known as reflection. 
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(a) Original principal axis solution 
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FIGURE 12·1 (8) Principal axis structure for the data Table 11-2, (b) 4S'otthogonal rotaUon, and (a) an oblique 
(promax) rotation. 

This is equivalent to rotating that factor by 180', In addition. Eqs. 12-1 apply to the 
pattern elements as they are numerically equal to the strucrure elements. 

Table 12·1 lists the orthogonally rotated factor structure derived from the principal 
axis solution in the previous chapter (Table 11-3). The values Jllay be seen by looking 
at Fig, 12-1b and turning the page 45". If you choose to work through the arithmetic 
'yourself, sin 45" = cos 45" ::; ,71. Two importallt properties of the unrotated structure 
matrix also apply to an orthogonal rotated structure matrix: 

1 Each variable's h'l CDfp over factors), which describes the proportion of its vari
ance explained by the factors, is still the sum of the squared structure elementS in its 
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row. In fact. the h1 does not change with any rotation. orthogonal or oblique. Conse_ 
quently the initial and rotated factors explain exactly the same amount of variance. For 
ex.ample. h2 fot variable XI was originally .772 + .552 = .89. The hl following the rota. 
tion is .932 + .162 = .89. 

2 The sum of products of squared structure elements (r.rjprkp Over factors) in any 
two rows of the initial and orthogonally (but not obliquely) rotated structure matrices 
are the same. Initial and rotated factors explain the same variance. even when the rota. 
tion is oblique. This figure is the estimated correlation between the two variables by 
Eqs. 11-2 or 11-4. For example, rll was previously shown to be (.77)(.66) + (.55)(.44) 
= .75. It is now (.93)(.78) + (.16)(.16) ::: .75. In other words, the two solutions are 
mathematically '~ust as good," but the rotated solution typically is more meaningful 
psychologically because the new factors faU closer to groups of variables and there. 
fore represent them better. Thus, the investigator has every right to rotate if the rotated 
factors are more easily interpreted than the initial factors. as is usually so. 

In summary, the first step in any exploratory factor analysis is to determine the 
starting points for rotation by condensing the common variance, and the second (.rota
tion) step divides this common variance in a more easily interpreted fonn. In addition 
to placing the factors nearer variables, it tends to level the variances explained by each 
factor. Preferably. the number of salients on each factor will be equated along with the 
factor variances. In the example (1) initial factor I accounted for over twice the vari
ance as initial factor IT (.55 versus .23), but the rotated factors account for equal pro
portions (.39 each), (2) the rotated structure elements are much less equivocal than the 
original elements since the rotated elements are either much hlgher or much lower in 
absolute value, and (3) each factor has three salient and three nonsalient variables. 
Mathematically, rotation produces a new, more useful, coordinate system. 

The rotation angle of 45" was chosen visually. This is rarely done in application but is 
useful in understanding the process. First, graph the structure elements. One way to 

STRUCTURE ELEMENTS FOR THE CORRELATIONS IN TABLE 
11-2 FOLLOWING A 45" ROTATION OF THE PRINCIPAL AXES 

Variable I' II' h2 

XI .93 .16 .89 
X2 .78 .16 .63 
X3 .B6 .18 .78 
X4 .20 .SO .85 
Xs .16 .84 .73 
Xs .23 .BS .79 
Prop. var. .39 .39 .78 

Note: Prop. var. is the proportion at variance accounted for by each factor. 
Factor 11' was reflected because all of lis original signs were negative. 
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choose the angle is to place a transparent grid over the graph. Place the zero point of 
the grid over the zero point of the graph and place the abscissa of th~ grid along the 
vector for factor 1. This makes the ordinate of the grid fall along the vector for factor 
IT. The key step is to rotate the grid about the zero point until the points representing 
the variables fall as close as possible to the new (rotated) factors. Detennine the angle 
with a protractor and apply Eqs. II-lor, if precision is not needed, read the Structure 
elements for the resulting rotated factors, I' and II', from the grid. 

Visual rotation is basically limited to examining two factors at a time. Thus one 
might start off by rotating I and II to obtain factors l' and IT' . Next, rotate factors l' and 
ill to produce factors I" and ill'. Factors II' and ill' are then rotated to obtain factors 
II" and m", etc. The more factors there are, the more numerous the pairs of factors. 
This graphical method may take considerable time when several factors are rotated. 
Suppose, for example, that five factors are compared two at a time in all possible pairs 
in the first round of rotations. This requires 10 graphical comparisons, rotations, and 
computations of rotated structure elements. The full matrix of rotated factors usually 
does not fully achieve the goals stated above the first time. One usually goes through 
this process repeatedly, perhaps for as many as 10 to 20 such cycles. Analytic metilOds 
of rotation, which are used in practice, will be discussed later, as visual rotation is ob
viously too time~consuming to do by hand. 

Further Mathematics of Rptation 

Although Eqs. 12-1 underlie all orthogonal rotations. the process becomes complicat
ed when there are more than two initial factors, as is usually true in practice. If the 
original factors are orthogonal, as assumed thus far, the rotations may be expressed as 
linear combinations of the form 

rjp' = arrj[ + anrtH + arnriIll + ... + aFrl F 

rjq' = brrl! + burm + burrl!" + ... + OpriP 

(12-2a) 

(12-2b) 

where ljp" rjq'= structure elements for variablej on rotated factors p' and q' 
aI, an, am, . ., aF = rotation weights for factor p' on initial factors I, II, m.. . ., F 
by, bu, bm,. . ., bp = rotation weights for factor q' on initial factors I, II, ill,. . ., F 

rllt rjIl, rjlll,' .• , rlF = structure elements forvariablej on initial factors I, II, III, ... , F 

These equations will have three major properties: 

1 The sum of the squared weights for rotation over the initial factors (La; and I:b~. 
where p = I, II, m, ... , F) must equal 1.0 for the rotated factors to maintain their origi
nallength. This was true both for the rotation in Eqs. 12-1 where (.71)2 + (.71)2 = 1 
and, in a more general sense, sin2 9 + cos2 e = 1. It will also be true for Eqs. 12-2. 

2 The sum of cross products (!.a,)Jp) will equal zero. In Eq. 1, (cos e)(-sin 6) + 
(cos 9)(sin 9) = o. 

3 The rotation weights (values of ap and bp) can be interpreted as correlations re
lating the original factors to the rotated factors. so that you can see where the rotated 
factors come from. If, for example, the weight for rotated factor II on initial factor I is 
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.95 and a method SUL:h as plincipal components or principal axes was used, the rotated 
factor will be very similar to the first principal component ur plincipal axis. Si.nce they 
are correlations, they can also be regarded as cosines of angles of rotation. 

These three relations hold regardless of how many initial factors are employed in 
the l'ocation. We will denote the matrix of weights used in rotation as T. since it is Used 
to transform factors. 

The rotated factors need not maintain right angles. Oblique factors place factor vectors 
through clusters of variables to maximize the correlations between variables and fac~ 
tor. The factors are thus conceptually independent but correlated. For example. height 
and weight are separate dimensions of size even though the two are correlated, like. 
wise. verbal and mathematical ability are distinct but correlated intellectual factors. In~ 
deed. orthogonality is the exception rather than the rule. 

In an oblique rotation, the sum of the cross products of the weights in T (Eaphp) will 
no longer be zero even though the two other properties will hold: L1; and I:b~ will equal 
1. and the magnitudes of the weights are the correlations between the initial and rotated 
factors (cosines of angles of rotation). Whereas orthogonal rotations rotate each original 
factor by the same amount, oblique rotations rotate each original factor by different 
amounts. When an oblique rotation is employed. the correlations among the factors be~ 
come an important part of the results. giving rise to a factor correlation matrix. defined 
as cl> in Chapter 11. The results of the oblique rotation porrrayedin Fig. 12~lc appearnu
mencally in Table 12-2. These results were derived from a particular analytic procedure 
known as promax, defined below. The correlation between the factors is .38, which means 
that the angle separating the two factors is 67". Letting I/> denote a particular factor cor
relation, the desired angle is the arc or inverse cosine of 1/>, often symbolized COS-Iq,. 

As can be seen, an oblique rotation generally aHows factors to be placed closer to 
groups of variables since the groups are usually not independent. Oblique factors thus 

PAlTERN ELEMENTS, STRUCTURE ELEMENTS, AND h2 VALUES FOR "TWO 
OBLIQUELY ROTATED PRINCIPAL AXES DERIVED FROM TABLE 11-2 

Pattern Structure 

Variable I' II' I' II' h2 

X1 .95 -.01 .94 .35 .B9 
X2 .79 .02 .79 .32 .63 
X3 .B7 .02 .BB .36 .7B 
X4 .01 .92 .36 .92 .85 
J<!s -.02 .8S .31 .86 .73 
Xs .04 .B7 .38 .89 .79 
Prop. Var. .44 .46 .78 

Note: Prop. var. is tha proportton 01 variance accounted for by each lactor. The factor corre
laUon is .38, which corresponds to an angle of 67". The actual solution was generated by 
means of a promax rotetlon, discussed later in text. 
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generally represent the salient variables better than orthogonal factors. However, sev
eral complications arise when factors are correlaced. 

lOne no longer has the many simplifications possibLe with an orthogonal coordi
nate system. Chapter 14 will consider the relative ease with which distances between 
points in a right-angle (Cartesian) framework can be obtained when needed, for 
example. 

2 In an orthogonal solution, all relevant properties were contained 1n the structure 
matrix (S), as that matrix was numerically equal to the pattern matrix (B). The factor 
correlation matrix (tIJ) played no role because all factor correlations were zero, by defi
nition. All three become important in an oblique solution, although anyone can be de
rived from the other two. Moreover, the more highly correlated the factors become, the 
more different S and B become. Figure 12-2 illustrates this geometrically. It specifical
ly shows bow changing the factor correlation does not affect the structure weight but 

FIGURE 12-2 The relatton between a structure element (correlation between a variable and a factor) and a 
pattern element (regression weight predicting a variable from a faclor). (a) A more obHque 
rotation. (b) A less oblique rotation. 

<a) More highly correlated factors 

Pactorf 

(b) Less highly correlated factors 

pattem ____ 

Factorf 
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does affect the pattern weight. Figures 11-1 and 11-2 showed how a con'elation can be 
depicted by drawing a perpendicular from one variable to another, in this case, a fac
tor. A pattern element is obtained by drawing a line from the variable to the factor of 
interest, parallel to all other factors. The difference is illustrated in Fig. 12-2. In partic
ular, note that variables which are not salients in Table II ~2 {e.g., variable Xl on factor 
II) correlate about .3 with these factors, which is not trivial. even though their pattern 
elements are essentially zero. The difference becomes more extreme as the factor cor
relation increases, which may be seen by comparing Figs. 12-2a and 12-2b. Further 
note that the factor correlation affects only the pattern. not the structure. 

3 The h2 for any given variable is no longer the sum of the squared structure (or 
pattern) elements. Instead. it becomes the sum of the product of the structure and pat
tern weight. Equations 12-3, which are fonnaUy identical to the computation of R2 in 
Eq. 5-20, define h2 as the sum of products of beta weights and correlations. These 
equations also apply to an orthogonal solution but are unnecessarily complex: in that 
situation. 

h2 = rjl b)1 + T)Ubj\l + Tj mbj III + ... + TjFb)F 

= r.T)pbJp 

(12-3 a) 

(12-3b) 

In particular. h2 for variable XI is (.95)(.94) - (.01)(35) = .89. This is the same as in 
the orthogonal rotation and original principal axis solution since rotations do not affect 
the overall fit of the model. 

4 Equations 11-2 and 11-4 describe an estimated correlation in terms of the sum of 
squared structure elements. However, this is no longer the case; estimation requires 
Eqs.12-4: 

fjlc = rjIb,,! + rjllbUl + rjIHbkfiI + ... + rjpbkF 

= bj1Tkl + bjUTkll + bjllIrklU + ... + bjprkF 

= r.1j pb ... p 

rjql = b1rm + burm + bmrllIl + ... + bprlF 

(12-4a) 

(12-4b) 

(12-4c) 

(12-4d) 

For example, ;\3 (.84) may be expressed either as (.95)(.88) - (.01)(.36) or as 
(.87)(.94) + (.02)(.35). 

5 The variance accounted for by each factor remains the average squared structure 
element over variables. However. the total variance accounted for is no longer the sum 
of the individual variances accounted for because they will account for overlapping 
variance. Table 11-2 illustrates that the sum of the two factor variances (.44 and .46) 
exceeds the total variance accounted for (.78). However. it is still obtainable as the av
erage h'l value, as these do not change. 

None of these differences provides such severe complications as to suggest that one 
avoid oblique rotations. but it is vital that one understand the difference between the 
pattern elements of B and the structure elements of S fully. Pattern elements are al
ways regression weights and may be standardized into beta weights. As a result, they 
describe the change in a variable per unit change in an factor, holding all other factors 
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constant. This describes the direct (intrinsic) relationship between the factor and the 
variable. Moreover, they are not correlations, as they can exceed 1.0 when factors llre 
highly correlated. In contrast, structure elements reflect the relation between a variable 
and a factor, ignoring other factors. This describes the total relationship between the 
two, which is the product of their direct relationship and the indirect relationship pro
duced by correlations among factors. It is also a correlation, and so its limits are ± 1.0. 

For example, suppose variable Xl has a strong direct relationship to factor p, no di
rect relationship to factor q, but factors p and q are themselves highly related. Pattern 
element blq will be small, but structure element rlq can be quite large. We have previ
ously noted that a person of high verbal ability does better than a person of low verbal 
ability on a test that is mathematical even if their mathematical abilities are equal be
cause of the positive correlation between verbal and mathematical ability. In addition, 
suppressor relationships can arise where the two have different signs. No interpretation 
of the data is complete without considering both items of information. and it is a major 
error to confuse pattern and structure by neglecting the role that factor correlations 
play in interpretation. 

Factor analysts have debated the relative merits of orthogonal versus oblique rota
tion with almost as much vigor as much as they have debated the relative merits of 
components and the common factor issue. It is difficult to conclude that one position is 
"right" and the other "wrong" when they each have advantages and disadvantages. Or
thogonal rotations offer the advantage of simplicity at the expense of poorer factor de
finition; oblique rotations offer the converse. Three rules of thumb may prove useful. 

1 Use orthogonal rotations until you feel confident about the distinction between 
pattern and structure. A common error made by those who are unclear about the dis
tinction is to conclude that a good fit has been achieved when all the pattem elements 
are very high or very low in absolute magnitude. The next chapter will illustrate how 
this may be accomplished with variables that are randomly related. It is also essential 
that the structure matrix separate the variables and that the factor correlations not be 
extremely large. 

2 If the factor correlations in an oblique rotation are all very low, use an orthogo
nal rotation and gain the benefit of its simplicity. Experts differ on "How low is 
low?" Perhaps all would agree that there is no point to an oblique rotation if all fac
tor correlations are less than .2 in absolute magnitude; we are inclined to suggest .3 
as a criterion. 

'3 If a factor correlation is very high in an exploratory problem. consider replacing 
the two factors with on~. This will reduce the dimensionality of your solution by 1. 
often with little reduction in fit. Again, experts differ on "How high is high?," but a 
correlation of .5 should make you consider the option, and .7 would be a very strong 
reason. This consideration does not apply to confinnatory solutions. A common factor 
correlation of .9 in some settings may not be too high when it involves showing that 
two groups of variables are separable. 

Because there are good things to say about both orthogonal rotations and oblique 
rotations and because both are mathematically legitimate, use boils down to a matter 
of taste. Most rotations in the early years of factor analysis were otthogonal. From 
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about 1940 until recently. there WIIS a swing toward the use of oblique rotations, but 
bach are commonly seen now. Perhaps the single most popular current method of rota
tion used in computer programs (varimax) provides orthogonal rotations, but any 
general-purpose program also provides an oblique option such lIS promax. 

The authors have a mild preference for orthogonal solutions in exploratory analysis 
because (1) they are so much simpler mathematically than oblique rotations, (2) there 
have been numerous demonstrations that the two approaches lead to essentially the 
same conclusions about the number and kinds of factors inherent in a particular matrix 
of correlations, and (3) it is easier to be fooled by an oblique than by an orthogonal ro
tation, as will be discussed more fully subsequently. In particular, Prof. Brown's hy
pothesis about two kinds of anxiety, stated early in Chapter 11, would be supported by 
any of the approaches considered-the initial solution, an orthogonal rotation, or an 
oblique rotation. Our preference for orthogonal rotations is "mild," because we will 
later show how estimating orthogonal factor scores performs the equivalent of addi
tional rotations, causing these scores to be correlated even if the factors themselves are 
orthogonal. Oblique solutions are also the rule in confirmatory analyses. We can there
fore understand why some prefer oblique rotations to place factor axes through domi
nant clusters of variables. Remember that any criterion for best rotation is psychologi
cal rather than mathematical since the initial factors or any other rotation is just as 
good mathematically, e.g., explains the same amount of variance. 

If every solution was as clear as the example we have considered, there would be 
no argument about the criterion for rotation: Rotation is clearest when each variable 
correlates with one "and only one factor. Unfortunately. this is not always possible. 
This rule need not require the same number of pure variables on all factors, ooly that 
each factor have some pure variables. 

Simple and "Simpler" Structures 

Attempts to define an ideal rotanon led to Tburstone's (1935, 1947; also see Gorsuch, 
1983, pp. 178-179; Yates, 1987) concept of simple structure. Despite its name, simple 
structure describes the rotated pattern matrix. (B). The general goal is to maximize the 
number of small pattern weights for a given number of factors. The two main proper
ties of simple structure are the following. 

1 Each variable should have at least one very small pattern weight over factors. 
2 Each factor should have several variables with very small pattern weights. 

Three other properties pertain to each possible pair of factors: 
3 Several variables should have one large and one small pattern weight. 
4 Most variables should have small pattern weights on both factors jf there are 

more than four factors. 
5 Very few variables should have large pattern weights on both factors. 

These criteria normally require oblique rotations, but they can be applied to orthog
onal rotations. The overall objective is to provide clear group factors; a general factor 
is inconsistent with property 2. and, usually, properties 3 to 3. Not everyone agrees 
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that general factors are undesirable, and so the 'concept of simple structure is some
what controversial. Specifically, the tradition that began with Spearman (1904) and, 
somewhat later, Holzinger and Swineford (1937), prefers a general factor. Many ap
plied problems also suggest a general factor (Gorsuch. 1966). 

Cattell (1952) attempted to quantify simple structure in terms of what he called the 
"hyperplane count." This is the number of essentially zero pattern weights (typically 
defined as <.1 in absolute value) in the solution. Holding the total variance explained 
constant. the higher the hyperplane count. the better the approximation to simple struc
ture. For example. both the principal axis and orthogonal rotations for Prof. Brown's 
hypothetical data have hyperplane counts of zero, but the promax rotation has a hyper
plane count of 6 since X4 to X6 have small pattern elements on factor I' and XI to Xl 
have small pattern elements on factor II'. Hoffmann (1979) proposed an alternative 
index based upon the number of salients in the solution. This is not really contrary to 
the concept of a hyperplane count. as both indices seek to minimize the number of 
intermediate-sized pattern elements. 

It is usually possible to achieve some of the five goals of simple structure but diffi
cult to achieve all of them. Different methods of analytic rotation considered later 
focus On different goals of simple structure. Consequently it is perhaps better to talk 
about simpler structure than about simple structure. A rotated structure matrix usually 
is simpler to interpret than an initial structure matrix, and some rotations are simpler to 
imerpret than others. Generally, one.seeks to rotate so that there are some relatively 
pure variables for each factor. as i1lustrated in Tables 12-1 and 12-2. Variables XI to XJ 
correlate much more highly with factor I than with factor U, and vice versa for vari
ables X4 through X6• This can be accomplished either graphically or, more commonly, 
with an analytic computer algorithm. Either orthogonal solutions (Fig. 12-1b) or 
oblique solutions (Fig. 12-1c) may be used, although Thurstone stressed oblique rota
tions. Moreover, the goal of a simpler structure, unlike Thurstone's, does not rule out a 
general factor. 

Thurstone (1935, 1947) and his coUeagues developed a system of oblique rotation in 
their search for methods for defining simple structure. Yates (1987) describes this 
process, pointing out that Thurstone's goal was to best dimensionalize the space pro
duced by the variables rather than to find groupings or clusters of variables. Nonethe
less, factor analysis can and has been used as a fruitful approach to the ident;ification 
of clusters. 

Instead of placing oblique vectors through clusters of variables, they placed what 
are termed reference vectors 90" from each Q~ the clusters save one. Figure 12-3 shows 
both the reference vectors and the promax rotated factors, and Table 12-3 lists the nu
meric results. In fact, the rotated factors are identical to their appearance in Fig. 12-lc. 
The principal axes have been deleted for clarity but would be depicted as vertical and 
horizontal vectors. Whereas the correlation between the rotated factors is +.38, corre
sponding, as was noted, to an angle of 67", the correlation between the reference vec
tors is -.38, corresponding to an angle of 113". Rotated factors and reference axes bear 
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Obliquely 
rotated 
factor l' 

Referenc:e 

Reference 
vector r 

FIGURE 12--3 Reference structure corresponding to the promax rotation In Fig. 12·1 Co 

a complementary relationship to one another, but the relation is more complex with 
more than two factors. Rotation is rarely done'by hand, and the specific need for refer
ep.ce vectors disappeared when Iennrich and Sampson (1966) developed a method for 
rotating to a simple structure directly from the initial factors, and so the concept is 
somewhat obsolete. However, .reference vectors are ~ported in a variety of analytic 
rotations, making users curious what the tenn means, and reference vectors have some 
interesting properties. 

When reference vectors are placed orthogonally to a cluster, the members of the 
cluster have near-zero correlations with that vector. Thus, variables l4, X,. and X6 in 
Fig. 12-3 have correlations of nearly zero with reference vector y, and variables Xtt 

Xl. and Xl have correlations of nearly zero with reference vector IT'. The correlatioDs 
of variables with the reference vectors (the reference vector structure) can be calculat
ed by measuring the projected length of variabl~ onto these vectors, as with any other 
structure. These correlations have two relevant properties: 

TABLE 12·3 STRUCTURE ELEMENTS FOR THE OBUaUE 
REFERENCE VECTORS OEPICTEO IN FIG. 12·3 

Reference vector 

Variable r II' 

X, .88 -.01 
J<2 .73 .02 
X:J .81 .02 
JC4 .01 .85 
Xs -.02 .80 
Xi .04 .80 
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1 They are proportional to the pattern elements associated with the rotated factors 
that actually go through the clusters. In the present case, the constants of proportion 
that relate the pattern elements co the reference vector structure elements are approxi
mately 1.08 within rounding error for both factors. For example, these terms are 
.95 and .88 for XI on factor I', whereas they are .86 and .80 for Xs on factor II'. The 
ratios, .95/.88 and .86/.80, are approx.imately 1.08, but they depend upon the factor 
correlation. 

2 They represent the correlation between variables and the rotated factors, par
tiailing out all other factors. 

Consequently, reference vectors are an alternative to the pattern elements as an 
index of the direct effects of a factor upon a variable. Unfortunately, reference 
vectors cause more confusion than they facilitate the search for simple structure. 
They can be particularly troublesome to individuals who are not ex.perienced in 
the use of factor analysis. If it is not easy to keep initial and rotated factors con
ceptually separate, a third set of axes emerges as a further complication. When 
there are three rather than two factors, one does not simply back off a factor 
vector 90· from a cluster-one backs off a plane 90· from a cluster; when there 
are more than three factors, one backs off a hyperplane. Reference vectors and ro
tated factors are sometimes confused in reporting reSUlts. A second difficulty is 
that clusters of variables are usually oblique, but positively correlated, e.g., abili
ties tend to correlate positively with one another. The reference vectqrs correlate 
negatively in this case, as we have seen. It is thus difficult to dete'rmine what 
they mean. 

We suggest that any reference vector output simply be ignored and not reported fur
ther. Concentrate upon the rotated factors. The best way to accomplish an oblique rota
tion is to place the factors through clusters. TIlls seldo~ provides a simple-appearing 
structure, but it does represent the actual relations among variables. 

ANALYTIC ROTATIONS 

An analytic criterion is one that is stated mathematically rather than verbally or sub
jectively. Perhaps the single most popular is varimax., which we consider shortly. Nu
merous criteria have been formulated, usually based on some facet of Thurstone's con
ception of simple structure. Most are prefixed or suffixed by ma."'C or min because they 
either maximize something good about the rotation or minimize something bad. The 
"something good" commonly translates into an optimal angle of rotation. All require 
extremely complex computations and therefore, effectively, a computer program. Gor
such (1983) provides an excellent discussion of the major existing methods. Kaiser 
(1970), Kaiser and Rice (1974), and Harman (1976) provide more mathematical de
tails. There are far too many methods, variations on methods, and combinations of 
methods to discuss even the majority of analytic approaches. Consequently we will 
present some details of three methods: (1) quartimax, (2) varimax, and (3) pro max. 
Quartimax and varlmax are orthogonal, but promax is oblique. Others will be noted in 
passing. 
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Although several investigators were working on essentially the same approach, 
Neuhaus and Wrigley (1954) are generally credited with developing the first analytic 
rotation method, quartimax. The quartimax method uses a fundamental consequence 
of simple structure: The variance of elements in each row of the structure matrix 
should be as large as possible. If factors can be rotated so that a variable correlates 
highly with one factor and poody with others, the resulting variance of these correla~ 
tions will be relatively large; that variable will be a relatively pure measure of the fac
tor. Conversely, the variance of these correlations will be relatively small when a vari~ 
able correlates moderately with several factors; it will be difficult to determine what 
property of the variable relates to each factor. Thus, maximizing the sum of variances 
in rows of the structure matrix relates variables more closely to factors. Since the vari
ance of any row is affected by the sign of the structure elements as wen as their size, 
the maximization criterion is applied to the squared elements rather than to the ele
ments themselves. A variance is based upon squared observations, which become 
squares of squares in this case (hence the prefix quartz), and the algorithm maximizes 
the resulting fourth powers (hence the suffix max). 

The quartimax method is useful when one wishes to stress a general factor (see 
Chapter 11) with which all variables correlate. However, initial factor I usually pro~ 
vides a better definition of a general factor, and quartimax it not suitable when a gener
al factor is undesirable. Another problem is that the criterion is satisfied when all vari~ 
abIes correlate highly with the same factor, which is then a general factor, by 
definition. Simpler structure is designed to locate clusters of variables; any method 
that tends to create too large a general factor (e.g., the first PrC) will not reflect clus~ 
ters. The quartimax metbod has largely given way to varimax as an analytic orthog~ 
nal solution which locates clusters more successfully. 

Kaiser's (1958) varimax. approached the problem of orthogonal analytic rotation by 
maximizing the sum of variances of squared structure elements in the columns of the 
structure matrix rather than the rows, as in quartimax. This tends to produce some high 
correlations and some low correlations in each column of the matrix, which is an im~ 
portant aspect of simple structure. 

Before computing the variance of squared structure elements in each column, the 
squared elements in each row of the structure matrix are divided by the sum of squares 
to normalize the variables. This makes them equally important in detennining the ro~ 
tated solution. The proper term for varimax is therefore "normalized varimax. It There 
is an unnormalized version, but it is hardly ever used, and so "v~max" by itself im~ 
plies the normalized version. There is also a rotation method known as equamax 
(Saunders, 1962) that is a compromise between quartimax and varimax. It makes fac~ 
tors more nearly equal in importance. 

Varimax is the definitive orthogonal solution save that one should not argue against· 
the existence of a general factor based upon a varimax structure alone. Varimax was 
designed to eliminate general factors (Gorsuch, 1966). In general it captures the mean~ 
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ing of simple structure within the confines of un orthogonal framework very well. The 
question is therefore not which orthogonal rotation to choose, but whether to use vari
max or an oblique rotation. Moreover, if the varimax solution is extremely poor, it is 
often because no simple, clear factor solution is obtainable. This is the frequent out
come of throwing a polyglot collection of poorly constructed tests together or using 
too small a sample of subjects. 

Achieving an acceptable oblique, analytic solution has proven far more difficult than 
achieving an acceptable orthogonal solution. Many different methods have been pro
posed, none of which clearly dominates the field [see Harman (1976) and, especially, 
the excellent summary table on pp. 203-204 of Gorsuch, (1983)]. In general, Some 
tend to produce factors that are too highly correlated, and others produce factors that 
are too nearly orthogonaL Some methods obtain a weighted combination of the two 
approaches and let the user choose an "obliqueness" p.arameter. Still others accept a 
poorer litting solution in order to produce lower factor correlations. 

The goal of promax (Hendrickson & White, 1964) is similar to that of varimax in 
that it seeks to maximize the spread (variance) of pattern elements on a factor. Promax 
starts with an orthogonal structure (e.g., a varimax rotation) and then determines an 
ideal pattern having greater spread than this olthogonal strUcture. This is accomplished 
by raising the elements of the orthogonal pattern matrix to a power. One ambiguity of 
the procedure is that the user sets this power, which is commonly 4. 

To illustrate the principle of forming an ideal pattern by raising elements to a 
power, consider two variables which have pattern elements of .6 and .3. This ratio is 
2:1. Raising both variables to the fourth power changes the individual values to .1296 
and .0081 and the ratio to 16:1 (24:1). The ratio is the more crucial consideration since 
the process ultimately rescales the rotated factors to unit length. Rescaling preserves 
these ratios and also makes the absolute differences larger than they were in the or
thogonal solution. 

The next step is to rotate from the orthogonal solution to the ideal solution. The 
process involves a method of rotation known as Procrustes that is discussed more fully 
as a confirmatory procedure in the next chapter. It makes the actual obliquely rotated 
factors as close to the ideal factors as possible in a least-squares sense. Promax is 
widely implemented in computer packages. As noted, the structure in Fig. 12-lc and 
Table 11-2 is a promax solution. 

ESTIMATION OF FACTOR SCORES 

Estimating factor scores concerns how one assigns a score to an individual on a com
poshe measure given scores on individual measures. As such, it is a general issue that 
goes beyond adoption of formal factor analysis, as it deals with the measurement of 
constructs. The problem may be described by resta~g the basic equation for the fac
tor model, Eqs. 11-1, so that it applies to individuals by inserting the subject index i. 
This index applies to individual measures, and so ~ becomes Xij' However. it also 
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applies to factors, which noW become factor scores; F" becomes F'{J" [t does not apply 
to the pattern weights. These are the same for each individual: A given factor is as
sumed to explain a given variable in proportion to the magnitude of its pattern weight 
regardless of the individual involved. ' 

X" = bjlFj( + bjlIFifl + bjlllFillI + ... + bjuF;u 

= !bjpF;p 

( 12-Sa) 
(l2-Sb) 

We will denote the complete set of factor scores as Xf' Columns of Xf will contain Z 

scores, and so the mean values of Fi[, Fill! F/ uh ... , FiF' will be 0, and their standard 
deviations will be 1.0. The problem is to determine 'Xj given observed scores (X) and 
pattern weights CD). 

Suppose factors are regarded as actual linear combinations of variables, as in an ini
tial or rotated component solution (including image analysis). Factor scores can be cal
culated in that sample regardless of how many factors are extracted and how many 
variables there are. Specifically, Eq. 12-6 will provide a score on factor p: 

F ip = WlpX/I + W2pX/ l + W3pX,3 + ... + wvpX/~ 
= !WjpXI} 

(l2-6a) 

(l2-6b) 

The complete set of values of Wip forms the factor-score weight matrix, denoted W. 
The matrix is also called a scoring matrix, and its individual values are often called 
scoring coefficients. It is available at least as optional output from computer programs. 
Even though it has the same dimensions as B (V rows and F columns), it is distinct, 
though related through one of several complex. transformations. This transformation is 
given in works on factor analysis or multivariate analysis listed in the Suggested Addi
tional Readings for the previous chapter. However, it is often simple to describe. For 
ex.ample, factor score weights for a centroid solution are equal, though not necessarily 
1.0, in order to maintain standardization, and principal component factor score weights 
are the pattern weights divided by their associated eigenvalues (Wjp = bjpn..p). 

The following will hold in a component solution. 

1 If the solution is orthogonal, the correlation between any two columns of Xfwill 
be exactly .0. If the solution is oblique, the correlation between any pair of columns 
will equal the factor correlation (t/J). 

2 Observed scores in X, say XI, will equal the sum of the factor scores in XI 
weighted by the pattern elements (B) if the components explain aU the variance 

. (F = V). Otherwise, they are least~squares approlCimations. 
3 The correlations obtained by weighting the factor scores to estimate the variables 

will exactly equal the correLation estimated by the various equations we have given 
that apply to factors. e.g., Eq. 12-2 for orthogonal factors or Eq. 12-4 in the general 
case. 

4 The multiple correlations obtained in "predicting" each of the F factors from 
the V variables' will all be L.O since the factors are exact linear combinations of the 
variables. 
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5 The elements of Ware unique in that no other set of weights will have all these 
properties. 

6 Consequently, the elements of Xl are also unique. 

These results follow because components, being exact linear combinations of the 
variables, have no properties other than those inherent in the collection of variables 
that define them. Keep in mind that the original scores (X) will be approximated only 
if a fun~component model is used (F = V), which is normally not the case. 

These properties do not apply to common factors because, as was noted early in 
Chapter II, common factors have meaning beyond the particular variables thar define 
them. However, that meaning is specific variance, whose content is not clearly defined, 
plus random measurement error. This causes the multiple correlations between the 
variables, as predictors, and the factors, as criteria, to be less than L .0. In tum, it is 
possible t~ construct different W matrices, and therefore different XI matrices, that 
will estimate X and R equally well. None will do so perfectly, but this is also generally 
true in component analysis. Furthermore, even though the factor solution may be or
thogonal, the resulting factor scores may be correlated. In a more general sense, factor 
score correlations will not equal factor correlations. In a still more general sense, prop
erties of factor scores will differ from properties of factors. Also, columns of XI in a 
common factor solution are usually scaled so that their standard deviation is the multi~ 
pIe correlation between the variables and that factor rather than unity for mathematical 
convenience; their means are still 0, as in most component solutions. 

The presence of mUltiple Wand Xl matrices (actually an infinity) in a common fac
tor analysis is called factor score indeterminacy. It is due to the fact that the common 
factor portion of an observed score, but not the unique portion, is determinate. Mc~ 
Donald and MuIaik (1979) provide a particularly good discussion even though the 
topic appears in all textbooks on factor analysis. Note that factor score indetenninacy 
is present even when there is only one factor in the solution. It therefore has nothing to 
do with the indeterminacy of factors that is present because any given solution can be 
rotated to another, equally acceptable solution. 

How serious a problem is factor score indeterminacy? Schi:inemann (see Schone~ 
mann & Wang, 1972), a long~time critic of common factor analysis, considers it very 
important, but those who fall more in the common factor tradition feel it is less seri
ous, e.g., McDonald and Mulaik (1979). It will be one of the points we will consider 
when we provide an overall discussion of component and common factor analysis 
'later in this chapter. For now, we will consider it in the more practical context of how 
.to best obtain composite scores. As we have stressed, the importance of exactly repro
ducing the original scores and correlations is very limited. Factor analysis is really not 
concerned with exactness, only good approximation. An exact result, even in the origi
nal sample, is usually not at issue because it would be rare to retain the necessary V 

possible factors. Even if one did, sampling error will cause a W matrix obtained from 
one random sample to differ from the W matrix obtained from another random sam~ 
pIe. Factor score weights are extremely subject to sampling error because each vari~ 
able's weight on a given factor is affected by the relationships among all variables and 
their sampling error. The utility of any result lies in how similar it is to another 
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obtained under similar conditions (efficiency, see Chapter 4) and the (unknown) popu
lation values (bias). In the sense that any sample estimate, such as W, is intended to 
generalize, it must be regarded as an estimate, not as an ex.act result. 

As Gorsuch (1983). Harman (1976), and other texts note, good factor-score esti
mates have the following three properties. 

1 Factor scores should correlate as highly as possible with the factor they represent 
in the sense that the multiple correlation between the variables and the factor should 
be high. A measure of verbal ability should correlate as highly with true verbal ability 
as possible. This is called validity. 

2 Factor scores should not correlate with other factor scores beyond that implied 
by the correlation among the corresponding factors. It is most simply understood with 
orthogonal factors: Orthogonal factors should produce uncorrelated factor scores. Ac
cordingly, this property is called orthogonality even though it is not descriptive when 
the underlying factors are oblique since the factor scores should then be correlated. 

3 Factor scores should not correlate with ot~er factor~ beyond that implied by the 
correlation among the corresponding factors. It is also most easily understood in an or
thogonal solution-factor scores should not correlate with factors that are orthogonal 
to the one in question. This is called univocality. For example, if verbal and mathemat
ical ability factors have a correlation of A. estimates of verbal ability should correlate 
.4 with estimates of mathematical ability. 

There are many algorithms for estimating common factor scores. In general, a 
given algorithm will optimize one, but not all three objectives. The most common is 
multiple regression and is so identified in standard computer packages. By definition, 
it maximizes the correlation of the factors with the factor scores (objective 1). As with 
many of the issues we have discussed, clear solutions produced by well-defined factors 
will lead to highly similar results regardless of the method, including component 
analysis, where determination of factor scores is "exact" in the limited. sample-specific 
sense. We suggest you explore this issue in more detail by obtaining component and 
common factor scores from a computer package and exploring their respective proper
ties. Many programs provide alternative algorithms to estimate common factor scores. 
Stand~d references, such Gorsuch (1983) and Harman (1976) discuss how to obtain 
correlations among factors, among factor scores, and between factors and factor 
scores. 

Even though you may use the exact weights of a component solution or the fonnal 
estimates of a common factor solution, most applications involv~ an· approximation. 
Approximations are commonly derived by adding scores of the salients that best de
fine a factor, usually as the equally weighted sum or average (which have equivalent 
properties). Approximation 1s like an additional rotation (Gorsuch, 1983). One essen
tially places a factor axis among salient variables. If the estimation is an unweighted 
sum, it produces a rotation to the group centroid of the salients. We suggest you 
choose salients by looking at W, rather than S or B, since factors are being estimated, 
not variab~es. The elements In W are generally much smaller than the elements in S or 
B because of the way the different matrices are scaled. 
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Compute the correlations among these approximated scores and between these 
scores and the original variables (oblique multiple group factor analysis, discussed in 
the next chapter, can accomplish this quite conveniently), based upon both a compo
oent and a common factor solution. You may find that the correlations among the ap
proximated scores differ widely from the correlations among the factors. In particular, 
approximations derived from an orthogonal solution may be very highly correlated. [f 
this is so, the appro;<imation is not very good, and you should use a different approxi
mation. It is a very common error to treat such scores as orthogonal. At the same time, 
approximations, even equally weighted ones, usually do a good job of defining factor 
scores if the solution is wen-defined. 

Practical Considerations In Obtaining Factor Scores 

Determining factor scores is crucial to explicating constructs. For example, suppose 
two factors do a good job of accounting for the correlations among 20 supposed anxi
ety measures. The next step would be to relate these factor scores to experimental ma
nipulations and other subject variables. Without continuing investigations of this kind, 
a factor analysis does little to advance science. 

Because one of the better uses of factor analysis is to reduce a larger collection of 
variables to a smaller set of "potent explainers" (salients), you will probably find that 
you do not need to use all the measures. For example, three of five verbal abilities 
measures may suffice to define a construct reliably. It is seldom necessary to use more 
than three or four variables to approximate factor scores. Additional variables seldom 
improve the definition of the factor (see Chapter 5), so do not waste time gathering re
dundant infonnation. As we have noted throughout this book, the weightings used for 
the composite are typically not critical and equal' weighting will probably suffice, 
though there is nothing wrong with formal estimation (W itself, when available). 

Conversely, it is usually poor practice to define a construct simply in terms of one 
variable, just as a singlet factor is usually not very useful. Most variables do not corre
late highly with a group factor. Even when a structure element is .70, the variable 
shares only 49 percent of its variance with the factor. The rest is measurement error, 
specific variance, and common variance related to other factors. These extraneous 
'sources of variance will contribute heavily to the factor score estimate. At a bare mini
mum, two variables should be used to estimate a factor. The multiple correlation be
tween the two or more variables and the factor and the factor's reliability will likely be 
considerably higher than any of their individual correlations. Combining variables av
erages out their irrelevant variance, at least In part, even when they are weighted 
equally. , 

As in formal estimation, look at the multiple correlation of the 'variables with the 
factor if a common factor model is employed. Regardless of how statistically signifi
cant the factor is by NIL or other criteria, a low multiple correlation (say, less than .70) 
implies that it is not sufficiently well-defined for continuing investigations. Mere sta
tistical significance of a factor is not nearly as important as clear definition from a rela
tively small subset of the variables. Below this rule-of-thumb value, the factor has 
more error variance than valid variance. The variables would not represent the factor, 
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and it would be of dubious value to perform extensive further investigation. When the 
R between the variables and the factor is employed as a criterion, factors may be re. 
jected that appear highly significant inferentially. Of course, even if a factor fails ta 
meet the requirement of a high multiple correlation, it might be reinvestigated with 
new variables in a new factor analysis. However, it should only be reported when goOd 
factor score estimates are available. 

RELATIONS AMONG THE VARIOUS MATRICES 

We have introduced a variety of matrices, vectors, and scalars (individual values), 
which it is useful to summarize. We begin with nine matrices. 

1 The data matrix X contains the data with the N subjects as rows and the V vari
ables (measures, tests, observables, etc.) as columns. We have thus far assumed that 
the scores in each column of X have been standardized to a mean of .0 and a standard 
deviation of 1.0. and so it may also be called Z. Some designs require raw or deviation 
scores, however. especially when one is concerned with making detailed comparisons 
among groups. Although it is arbitrary in one sense whether subjects appear in rows 
and variables appear in columns, or vice versa, the mathematics of ordinary factor 
analysis requires that the matrix be much taller than wide. The end of this chapter con
siders alternative designs. 

2 The correlation matrix R is derived from Z and therefore X. It contains the cor
relations among the variables over subjects. If the columns of X are not standardized, 
the matrix will contain covariances or other measures of the relations among variables, 
and another symbol, such as C, would be more proper. Both the roWS and columns of 
R correspond to the V measures. The various residual matrices (RI, RlI, etc.) are spe
cial cases of R rather than separate matrices. 

3 The factor structure matrix (8) contains correlations between the V variables as 
rows and the F factors as columns. This may refer to an initial or rotated solution. The 
reference structure is a special type of factor structure, namely, correlations between 
variables and factors, partialling out other factors. 

4 The factor pattern matrix B contains the regression weights used to predict the V 
variables as rows from the F factol"s as columns. The S and B matrices jointly produce 
hl values and predicted correlations. Furthermore, S = B if the solution is orthogonal. 

5 The factor correlation matrix (CP) contains the 'correlations among factors; both 
rows and columns correspond to the F factors. It will be synunetric since it is a corre
lation matrix, e.g., the element in the first row and second column will equal the ele
ment in the second row and first column because both represent the correlation be-
tween factors I and II. . ' 

6 The factor-weight matrix (W) contains weights used to determine the F factors 
as columns from the V variables as rows. 

7 The factor-~core matrix (X,) contains the scores for the N subjects (rows) on the 
F factors (columns). If an orthogonal solution is used and scores are obtained from 
components by exact methods or from certain common factor estimation procedures, 
scores in the various columns will be uncorrelated in the original sample. However, 
this will generally not be the case in a new sample. 
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8 The transformation matrix (T) contains sines and cosines of the angles of rota
tion. Both rows and columns correspond to the F factors, but T is not symmetric. 

9 The uniqueness matrix (U) employed in common factor analysis is Closely relat
ed to the vector of hI. values (see next item). It usually consists of zeros off the diago
nal and values of I - hI. along the diagonal, but the off-diagonal entries may differ 
from zero in certain more complel( models that attempt to estimate correlated error. It 
has V rows and V columns. 

Three vectors are important: 

10 The vector of h2 values contains the variances accounted for in the V individual 
variables by the F factors. In an orthogonal solution, these values equal the sum of 
squared elements in each row of S or B. In general, they are the sum of the CTOSS prod
ucts of structure and pattern elements over factors. Their complements (1-h2) appear 
in the diagonal spaces of residual matrices, e.g., the diagonal elements of C I contain 
the complements of the h2 values associated with a one-factor solution. 

11 The vector of factor variances (no symbol has been given) contains the variance 
accounted for by each factor. These may be expressed either as sums by adding the 
squared elements in S separately for each factor (columns) or as proportions by divid
ing the sums by the number of variables. These relations hold regardless of whether 
the solution is orthogonal or oblique. The column sums of squared initial structure ele
ments also equal the corresponding eigenvalues in PrC or principal axis solutions. 

12 The squared multiple correlations (If values) using variables to predict individ
ual factors can be used to define the reliability of each factor. Factors are linear combi
nations of observed variables in a component solution, and so the resulting If values 
will always be 1. They will be less than 1 in a common factor solution. Note that h2 

values use factors to predict variables, but R2 values use variables to predict factors. 

Two individual values (scalars) are important in describing the fit of the model. 

13 The proportion of variance accounted for is (1) the average hI. value in any so
lutions or (2) the sum of the proportions of variances accounted for by each factor in 
an orthogonal solution. This is the traditional measure of fit. 

14 The square root of the average squared residual correlation (root-mean-square 
or RMS error) describes the loss function associated with an unweighted least-squares 
solution. Related loss functions appear in maximum likelihood and generalized least 
squares analyses. Loss functions have become increasingly important because of the 
inferential basis of many newer algorithms. The loss functions detennine statistics 
such as chi-square. 

Standard errors of pattem loadings are available from some programs using ML 
and related estimation algorithms, but this is unfortunately usually not the case. 

As we have mentioned, relations among factors need not be the same as relations 
among factor scores, e.g., orthogonal factors can produce correlated factor scores. A 
good argument can be made for using separate symbols to define these matrices in
volving factor scores, but we will not do so for brevity. These parallel S. B, and cp, In 
addition, particular methods of condensation and rotation may provide other data. such 
as the number of iteration cycles' required in estimation. 
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Fortunately, not all these matrices are important to the results of the analysis. Some, 
like W and XI are important only when one obtains factor scores, which mayor may 
not be the case. Actually, X and Rare, respecti vely, obtained before the analysis, and 
so we need not be concerned with them at this point. The T matrix describes the rota
tion process, but it is not important in explaining relations among variables and be-
tween variables and factors. , 

Consequently, S, B, and cP are the major matrices to consider. They produce the 
various other important quantities and directly index the relations among variables and 
factors. Moreover, only two of these three matrices contain independent information
matrix operations (discussed in standard references on multivariate analysis) provide 
the third once any two are given. Remember that S contains correlations between van
abIes and factors and B contains regression weights to predict variables from factors. 
When standardized, these regression weights have the properties of beta (/3) weights as 
discussed in Chapter 5. 

THE COMMON FACTOR MODEL 

We have stressed that there has been impassioned, ifnot acrimonious, debate about the 
relative merits of the component versus the common factor model. The issue is largely 
one of considering composites as completely defined by the variables that define them 
and ignoring unique variance (Le., making the composite an actual linear combination) 
versus allowing them to have additional meaning, and attempting to separate c9mmon 
from unique variance (Le., making the composite a hypothetical linear combination). 
The Suggested Additional Readings for this chapter will refer you to several position 
papers. We will summarize the main points of the debate in this section, starting with 
three that we consider paramount. 

1 In principle, the common faclOr model generally makes more sense: (a) It does 
not require much eKperience with tests to know that they are not perfecdy reliable, (b) 
there are many ways to illustrate specific variance, such as the systematic differences 
between self-report and observational measures of personality traits, and (c) combin
ing variables into a composite describes a broader trait rather than defining it exactly. 
Indeed, if one assumes traits, abilities, and the like have generality, one assumes a 
common factor model because the construct is present without having to apply the 
defining measures. Shakespeare was never given a fonnal intelligence test, but it is 
safe to conclude that his verbal ability was high. These features are all present in the 
common factor model but ignored in the component model. The latter model can lead 
to the rather counterproductive view that a construct is nothing other than its defining 
measures, so that it would cease to exist if one of its defining measures became un
available. Moreover, aU variables are given equal weight in a component solution per
formed upon a correlation matrix, but a common factor analysis of these same data 
properly gives more emphasis to variables that have the highest correlations with the 
other variables in the analysis. At the same time, common factor analysis is not devoid 
of conceptual problems, which we will discuss later in this section. 

2 In practice, the component model is the more reliable: (a) We will shortly review 
the several measures of common variance, which then detenrune unique variance by 
subtraction-their diversity suggests some ambiguity in the concept and (b) you will 



CHAPTER 12: eXPLORATORY FACTOR ANALYSIS 11: ROTATION AND OTHER TOPICS 515 

always be able to obtain a component solution but not necessarily a common factor so
lution. If you talk to any given proponent of common factor analysis, that individual 
will tell you why a particular measure of common variance is correct, but different in
dividuals will not agree on which measure. Even more frustrating is when a solution 
fails to converge or provides any of the anomalies peculiar to common factor analysis 
that we will consider below. This is especially true when the design involves parallel 
analyses in different samples and results are obtainable in some, but not all, for no ap
parent reason. This is not necessarily caused by poorly chosen variables. Indeed, some 
methods of common factor analysis, including the more recently popular ones like 
maximum likelihood, become unstable because the common variance of one or more 
variables approaches 1.0. Some of the other possible anomalies are the following. (a) 
An h2 value exceeds 1.0, called a Heywood (1931) case; (b) an estimated correlation 
('I]) exceeds 1.0 in absolute value; and (c) any multiple or partial correlations among 
variables exceed I in absolute value. Actually, these illegitimate outcomes are unlikely 
when the h2 values are below about .8, but they cannot occur in component analysis. 
Most common factor algorithms prevent these anomalies from occurring without caus
ing the analysis to terminate abnormally, but the procedures are often ad hoc. 

3 If an exploratory study is well designed and the sample is large enough to mini
mize the spurious contributions of sampling error, the conclusions one reaches about 
groupings and their general relations will be the same in both cases. Many have ques
tioned the value of factor analysis precisely because of rpe wide range of outcomes 
that have been reported in analyzing a given set of data by different methods, includ
ing, but not limited to, component versus common factor analysis. However, this di
versity is usually an artifact of the variables chosen, not the general factor analytic 
model. 

We therefore suggest that an exploratory study generally use a component solution, 
assuming the principles of good factor analytic design have been followed, in order to 
expedite a soluti9n (we will shortly note an ex.ception). However, a confirmatory study 
should generally employ a common factor model, as enough background research 
should have been done to eliminate many of the problems that can arise. However, this 
still is nO guarantee that a solution can be obtained. 

The Problem of Communality Estimation 

A common factor analysis requires a way to provide communality estimates. diagonal 
entries in R. In general, the larger these numJl.ers are, the more trivial andlor spurious 
factors will appear. But the smaller they are, the greater the likelihood of an anom
alous outcome, e.g., a Heywood case. The issue of communality estimation began with 
Spearman (1904). His general factor hypothesis, considered in more detail in the next 
chapter, was that all measures of intelligence reflect a single, error-free construct or 
general factor (g). In other words, g is a true score. The hypothesis is a fascinating 
example of how a specific substantive theory gave rise to a mathematical model of 
the broadest possible application. It was sufficiently explicit to allow communality 
estimation designed to separate common and unique variance. The logic applies to any 
set of measures that are assumed to reflect only one common factor and is easily ex
tended to the multifactor case. 
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It is tempting to ask why one cannot simply use any values in the diagonals and not . 
worry about communality estimation. The answer in part is that these numbers repre
sent the proportion of systematic variance assumed by the model, and so they are high
ly meaningful parameters, but there is another important consideration. Factor analysis 
can further be shown to require a symmetric matrix, none of whose eigenvalues are 
negative. Such matrices are called Gramian. This involves the "analysis" part of factor 
analysis. The total variance is decomposed into additive parts, but (1) eigenvalues de
fine variances and (2) variances must not be negative. Further matrix theory states the 
following. 

1 A Gramian matrix. is always proportional to the product of a second matrix with 
lts transpose, which is the matrix turned on its side. The constant of proportionality ls 
usually liN. You do not need to know how to perform matrix. multiplication, but R is 
always Gramine if urrities are in the diagonal, because it is proportional to the product 
of Z and the transpose of Z. 

2 Any Gramian matrix will also be the product of an infinite number of other ma
trices multiplied by their transposes. Thus, R can be expressed as the product of any 
number of B or S matrices derived either from initial solutions or rotations as long as 
the solution is orthogonal (if it is oblique. the equation becomes slightly complicated). 
This foUows from expressing Eq. 11-2 or L 1-4 as a matrix multiplication. 

3 Even though R, with unities in the diagonal, will be Gramian by definition. so 
will other matrices. For example, tbe covariance matrix (C) with variances in the diag
onal is also Gramian since it is derived from the product of a matrix of deviation 
scores with its transpose. We discussed these options in the previous chapter-the 
point is that mean sum-oF-products or covariance matrices are just as factorable as cor~ 
relation matrices. 

4 A matrix. such as R may remain Gramlan even though smaller numbers are used 
in the diagonals. However. such anomalous outcomes as Heywood cases arise when 
the communality estimates are too small. One approach to factor analysis is to choose 
numbers that will ma1ce the rank as small as possible while maintaining Gramian 
properties. 

We defined the rank of a correlation matrix in Chapter t1 as the number of factors re
quired to explain all the correlations exactly. We further noted that the rank: equals the 
number of linear combinatio'ns required to serve as a basis for a space when correla
tions are considered as cosines among vectors. Thurstone (1947) was the first to con
ceptualize the problem of factor analysis in terms of matrix rank. He saw that Spear
man's g produced a correlation matrix of rank 1. Because most correlation matrices 
contain more than one factor, the rank of R determines the number of common factors 
needed. Thus. if five common factors could entirely explain R so that the coefficients 
in the fifth residual matrix were aU zeros, the rank of the R in the diagonals would be 
S. However. R must contain communality estimates and not unities for this to occur. 



CHAPTER 12: eXPLORATORY FACTOR ANALYSIS II: AOTATION AND OTHER TOPICS 517 

Unities in the diagonal cause the matrix to be of full rank-requiring as many factors 
as there are variables. 

Although the concept of rank is mathematicallY important and provides a useful 
way to think about common factor analysis, there are numerous difficulties in putting 
this concept to actual use. First, sampling error will cause the rank of R to exceed F 
even though F factors underlie the population data. Second, if one were to force en
tries into the diagonal spaces to achieve fit, solving the necessary equations would re
quire an inordinately large number of factors (Harman, 1976). Even when one places 
various restrictions on the nature of R, the rank required to find exact diagonal ele
ments is frequently more than half the number of variables. Thus, finding communali
ty estimates to fit a sample R matrix might require 10 or more factors to explain the 
correlations among only 20 variables. 

Because of both sampling error and the very large number of factors required to fit 
any rank exactly, determining the number of factors required in a particular problem 
obviously involves finding a good rather than a perfect fit to the data. When unities are 
placed in the diagonals of R and some method of condensation is applied, such as Pre. 
the rank nearly always equals the number of variables, even though many of the fac
tors explain trivial amounts of variance. This is also usually true when communalities 
estimates are placed in the diagonals. However, residual coefficients usually become 
very small after only a small number of common factors are extracted. 

The concept of exact rank is mainly useful in pointing out ,the need for efficient 
methods of estimating the number of common fa~tors required ill particular problems, 
but the idea of approximate rank is more fruitful since it recognizes how sampling 
error may cause a fit to be inexact. The basic idea is to make the communality esti
mates large enough to maintain the Gramian properties of the matrix but small enough 
for the matrix not to be of full rank. 

Unities as Communality Estimates ' 

Most exploratory analyses begin with a preliminary component analysis; i.e., the diag
onal entries of R are Is. Even though this section is concerned with common factor so
lutions, there are at least three good reasons for using unities as communality esti-
mates, i.e., a component solution. ' 

1 The actual correlation of any variable with itself is 1, and so the diagonal ele
ments of any real correlation matrix are unities. 

2 The fonnulas for the correlation of sums, Eqs. 5-9, require that structure ele· 
ments b~ computed with unities placed in the diagonals of R. If anything other than 
unities is placed in these spaces, one is not correlating an actual variable with a linear 
combination of actual variables. 

3 As we have noted, the process guarantees a solution. The matrix will always be 
Gramian, and any of the rules of the previous chapter may be used to define the num
ber of factors to be retained for rotation. 

However. the general goal of common factor analysis to separate common and 
unique variance is not clearly achieved when unities are placed in diagonals of the 
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correlation matrix. The two sources become somewhat mixed because each variable's 
uniqueness contributes to detennining the various factors. Furthermore, the fact that 
one is not correlating variables with actual linear combinations is not necessarily !t 

fault in common factor analysis. 

Communalities Derived from Hypotheses 

Speannan's (1904) general factor hypothesis implies that if a single factor (g), ac
counts for all the correlations in R, the structure matrix (S) will, by definition, consist 
of a single column. Products of these structure elements will equal the correlal1ons 
(and not merely the estimates) by Eq. 11-4 (or Eq. 11-2, since S = B in a unifactor So
lution). Thus, rL'l will equal rl[r21' However, this same logic leads to the expectation 
that the successive diagonal elements of R, ru, r22, ... , will equal rIh rt, ... , rather 
than 1. In other words, the communality estimate for any variable is simply its squared 
structure element in S. A variable would have to correlate perfectly with g for its diag
onal term to be 1, which is contrary to the assumption that the observed measures are 
fallible. 

If R can be explained by one general factor but unities (or any number greater than 
the squared structure elements) are placed in the diagonals, more than qne factor will 
be needed to explain the data, as the elements in the first residual matrix will clearly 
differ from zero. In fact, as many factors will be required as there are variables with 
unities in the diagonal. There will be a general factor, and the remhlning factors will 
tend to explain rather small percentages of variance. However, if the squared elements 
in S are placed in the diagonals, a single factor can explain the data. Conversely, if 
numbers less than the squared structure elements are placed in the diagonal, anomalies 
such as Heywood cases will arise. As we have noted, most -computer p.rograms take 
some corrective steps, but some general-purpose matrix algebra will illustrate the out-
come. . 

You can illustrate these results yourself very simply as follows. 

1 Malee up a column of V numbers to represent S (by convention, vectors are rep
resented as columns of numbers, and so it is good practice to conform to this conven
tion). These can be any numbers between + 1 and -1, as they are correlations. They 
can be chosen at random, for ex.ample. Although it is not necessary, most should clear
ly differ from O. 

2 Determine element rlj of R, including the diagonal elements, as the product of 
elements i andj in S. 

3 Factor the data using any major computer package. All major programs let you 
enter a correlation matrix as input instead of raw data, but the procedures vary from 
program co program. Make sure that the program. will use the diagonal values you 
have specified as the communality estimates; Le., do not allow the program to iterate. 
Specify the number of factors as V. This program will probably perform. an eigen
analysis upon R. 

4 Your. result should be that the first factor consists of the initial values in S. The 
associated eigenvalue (A'I) will be the sum of squared values in S, and the pattern will 
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be the values of S (since S ; B). All the remaining eigenvalues will be 0, although you 
will probably see numbers reported for the patterns on the remaining factors. Other 
properties will follow the discussion of principal axis analysis provided in Chapcer 11. 

5 Now repeat step 4, using values of 1.0 in the diagonals. This time, all the V 
eigenvalues will exceed O. You also will not reproduce S with a single factor. 

6 Repeat the analysis a third time using values less than the squared structure ele
ments. This is primarily an exercise in seeing how the program handles anomalous 
input, and so the results may vary from program to program. 

Artificial matrices are often constrUcted to test the effectiveness of a particular method 
of common factor analysis, and the above is a simple way to become familiar with the 
process. More than one factor may be used, e.g., S may contain F columns rather than 
one. The values placed off the diagonals of R are the sums of cross products of pairs 
of rows (Eqs. 11-2 or llA), and the values placed in the diagonals are the sums of 
squares across columns (factors). The equations of the previous chapter show that the 
result will contain exactly F «Y) eigenvalues greater than zero. The pattern will not 
reproduce S, as it will be a rotation of it (more precisely, the values you enter will be a 
rotation of the principal axes). The fact that such clear-cut results can be obtained from 
common factor analysis based upon artificial data bas motivated some psychometri
cians to search for such common factors in real data. However. we caution against too 
quick an allegiance to the common factor model since sampling error will preclude a 
perfect fit with real correlations. Keep in mind that we knew what to put in the diago
nals in the demonstrations because we made up the data so that it would not contain 
sampling error. 

Statistical Criteria of Rank 

Iteration 

We noted at the end of the previous chapter that there are statistical tests available to 
determine the number of significant factors. These test for rank as well, by definition. 
However, although these statistical tests are entirely appropriate, they usually suggest 
far too many trivial factors. Even when considerable previous experience indicates 
that no more than four or five factors explain a particular collection of tests such as 
those shown in Table 11-12, significance tests typically suggest a rank twice as large. 
Although these inferential tests are elegant, they do not solve the substantive and psy
chometric problems of obtaining a parsimonious solution. On the other hand, one cer
tainly should not place any faith in a factor that was not statistically significant by this 
lenient standard. 

Thurstone fully explored alternative ways to estimate communalities. He realized that 
any method of condensation, e.g., eigenanalysis, can provide the structure once these 
diagonal entries are known. If, for example, the exact rank is 4. all coefficients in the 
fourth residual matrix will be zero and the sum of squared structure elements for any 
variable (h2) will equal that variable's communality estimate (r/l) regaidless of the 
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method chosen to condense data. Unfortunately, this is a bootstrap operation since the 
communality estimates must be known before undertaking the condensation. They. 
usually are not known but must be estimated. 

Thurstone suggested an iterative method of estimating communalities. In its present 
fonn, initial communality estimates are placed in the diagonals. These estimates may 
be any number in principle (e.g., unities), but squared mUltiple correlations (SMCs) 
between each variable and the remaining variables in the matrix are most common for 
mathematical convenience (the general role of SMCs is discussed below). The process 
then proceeds through the foUowing steps. 

1 The data are factored by any method of condensation. but an eigenanalysis (prin
cipal axis solutions) is most common. 

2 Communalities (h2 values) are computed for each variable and compared with 
the initial values-placed in the diagonal spaces (communality estimates). 

3 The communalities and communality estimates are compared. If they are similar 
(e.g., if the average squared difference over all variables is less than .01), the analysis 
is completed. 

4 If the overall difference between the communalities and the communality esti
mates exceeds the criterion. as it usually does on the first cycle, the hl values for each 
variable become the new communality estimates in the diagonals of R. and the next 
cycle begins at step 1. 

This was the method we used to produce the principal axis solution in the previous 
chapter. It is' necessary to know the number of factors to be extracted in advance. This 
is usually determined from a preliminary analysis using the Kaiser-Guttman rule by 
default. However, any of the criteria discussed in Chapter II, such as Velicer's (1976) 
.m.i.nimum average partial, can actually be used to define the number of factors because 
all major programs allow the default to be overridden, as we recommend. 

There are major difficulties with iterative methods despite their popUlarity. 

1 First and foremost, there is no guarantee that the solution will converge, and it 
often does not (Gorsuch, 1973) because such anomalies as Heywood cases emerge. 
Failure to converge is not necessarily the sign of a model that fits poorly; it may occur 
in one data set and not in another that differs only by sampling error, as we have noted. 
Although it makes intuitive sense to have the final communiility estimates match the 
communalities, the details of the mathematical justification are Pl?or. 

2 The solution is not unique because the user usually defines the number of fac
tors. and therefore the rank, before iteration. One can iteratively seek communalities 
for varying numbers of factors for the same data, but there is no assurance that any 
chosen number is correct. The only thing known is that the rank of the common factor 
R matrix (the matrix with communality estimates in the diagonals) must be less than 
the rank of the component R matrix (the matrix with unities in the diagonals). No iter
ative method exists for estimating both the number of factors and communality esti
mates simultaneously. 

3 Different initial communality estimates may converge to different communalities 
and structure elements. Indeed, the solution may converge to obviously wrong values. 
However, this problem is rarer than the other two. 



CHAPTER 12: EXPLORATORY FACTOR ANALYSIS II: ROTATION AND OTHER TOPICS 521 

Squared Multiple Correlations 

The squared multiple con'elations between each variable in turn and the remaining 
variables are a common. noniterative form of communality estimation. The SMC for 
variable XI in a group of 20 variables is the Rl between it and variables X~ throuah 
XZ()' These SMCs are extremely easy to obtain from R (see any standard text ~n mul7i
variate analysis for the critical operation. known a'l matrix inversion). Guttman (1956) 
proved that the SMC is a lower bound for the communality. If the rank of a matrix is 
less than the number of variables. h1 for any variable will be at least as large as the 
SMC for that variable. 

The SMCs have the advantages of being (I) unique, (2) readily obtainable, and (3) 
definitive of at least one type of common variance. 

There are four major difficulties with using SMCs as estimates of communalities, 
even though they obviously determine one type of common 'variance-the variance 
that a particular variable has in common with the other specific variables in R. 

1 The SMC does not relate clearly to the concept of common variance. Common 
variance is generally viewed as the variance a pruticular variable has in common with 
a set of common factors, not how much it has in common with the particular variables 
used in that study. A variable which is uncorrelated with the other variables in the 
study will have an SMC of zero, even though it may correlate very highly ~ith 'Iari
abies not in the study. 

2 Computer simulations indicate that SMCs do not reproduce the actual commu
nalities (h1 values) generated from a known structure. They reproduce neither the ini
tial structure elements nor the rank of the correlation matrix. 

3 There are some purely statistical problems in employing SMCs as communality 
estimates: They tend to increase spul;ously with the number of variables in the 
analysis for reasons indicated in Chapter 5; each variable added to the analysis tends 
to increase the SMCs of variables already present even if it is unrelated in the popu
lation. Although people who employ the common factor model realize that commu
nalities are different for different collections of variables. it is disturbing to find that 
they systematically increase when variables are added. Of course, the amount of in
crease is more noticeable when the original set of variables is small rather than large. 
The SMCs also increase because the new variables actually do have something in 
common with those already under consideration, but this still points to the same 
problem that they describe the specific variables in the study rather than some more 
general concept. 

4 SMCs tend to lead to Heywood cases with somewhat greater frequency than 
other methods because the estimates they produce [end to be smaller. We have noted 
that the smaller the diagonal values, the more likely Heywood cases are to emerge. If a 
Heywood case emerges using SMCs, the choice of a replacement value becomes espe
cially unclear. 

One practical problem is that most algorithms used to obtain the SMCs will not 
work when one or more of these values approaches 1.0. In that case, 1.0 is a perfectly 
proper value to use. but you may not be able to determine the other values in any sim
ple manner. In general. SMCs are too low as communality estimates. Despite these 
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problems, there is probably somewhat more of a reason to use SMCs as communality 
estimates than to iterate if one feels a common factor model is in order. 

Reliability Coefficients 

Direct Estimation 

One additional possibility is to use the internal-consistency (coefficient a.) reliabilities 
(Mlilaik, 1966) if they are available. Whereas SMCs describe a lower limit on the 
communality. reliabilities provide an upper limit since they represent what the com
munalities would be if there were no specific variance, i.e., if all nonerror variance in a 
variable were common variance and if all unique error was unreliability. They possess 
the advantages of being unique, ready obtainable, and meaningful that the SMCs pos~ 
sess. Moreover, reliabilities are less likely to produce Heywood cases than SMCs be
cause they will be larger. However, the assumption they make that all unique variance 
is unreliability can be very unrealistic. 

Communality estimates emerge directly in lVIL and other approaches derived from nu~ 
merical analysis (generalized least squares, unweighted lea..o;t squares, and minres; see 
Chapter It). This is certainly a sensible approach since the communality estimates are 
just as much estimable unknowns as the pattern elements, but it succeeds only when 
the overall solution converges. This fails to happen often enough so that it is worth 
noting as a practical problem. 

Some Major Differences between Component and Common 
Factor Solutions 

It is useful to subject an R matrix which provides clearly defined clusters of variables 
to component and various common factor analyses using a standard package like SAS, 
SPSS~X, or UrtiMult. Ex.plore the various options for communality estimation. Results 
will tend to be ordered from the component model to SMCs. This has been done in 
part with the data in Table 11~2. and you might wish to repeat this with your own data 
(real or simulated). We have already noted some of the differences, and so this section 
is a partial summary. Obtain both orthogonal and alternative oblique rotations. Also 
obtain solutions with different number of factors. When you compare a component 
and a common factor solution, be sure it is based upon the same number of factors. 

You should be able to verify the following points which are considered in the some
what technical dispute between Velicer and Jackson (1990), who lean toward the com
ponent position, and Snook and Gorsuch (1989), Bentler and Kana (1990), and 
Widaman (1990), who support a common factor view. At the same time, part of your 
exploration will simply verify the mathematics of factoring. 

1 Component eigenvalues will exceed common factor eigenvalues because part 
of the unique variance ex.cluded from common factor solutions remains in the compo
nent solution. Consequently a PrC solution will explain more total variance than a 
principal axis (common factor) solution for the same number of factors, but part of this 
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is spurious. Y~u can also verify that the ~um o~ the component eigenvalues equals the 
number of vanables, although the sum at the eigenvalues will equal the slim of the ui
agonal entries in both cases. If you extract too many factors, SOme common factor 
eigenvalues may also have large negative values. 

2 Structure elements obtained from the component solution wi il be higher than 
structure elements obtained from the common factor solution. The magnitude of dif
ference is inversely related to the number of variables and directly related to the aver
age correlation. This difference is another consequence of the fact that the unique vari
ance in a common factor solution contributes to the component structure. This bias in 
the component factor structure is a mildly undesirable property of component solu
tions, but most exploratory analysis is concerned with the relative rather than the ab
solute magnitudes of these correlations. Users of a component model should, of 
course, be aware that the bias exists 

3 The residuals, or obtained correlations minus those predicted from the model, 
Eq. 11-6, will be smaller in absolute magnitude in the common factor solution for a 
given number of factors. A given number of common factors will fit the data better 
than a component solution. Consequently summary measures like the root-mean
square error will indicate better fit. Although this appears to give a clear advantage to 
the common factor model, this model needs to estimate more parameters (the commu
nality estimates in the diagonals) to gain this improved fit, and there is disagreement 
on how to do this meaningfully. 

4 The absolute magnitude of the residuals will always decrease in a component so
lution with increasing numbers of factors, as will the roat-mean-square error. This is 
not necessarily true of all cOlDmon factor solutions: Increases in the magnitude of the 
residuals with increasing numbers of common factors imply that too many factors 
have been extracted. Whether or not this can happen depends upon the specific method 
of communality estimation. 

S A component solution tends to overestimate the actual magnitudes of correla
tions because of the bias present, and so the average magnitude of the residuals will 
usually be negative when R has positive manifold. Cornman factor solutions will like
ly be less biased, and so the mean value will be closer to zero. An actual calculation 
will likely be unnecessary since the difference will be apparent simply by inspecting 
the signs of the residuals. 

6 The oblique rotation produced by the component solution will likely be more 
nearly orthogonal than the oblique rotation produced by the common factor solution. 
This is because the unique error that is part of the component structure wlll attenuate 
correlations. 

7 The initial structure derived from Pre or any noniterative principal axis method 
such as SMCs or reliabilities does not change as factors are added. This is because the 
diagonal entries in R do not change. However, the structure does change when itera
tive methods are used for communality estimation because the effects of iteration de
pend upon the number of factors extracted. 

8 The content, and therefore interpretation, of rotated factors changes substantially 
as the number of factors extracted changes relative to the number of variables, regard
less of whether a component or a common factor solution is obtained. 
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9 If you include a variable which is basicaUy uncorrelated with any of the other 
variables (a randomly generated variable will do nicely), that variable will tend to pro
duce its own singlet component but should not correlate with any common factor. This 
should not be a major practical problem because its lack of correlation with other vari
ables will be visible in R, and so it can and should be excluded from the analysis. 

10 You will get a component solution without anything notable happening. but ei
ther you may not get a common factor soluti0n, as by lack of convergence in some 
methods, or the solution may involve some ad hoc process like using the largest corre
lation of a given variable with the other variables. 

11 Most critically, the major conclusions you reach about factor content will prob
ably be the same with both the component and the common factor solution if your 
groupings are well-defined. 

Some Conceptual Problems with the Common Factor Model 

The mathematics of common factor analysis has evolved impressively to deal with a 
vital issue, the separation of "signal" from "noise." We have stressed that it makes 
more overall sense to think in terms of a cornmon factor model (but probably to do a 
component analysis in exploring data). However, we do wish to express some con
cerns about common factor analysis at the conceptual level. Although the concept of 
common variance (and therefore unique variance) can be well defined mathematically, 
it is actually somewhat u~clear in a substantive sense. 

lOne meaning of "common variance" is what a set of actual linear combinations 
in X explains. This implies a component model. 

2 Another meaning is what a variable has in common with other variables 'in a par
ticular matrix. If this is what is intended, image analysis, a particular fonn of compo
nent analysis, can provide the definition. It is doubtful that the concept is often thought 
of this narrowly since a variable's communality is then not a property of itself; it is a 
propeny of the other variables chosen for analysis. 

3 A third meaning is a variable's reliable variance. If this is intended, internal
consistency retiabilities (coefficients a) can be used as communality estimates to de
fine the term. However, many common factor theorists criticize the use of the reliabili
ty coefficient as being too high since it neglects specific variance. 

4 A fourth meaning is what a variable shares with a domain of variables. This per
haps comes closest to a conceptual definition, but the word "domain" is ill-defined as 
compared to its prior use in the development of reliability theory, We found it useful to 
postulate the concept of a domain as a way of generating items in reliability theory. 
The concept could often be defined very explicitly, such as by randomly choosing 
pairs of four-digit numbers. Some applications required more of a stretch of the imagi
nation (e.g., depression items) because the rules needed to generate them were less 
clear. However, none of these applications remotely resembled the vagueness in defin
ing a domain of variables. Indeed. the domain can consist of variable that have yet to 
be developed. Even though it is reasonable to think in these terms, as when one is con
sidering developing a new measure of anxiety, common variance thus possesses sur
plus meaning in the truest sense. Most researchers probably lack: a well-defined idea of 
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which variables are to be included and which are to be excluded in a particular do
main, one necessary feature. Many investigations (especially the ones we suggt:st re
searchers avoid) lack any well-defined concept of domain. Indeed, the idea of a single 
domain becomes especially nebulous when the user believes there are two or mOI'e in
dependent clusters of van abIes in the data. 

5 Common variance can be defined simply as parameter estimates, such as the h2 

provided by an ML algorithm. However, this verges upon the very weakness of com
ponent analysis-the narrow operational conception of the term. In practice, this defin
ition becomes tied to the specific variables in the ~alysis since it is defined only by 
these variables. This raises the objections noted in point 2. 

Numerous elegant models have been proposed to derive common factors, but none 
solve the conceptual issue of defining a domain. Impressive as recent developments in 
numerical estimation have been, maximum likelihood estimates of communalities do 
not resolve the issue of what communality means. We have indicated that communali
ty estimates and the resulting communalities increase as the number of variables in the 
study increases. Indeed, common factor and component solutit;>ns become indistin
guishable when more than about 20 variables are used. This is important pragmatical
ly. and it further suggests that the only reason that any real measure does not have a 
communality of 1 is that too few variables. especially marker variables, were included 
in the analysis. 

Effects of Number of Variables and Average Correlation 
upon the Factor Structure 

Table 12-4 shows the average centroid structure elements obtained with different num
bers of variables and average correlation magnitudes, except for the last row (con
clusions to be noted depend little on the method of condensation). This last row, 
marked 20z• shows the average centroid structure elements obtained using zeros in the 
diagonals. 

TABLE 12-4 AVERAGE FIRST CENTROID STRUCTURE ELEMENTS AS A FUNCTION 
OF NUMBER OF VARIABLES AND AVERAGE CORRELATION AMONG 
VARIABLES (COMPONENT SOLUTION). 

Average correlations among variables 

Number of variables .00 .20 .40 .60 

5 .45 .60 .72 .82 
10 .32 .53 .68 .80 
15 .26 .50 .66 .79 
20 .22 .49 .66 .79 
25 .20 .48 .65 .78 
20z .00 .40 .62 .76 

Note: The last row shows the results for 20 variables with zeros placed in the 
diagonals. 
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The first column corresponds to an average correlation of zero among variables. 
Because the diagonals are unities, the first centroid structure elements are not zero, but 
the size of such spurious correlations declines rapidly as the number of variables in
creases. If zeros are put in the diagonals, the average centroid structure element must 
then be zero, as indicated in the last row of the table. Althougb it is silly to factor a 
spherical matrix, R matrices with average correlations of .20 are often factored, espe
cially by those with little background in the area. One can see that the diagonal unities 
make an important contribution to the first factor when there are only five variables, 
but this effect diminishes past 10 variables. 

When the average correlation reaches AD, the diagonal unities play a minimal role 
even with a small number of variables. At 20 variables, the diagonal unities also playa 
trivial role. The last row indicates that structure elements derived with zeros and with 
ones in the diagonal are not very different, so that it really does not matter what you 
put in the diagonals when you have as many as 20 variables and decent correlations. 
Many other examples could be composed, and the results from many actual studies 
could be cited to show. that the only problems in employing unities in the diagonals 
arise from low correlations and small numbers of variables. However, with even as 
few as 10 variables and at least modest correlations, one typically finds the same factor 
solution regardless of what goes in the diagonal spaces. The average correlation, as
suming any care in the choice of variables, typically ranges between .4 and .8-not be
tween 0 and 1. Therefore, the range of outcomes is fairly llmited. 

FACTOR ANALYTIC DESIGNS 

A factor analysis starts with a data (X) matrix, which was lllustrated in Table 11-1. 
Thus far, columns of X have been different variables and rows have been scores of 
subjects on those variables. Scores were standardized by columns so that each variable 
had a mean of 0 and a standard deviation of 1.0. Consequently X = Z. Correlations 
were obtained among variables (columns) over subjects (rows). The number of sub
jects was very large compared to the number of variables, and so subjects may be 
called the "long" dimension and variables the "short" dimension. This is the most 
common factor analytic design, called an R design (Cattell, 1952; Gorsuch, 1983). 

Looking more closely at this design, subjects are almost always selected, at least in 
principle, to fonn a random factor in the ANOVA sense. This allows the investigator 
to generalize results from the sample of subjects to the larger popUlation. Indeed, in
ferential tests in R design are meaningful because the correlations are computed over a 
random factor. In contrast, variables are ordinarily selected for specific reasons and are 
therefore a fixed factor. Moreover, scores for different subjects on the same variable 
are commensurate (measurable on the same scale, in this case an interval scale in the 
sense of Chapter 1); if subject 1 got a higher score on an ability test than subject 2, 
subject 1 would be assumed to be higher in that ability. The same would hold if co
variances and mean sums of products were used instead of correlations to describe re
lations among measures. The purpose of these alternative measures is to allow differ
ences in variable means and standard deviations to affect the outcome, as discussed in 
the previous chapter. 
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Table 12-5 presents a series of alternative factor analytic designs, defined in terms 
of different long and short dimensions, and the symbols Cattell (1952) gave these 
designs. 

The next most common alternative is used in only a small number of studies com
pared to R design. It involves reversing or transposing the roles of subjects and vari
ables and is called a Q design. Consequently the rows of X contain variables, the 
columns contain subjects, and there are many more variables than subjects. The analy
sis looks for gtoupings of subjects rather than variables. Whereas variables produce 
factors and subjects produce factor scores in an R design, the converse is true in a Q 
design. Bernstein, Lin, and McClellan (1983) had Taiwanese and American subjects 
judge a relatively large number of college yearbook pictures for attractiveness. They 
were interested in whether the judgments of the two ethnic groups would tend to form 
clusters, which they did. This meant that two Taiwanese or two American subjects' 
judgments of attractiveness were generally more similar than those of a Taiwanese and 
an American. 

An important issue in any design where correlations are obtained among subjects, 
such as a Q design, is how to standardize variables. In ordinary (R design) factor 
analysis, the average factor score for a given subject is generally not standardized, but 
the average for each variable is. If Q data were analyzed in a parallel manner, subjects 
would be standardized but variables would not be. However, some applications of the 
Q technique require variables to be standardized. but others do not. The key is whether 
the variables are commensurate. For example, when Bernstein et al. (1983) presented 
pictures to be judged, some evoked higher mean ratings over subjects than others, but 
this is a legitimate outcome since some people are simply more attractive than others. 
It is as proper· to include these mean differences in the analysis as it is to include mean 
differences in ability among subjects in an R design. 

On the other hand, suppose that a different Q study employed a series of variables 
that were each scored on measures whose seatings were arbitrarily related. For exam
ple. one variable might be a standardized intelligence test ()J. = 100 and cr = 15 Over 
subjects), a second variable might be a reading comprehension measure scaled as aT 
score (f.L = 50 and cr = 10), and a third measure might be a SAT score (f.L = 500 and ~ ;::: 
100), etc. This lack of commensurability due to arbitrary differences in scale has a pro
found but spurious effect on the correlations among subjects. The appropriate strategy 

ALTERNATIVE FACTOR ANALYTIC DESIGNS 

Name Long dimension Short dimension 

R Subjects Variables 
Q Variables Subjects 
p Occasions Variables 
0 Variables Occasions 
T Subjects Occasions 
X Occasions Subjects 
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is to standardize each measure. Paralleling the R design, this may be done so that sub
ject means and standard deviations differ (single standardization). It may also be done 
so that both subject and variable means are standardized (double standardization). In 
the latter case, the data are subject-by-measure interactions in the ANOVA sense. 
Measures scaled so that each subject's mean is 0 are also called ipsitized, but this does 
not necessarily imply that the individual measures have been standardized nor that 
each subject's standard deviation is 1.0. The means and variances' of variables are 
treated as equal in siagle and double standardization since there is no basis for treating 
them differently. For example, consider the data in Table 12-6 which represent the 
population means and standard deviations plus scores of two subjects on five measures 
in their original form, following single and double standardization. 

The correlation between the first two sets of scores (obtained scores) is essentially 
1.0 (r = .99). However, this is an artifact of the wide difference in scale among the five 
measures. Indeed, a correlation of this magnitude would probably be obtained if each 
pair of measures in a given row were sampled randomly using the popUlation parame
ters: Scores for XI and X4 will generally be low and scores for X3 and Xfj will generally 
be high, with scores on X2 and Xs in the middle, regardless of the structure of the data. 
lpsitizing the two columns by subtracting the two subject means (249 and 195) from 
each measure would not affect r. 

Standardizing the scores in each row provides the next pair of columns. There is a 
substantial negative correlation between these two columns (r = -.85). The reason is 
that subject 1 has relatively high scores on the first three measures but relatively low 
scores on the last three measures. The converse is true of subject 2. The term "relative
ly" applies to each subject's mean oyer all measures (.86 and -.60, respectively). Dou" 
bly standardizing, as in the last pair of columns, causes each subject's mean and stan
dard deyiation to become 0 and 1.0 over the tive measures. If the first three and last 
three measures described verbal and mathematical ability, subject 1 would be de
scribed as being above average in overall ability, but more verbal than quantitative, 
and subject 2 would be described as below average in overall ability, but more quanti
tative than verbal. 

ORIGINAL SCORES, SINGLY STANDARDIZED SCORES, AND DOUBLY STANDARDIZED 
SCORES FOR TWO SUBJECTS ON FIVE MEASURES 

Singly Doubly 
Original standardized standardized 

Scale subject subject subject 

Measure p. a 2 2 2 

Xl 50 10 65 40 1.60 -1.00 1.31 -1.46 
Xl! 100 15 120 90 1.33 -.67 .97 -.24 
X;, 500 100 600 425 1.00 -.75 .28 -.54 
X4 50 10 55 44 .50 -.60 -.74 .00 
X5 100 15 105 95 .33 -.33 -1.0B .97 
Xe 500 100 550 475 .50 -.25 -.74 1 • .27 
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The correlation between the singly and doubly standardized values over variables 
will always be the same because the correlation adjusts for the column menn and stan
dard deviations in the same way that doubly standardizing does. The question, howev
er, is whether this correlation captures what we want of the similarity between the two 
subjects. We certainly want these two subjects in the example to be di.fferent, and a 
correlation of -.85 certainly implies a difference. However, suppose subject 3 had the 
same overall mean as subject 1 but the same pattern as subject 2. That subject's five 
scores would correlate perfectly with subject 2's, d~spite their difference in overall 
ability, and so subject 3 would also correlate -.85 with subject l. This is probably not 
an intended outcome. We could prevent it from happening by using a measure other 
than the correlation, most specifically the mean sum of products of the singly stan
dardized scores since that would incorporate mean differences. This is a major part of 
profile analysis, considered in Chapter 14. 

There have been numerous attempts to show that nothing can be obtained from a Q 
design that could not be obtained from an R design. Given certain assumptions, the re
sults obtained from a Q design can be transformed to the results expected in an R 
study, and vice versa (Burt, 1941). This is ·not likely to be useful for several reasons. 
First, these assumptions are stringent and rarely hold in actual studies. Second, the 
number of factors and best rotational choice for a R study need not be the best for a Q 
study even when these assumptions do hold. Third, and most importantly. Rand Q de
signs have very different implications for psychological theory. 

If one is interested in grouping variables, an R design should be used, but if one is 
interested in grouping persons, a Q design should be used. Most theories concern clus
ters of variables, where an R design is most valuable. It is relatively simply to think of 
a factor as an idealized variable, e.g., anxiety. It is also relatively easy to think of this 
ideal variable as being closer to some indicators than to others based upon the factor 
structure. In contrast, a Q design concerns clusters of people, and each factor is a pro
totypical "person" defined by his or her pattern of responses. Factors are such things as 
idealized personality types, and the correlations among actual people specify to what 
extent they are mixtures of the various types. Such constructs are somewhat more dif
ficult to conceptualize than constructs of an R design. This is one reason why an R de
sign is used much more frequently than a Q design. There is a more pragmatic rea
son-it is easier and cheaper to get small amounts of time from large numbers of 

.subjects (especially in subject pools) than to get large amounts of time from smull 
numbers of SUbjects. These points are not intended to be critical of the Q design which 
both authors have used. Indeed, Chapter 14 contains an example of a form of Q analy
sis developed by the first author, called "raw score factor analysis." 

An interesting approach is to obtain repeated measures on the same variable on dif
ferent occasions with a single subject. For example, the subject's weight, diastolic 
blood pressure, systolic blood pressure, pulse rate, and other variables might be mea
sured daily for a period of time. This is known as a P design if the number of occa
sions is large compared to the number of measures, so that correlations are obtained 
among measures over occasions. Its transpose, correlating a small number of 
occasions over a large number of measures, is called an 0 design. Occasions replace 
subjects as a dimension of the analysis in both cases. However, there is no way to 
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generalize the results directly since neither oc~asions nor measures are random effects. 
One possibility is to conduce parallel analyses on different individuals and show that 
their pattern of results is the same. Nunnally (1955) used an 0 design with a Woman 
who repeatedly rated her self-concept from l6 different points of view, e.g., "the way 
you really are" and "the way your parents view you." These were intercorrelated, re
sulting in a 16 x 16 R matrix. A factor analysis found three "selves," whose changes 
were investigated over the course of psychotherapy. In this case, the subject herself 
was the topic of interest. There was minimum interest in generalizing to other individ
uals, though the results hopefuUy generalized to the woman's future behavior. 

Two other designs employ only a single measure, such as "How are you feeling," 
for different subjects over occasions. Occasions replace measures in Q and R designs. 
In a T design, the number of occasions is small compared to the number of subjects, 
and occasions are intercorrelated over subjects. In an X design, the converse is true. It 
is somewhat improbable that factor analysis would address the typical issues of inter~ 
est. Since occasions is an ordinal variable, an investigator would probably be interest
ed in functional relationships (e.g .• does the mean for the single measure increase or 
decrease over time) rather than correlations between the measures at different times. 
An AN<?VA with trend tests would probably be more valuable. 

Three-Mode Factor Analysis 

Subjects, variables, and occasions are termed data modes. In traditional factor analy~ 
sis, only two modes (e.g., variables and subjects) are studied at a time, and the third 
(e.g., occasions) is limited to a single value. For example, an R design, the most popu
lar design, employs subjects and measures (variables) obtained on one occasion, and 
the data are contained in a two-way matrix. In a three~mode problem, each mode is 
represented at more than one leveL For ex.ample, one might obtain J\iIMPI profiles con~ 
taining several measures (scale scores) from several subjects before and after psy
chotherapy (two occasions). The same data structure would arise if each of several 
words or other concepts were rated on each of several attributes by a group of sub
jects. This structure fonns a three-mode "data solid." Tucker (1963, 1964, 1966) has 
extended conventional factor analysis to the three-mode situation. Bentler and Lee 
(1978, 1979) have provided an inferential foundation for the approach. Jones and Ia
cobucci (l989) supply aft illustration using 78 subjects (college students), 15 concepts 
(names of politicians, such as Jimmy Carter and Ronald Reagan) and 27 rating scales. 

The analysis fomis three conelation matrices by aggregating over the two other 
modes. Thus, subjects are correlated over both concepts and rating scales. concepts are 
correlated over both subjects and rating scales, and rating scales are correlated over 
both subjects and concepts. Each of these three matrices is then factored by any suit~ 
able method sLlch as Pre, producing three factor structures (subjects, concepts, and rat
ing scales). Each individual analysis is based on the product of two other modes rather 
than a single mode; e.g., concepts are intercorrelated over a combination of 27 rating 
scales and 78 subjects for a total of (27)(78) == 2L06 "observations" and not simply 27 
rating scales or 78 subjects. With the ex~eption of the wayan observation is defined, 
the three individual analyses are no different from any other factor analysis. At the 
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same time, the fact that observations always combine two modes does raise method. 
ol~gica~ questions since correlations over ?ne mode holding another Constant may be 
qUite dIfferent from the converse cOlTelatlOns. Furthermore, neither the 15 concepts 
nor the 27 rating scales are independent of one another in the sense that the 78 subjects 
are. Jones and Iacobucci discllss these methodological issues. 

The novel aspect of the analysis is a special type of factor pattem called a core ma
trix which interrelates factors from the three modes. Columns of the core matrix are 
factors derived from one mode (e.g., subjects), and rows are factors derived from a 
second mode (e.g., ratings) separately for each level of the third mode (e.g., concepts). 
The' core matrix. can reflect whatever organization of the three modes is of greatest 
interest. 

AD-LIB FACTORING 

It is not necessary to employ the same method of factoring to obtain successive fac
tors. Subsequent factors need not be a PrC just because factor I may have been. An ad
lib approach to factoring is especially useful in dissecting the common variance 
among variables when there are hypotheses to guide the analysis, but these are not suf
ficiently well developed to suggest a confinnatory approach. However, the most useful 
function of ad-lib factoring is to partial one or more variables from a larger set of vari
ables. The partialled variables can be a composite (linear combination) Of, perhaps 
more frequently, individual variables. Adjusting a set of cognitive abilities for overall 
intelligence as defined by the first Pre would illustrate the first use; adjusting these 
measures for gender andlor ethnicity would illustrate the second. 

Nunnally and Hodges (1965) provide an application of ad·lib factOring to the 
study of individual differences in word association. Each variable described the ten
dency to give a particular type of associate. Three scales had previously been stud
ied; the question of interest was the structure of five new scales, controlling for the 
three old ones. The authors used the square root method [discussed briefly in Chapter 
11 and more fully in Gorsuch (1983) and Harman (1976)] with the three old scales 
applied successively as pivots. This meant that the first three factors thus simply con
sisted of these scales in tum. Because succeeding factors are orthogonal to earlier 
factors, and vice versa, all factors starting with the fourth are independent of these 
three variables and any linear combination of them (see Chapter 5, if nonlinear ef
fects may be present). Although their subsequent analysis employed a confirmatory 
procedure to test a proposed structure, it could have simply been an exploratory 
analysis, such as prc. 

If you rotate from an ad-lib solution, be sure that the factors being controlled are 
omitted from the rotation process or else the rotated factors will no longer be indepen
dent of the corresponding variables. For example, Nunnally and Hodges had to ex.
clude the first three from the rotation. Many computer progr~s make it easy to reo 
move one or more PrCs from a correlation matrix since they allow the user to store 
residual covariance matrices. Thus, one may remove the first PrC by analyzing Rafter 
specifying the extraction of one factor. Convert the stored residual covariance to a cor
relation matrix by the methods of Chapter 11 and then factor the resultant by any 
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method deRired. [t is often even easier to remove individual variables since this Option 
may be provided directly by the program. However, the more popular programs make 
it difficult to limit rotation to selected factors. 

Ad-lib factoring to remove irrelevant variables allows a more direct test of the ex_ 
planatory power of hypotheses about the nature of psychological constructs and a po
tentially more thorough exploration of new groupings of variables. It is easy to let 
good ideas get lost in the mechanics of a ready-made, rigid approach to factoring. This 
is especially tnle when one slavishly follows the other defaults of computer packages. 
Some of this rigidity reflect programmers who "know what's right for you" but much 
more reflects the lack of willingness of users to explore options fully. 

HIGHER-ORDER FACTORS 

Correlated factors produce factor correlations which in tum may themselves be fac
tored. providing higher-order factors. This may be viewed as providing successive lev
els of increasing abstraction to the factors. Factors obtained at the first stage are called 
first-order factors and may be closely tied to specific variables. For example, Suppose 
that 40 variables are factored and the results rotated obliquely to produce 10 factors. 
The 10 x 10 factor correlation matrix. (q,) can itself be factored by any method and the 
results rotated as desi.red to produce more abstract second-order factors. Assume that 
four factors are obtained. Since there are more than two second-order factors. the cor
relations among the second-order factors could also be analyzed to obtain still more 
abstract third-order factors, etc. Gorsuch (1983) describes how to link the original 
variables to the higher-order factors and thereby provide the structure of all variables 
on higher-order factors. Normally. a common factor model is employed, and rotations 
obviously have to be oblique. 

Higher-order factors are appealing to the many psychologists who favor hierarchi
cally organized theories. Higher-order factors are basic to Cattell's (1966a) Sixteen 
PersonaHty Factor (16PF) Test. Gorsuch (1983), a student of Cattell's. suggests its ap
plicability to the thorny problem of factoring categorical data as in item-level factoring 
considered in the next chapter. He further provides an illustration of how higher-order 
factors reduce the likelihood of being misled by other artifactual factors (Gorsuch, 
1983, p. 294). 

Two cautions should be noted. 

1 It may be more difficult to understand higher-order factoring than conventional 
factoring. The average student has difficulty understanding first-order factors without 
having to deal with higher-order factors. This is less of a problem at the highest order 
of factors than at intermediate levels where misinterpretations can easily emerge. 

2 The information in a multilevel factor hierarchy can be often be communicated 
more simply with only two levels and sometimes only one level. A second-order fac
tor often tends to be a general factor in which structure elements reflect the overall ten
dency of variables to correlate among themselves. Much the same information is ob
tainable from the initial prc or principal axis structure elements. There is nothing 
wrong with descrihllng an initial general factor even if that factor is subsequently rotat
ed in conjllnction with other factors. 
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On a more positive note, second-order factors have often proven useful in summa
rizing the results of large analyses that produced many factors. For eKample, the vari
ous Wechsler intelligence scales (e.g., Wechsler, 1989) consist of several individual 
tests which are used to estimate verbal and performance IQ measures which in tum 
produce an overall IQ measure. Even though the scales were not formally developed 
through factor analysis, it is quite reasonable to think of verbal and performance IQ as 
first-order factors and overall IQ as a second-order factor. The presence of the second
order factor makes it explicit that the first-order factors are related but separable as
pects of intelligence. 

HOW TO FOOL YOURSELF WITH FACTOR ANALYSIS 

Here are some cautions about using factor analysis. 

1 The easiest way to fool yourself with factor analysis is to ignore the correlations 
that underlie the analysis. Variables that define a factor may have negligible correla
tions with one another. The fact that two such variables can correlate with a "com
mon" factor merely reflects the successive partialling of factors. For example, suppose 
that Xl and X1. each correlate +.50 with factor I, Xl correlates +.50 with factor II, and 
X2 correlates -.50 with factor II. A careless investigator might define factor I in terms 
of what XI and X2 have in common and define factor II as a contrast between Xj and 
Xl' However, Eq. 11-2 or 11-4 shows that XI and Xl are uncorrelated in the plane de
fined by the two factors. If factors I and n account for much of the overall variance, 
the overall correlation between XI and Xl would be nearly zero. Mathematically there 
is nothing wrong with this outcome, but it is easily misinterpreted and not likely to be 
useful unless the two factors each contain several other salients which correlate with 
Xl andX2• 

2 A second common error is to overinterpret the meaning of "small" to include 
moderate but salient structure elements, e.g., those between .30 and .60. This is espe
cially true in component analyses conducted with a small number of variables because 
of the mathematics inherent in any method of condensation and the bias present in 
component approaches. Condensations make the squared or absolute structure ele
ments on successive factors as large as possible. These structure elements may look 
substantial even if the absolute value of the average correlation in R is rather low. As 
an ~xtreme example, suppose that there are only four variables which have correla
tions of precisely zero with each other. Each variable will have a structure element on 
factor I of approximately .5. As advised above, always inspect R to ensure that salient 
variables correlate substantially with one another. 

3 The meaning of orthogonal factors is often misinterpreted. Although the factors 
themselves are uncorrelated, factor score estimates are generally correlated, and these 
correlations need be determined separately. 

4 Confusion often arises between an experimental dependency and the substance 
of what is being measured. This can occur in a number of ways. Perhaps the most 
common dependency arises because items appear on more than one scale of a test., 
as in the MIv.1PI (see Chapter 9). Item overlap forces correlations among the scales 
and thus enhances any inherent factor overlap. Another way to obtain experimental 
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dependency is to include one or more combinations of the individual variables in the 
analysis along with these individual variables. This error arises when sums or differ
ences of variables are included along with the variables themselves. This should sim
ply be avoided. There is no reason to include these combinations along with the origi
nal variables. Certain forms of factor analysis, such as ML or those using SMCs as 
communality estimates will terminate abnormally, but partial item overlap of items 
will not cause this to happen. Minimize any form of experimental dependency among 
variables; the intent of factor analysis is to investigate the "natural" structure of vari
ables rather than one forced through experimental dependence. 

S Subject selection provides another possible source of artifact. Factors can arise 
from differences in age, sex, education, etc., if subjects are relatively heterogeneous 
with respect to these variables. Whether one wants samples that are homogeneous or 
heterogeneous with respect to these variables depends on the population to which the 
results are to be generalized. For example, if the factors are to reflect individual differ
ences among children at a particular age level, the sample should be relatively homo
geneous with respect to age. If this is not possible, some form of ad lib factoring is one 
possibility. An alternative is to fonn separate covariance matrices for each group (e.g., 
age levels, genders, or ethnicities), pool (add) the separate matrices. and compute the 
correlation from this pooled matrix. Standard references on multivariate analysis de
scribe the pooling process. Certain computer packages designed for other purposes 
(e.g., SAS PROC DISCRIM) can be used to this end. On the other hand, if the factors 
are to reflect developmental trends, children should vary in age. 

6 Factor analysis allows one to take great advantage of chance and thus spuriously 
demonstrate almost anything in a small enough sample. The authors have seen some 
horrible ex.amples in which the number of subjects was no more than the number of 
variables, in which case handsome factors are built in. Unfortunately, any of the methods . 
described in this book can be misused to provide such spurious, nonreplicable results. 

7 Yet another common error is to rotate so as to obscure the actual groupings of 
variables more than they are elucidated. This is particularly likely if one interprets the 
factor pattern (f3 weights describing variables in terms of factors) and ignores the fac
tor structure (variable-factor correlations) and factor correlations of highly correlated 
factors. . 

8 It is also easy to confuse a linear correlation with the concept of con'elation in 
general. The relation between some variables may be highly curvilinear, perhaps U
andlor inverted U-shaped, in which case the PM correlation will'seriously underesti
mate the strength of relationship (relations that are monotonic but not linear are un
likely to cause major problems). For example, in life-span developmental research, 
very young children and the elderly may be more like one another than either are like 
those in the middle for some variables, e.g., strength. Chapter 5 noted how one may 
include powers of variables that you have good reason to suspect are curvilinearly re
lated to other variables, e.g., age2, agel, ... (four or five powers are usually sufficient). 
Look at scatter plots, which are usually easy to obtain, and also look at correlations 
between these powered variables: If ageS correlates poorly with other variables, but 
lower powers have at least moderate correlations, delete ageS but keep the lower 
powers. These powered variables may be partialled by ad-lib factoring if they are 
nuisance variables, or they may be kept in the analysis if they are of interest 
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9 A ninth (but not the last possible) way is to analyze categorical measures such as 
items as if they were continuous. This is probably the most common en-or found in ar
ticles published in better journals because item-level factoring seems so natural. the 
appropriate data are easy to gather from "captive sources" like classes. and the prob
lem has largely been ignored in the more empirical sources (despite being in the litera
ture for a long time, cf. Ferguson, 1941). Most item-level factonngs produce too many 
factors and, in particular, nearly always suggest multidimensionality even in a Ltnidi
mensional scale. This topic will be considered at length in the next chapter. 

AN OUTLOOK ON EXPLORATORY FACTOR ANALYSIS 

Both authors strongly feel that a proper and flexible outlook on factoring is more im
portant than an extremely detailed-technical understanding as long as one grasps the 
major concepts. Factor analysis is like any other multivariate or psychometric proce
dure. None are "royal roads to truth," as some apparently feel, or simply bases for 
shotgun empiricism, as others claim. Since it is usually necessary to combine scores 
from several variables to obtain valid measures of constructs, some method is required 
to determine the legitimacy of particular combinations. The patterns of correlations 
among variables is vital to detennining this legitimacy. It is also important to deter
mine whether members of an assumed cluster of variables actually do correlate higher 
with one another than they do with variables outside that clusters if one is to make 
valid scientific generalizations by naming the assumed cluster. Factor analysis is noth
ing more than a set of tools for examining clusters of correlations and providing a 
frame of reference in the space defined by a set of measures, and it is indispensable for 
that purpose. 

Practical Considerations in Factor Analysis 

We conclude our discussion of exploratory factor analysis with these final practical 
considerations. 

1 Consider whether the theory is well developed enough to profit from a confirma
tory approach, as discussed in the nex.t chapter, since you probably have some theory 
that guided you to select the variabLes in the first-place. Exploratory factor analysis can 
be used to test theories and, if the theory consists simply of defining relatively inde
pendent clusters, an orthogonal solution will probably find them if they are there. 
However, a confirmatory approach will probably help guide you through the succeed
ing steps of theory development better. 

2 Don't worry extensively about the choice of a component or common factor 
model to analyze the data, despite the attention we have given this distinction. One 
draws almost identical inferences from either approach in most analyses. Unless the 
numbers placed in the diagonal spaces are so low as to provide ridiculous outcomes (a 
Heywood case andlor large negative eigenvalues), the diagonals of R do not have that 
great an impact on the number and content of exploratory factors, especially if you 
keep inflation of the component factor structure in mind. It is safe to say that the diag
onal entries are of minor concern when there are 20 or more variables in the analysis, 
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as long as any care at all has been given to the selection of variables. Consequently, if 
there are 20 or more variables in the ex.ploratory factor analysis, we strongly recom
mend a component solution, I.e., unity cliagonals. Although 20 variables is not a magic 
number, one is surely safe pursuing the recommended course at this point. Put in other 
terms, the false assumption that the variables are error-free made in component analy
sis becomes a "convenient fiction" at this point. 

3 Problems may arise when only a small number of variables is studied, say less 
than 10, and the average correlation is low. The choice of diagonal entries in that case 
can have a substantial influence on the resulting factor structure. If an eltploratory fac
tor analysis is conducted with less than 20 variables, unclear groupings of variables, 
and no marker variables, some form of communality estimation may be warranted if 
the sample size is sufficient to minimize the role of sampling error. A common factor 
solution might prove more fruitful than a component analysis, especially when the 
number of variables is less than 12. If a component solution is used, keep the inflation 
of structure elements in mind. At the same time, this might be a good time not to use 
factor analysis. 

4 Orthogonal rotations usually lead one to essentially the same major groupings as 
oblique rotations. If you employ an orthogonal rotation, there is every reason to 
choose varimax.. A varimax solution will usually do as well as any oblique rotation 
while providing the simplification of orthogonality. One can avoid dealing with sepa
rate pattern, structure, and factor correlation matrices if one is willing to sacrifice some 
proximity of the factors to the variables. However, it is easy enough to examine a pro
max or other oblique solution as long as you consider the misleading effects of high 
factor correlations. The nice thing about the ready availability of personal computers 
is that you can verify these points yourself very quickly by trying out a variety of 
options. 

5 If groupings are well-defined, different factoring methods generally lead to the 
same conclusions. Each factor should have some variables which correlate with it 
nearly exclusively (most variables correlating highly with that factor should not corre
late more than .3 with any other factor), and at least four tests, including marker vari
ables whose inclusion we stress, should correlate above .5. Unless a factor is at least 
that strong, it is best to ignore it. Factor solutions that lack such clear-cut groupings 
can change in different approaches, so that differences between component and com
mon factor analysis and methods of rotation may make a difference. Solutions that are 
highly method-dependent are poor solutions and might best be left unreported. Con
sider how you selected the variables to make the next study better. We cannot repeat 
enough how factor analysis should not be used to find "magic" in an arbitrarily select
ed set of variables. 

Factors are usually rotated to make solutions more interpretable, which typically has 
three effects: (1) strengthening relations between variables and factors, (2) concentrat
ing variance shared by two variables onto a single factor, and (3) making the factor 
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variances more nearly equal. Orthogonally rotated factors remain at right ungJes be
cause each initial factor is rotated by the same amount, but obliquely rotated factors 
involve rotating each initial factor by a different amount. The rotated factors are not at 
right angles. 

Rotations are linear transformations which do not affect the h" values, estimated 
correlations. or overall fit. Orthogonal rotation weights have three major properties: 
(1) The sum of the squared weights for anyone factor equals I since the factor main
tains its length, (2) the sum of cross products for pairs of factors equals zero, and (3) 
the weights represent cosines of angles between original and rotated factors and there
fore their correlations. The total variance accounted for remains the sum of the vari
ances accounted for by the individual factors, as with the initial (orthogonal) factors, 
and the pattern (8) matrix contains all relevant information. 

Oblique rotations allow factors to be placed nearer groups of variables. Properties 1 
and 3 of an orthogonal solution hold, but not property 2, and factor correlations be
come an important part of the outcome. In general, the oblique rotations are more 
complicated because (1) one no longer has the benefit of a right-angle coordinate system 
and (2) the structure matrix (8), the pattern matrix (B), and the factor cOITelation matrix 
(<P) all contribute important information, though anyone can be derived from the other 
two. Pattern elements represent the intersection. of aJine from the variable to the factor 
parallel to other factors, whereas strucrure elements represent lines drawn perpendicu
larly to the factor (see Chapter 11). The equations for h2 and the estimated correlations 
become complicated because both 8 and B are needed, as in multiple regression with 
correlated predictors. The total variance accounted for is still the average h2 value, but 
no longer the sum of the individual variances accounted for, because of overlapping fac
tor variance. We suggest that you use orthogonal rotations until the distinction between 
pattern and structure is clear; it is easier to be misled by an oblique solution than an or
thogonal solution. Moreover, if an oblique rotation leads to very low factor correlations, 
replace it with an orthogonal solution to gain the advantage of its simplicity and, if two 
factors are highly correlated, try replacing them with a single factor. 

Thurstone's concept of simple structure is designed to best dimensionalize a space. 
The goal is to maximize the number of small pattern weights. Cattell's (1966a) hyper
plane count attempts to quantify this concept, but Hoffmann (1979) proposed an alter
native definition based upon the number of large pattern elements. Because simple 
structure is not always achievable, the goal of rotation is better stated as providing a 
simpler structure with some relatively pure variables for each factor. In addition, sim
ple structure means avoiding a general factor. 

Reference vectors are vectors which are at right angles to all but one factor. They 
are largely obsolete since better methods have become available, but they are com
monly described in computer printouts and have two interesting properties: (1) They 
are proportional to the pattern weights and (2) they represent the correlation between 
variables and a factor, controlling for all other factors. Nonetheless, we suggest you ig
nore reference vector data since they add to the other difficulties normally present in 
reporting factor analytic results. 

Rotation is now generally analytic, rather than visual. The first analytic rotation was 
quartimax, an orthogonal process which maximizes the average variance of squared 
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structure elements over factors (squaring is used to eliminate signs). However, if an 
vruiables have their largest cOiTetation with the same factor, quartimax. will produce a 
general factor, contrary to the goals of simple structure. Varimax maximizes the aver
age variance of squared structure elements within factors and much more nearly meets 
the goal of simple structure and has become the standard orthogonal rotation by far. 
There are many analytic oblique rotations, but none dominates use. One that is fairly 
popular is promax, which rotates obliquely to a target matrix: and increases the dispari
ty between large and small elements. 

The next major section dealt with the determination of composite scores for indi
viduals, factor scores, by ex.tending the basic factor model to apply to individual ob
servations rather than variables in general. The goal is to obtain a factor weight (W) 
matrix defuiing factors in terms of variables. This matrix may be defined exactly in a 
component solution, and so the scores will fulfill the results of the model. Specifically, 
(1) orthogonal factors will produce uncorrelated factor scores, and the correlation be
tween factor scores produced by oblique factors will equal the factor correlation, (2) 
observed scores will equal the weighted sum of the factor scores if there are as many 
components as variables, (3) correlations produced by weighting factor scores will 
equal correlations estimated from the factors (8 andlor B), (4) the multiple correlations 
of the variables in predicting the factors will be 1.0, and (5) the W matrix. will be 
unique, as will (6) the matrix of the factor scores it produces (Xl)' 

These relations do not hold in a common factor solution because of the unique vari
ance-an infinity of W matrices can be obtained to estimate the factor scores, an out
come known as factor-score indeterminacy. The properties of the different solutions 
will vary somewhat. Good factor-score estimation has three goals-factor scores 
should (1) correlate maximally with the factors they represent (be valid), (2) not corre
late with other factors beyond that implied by the factor correlation (be orthogonal), 
and (3) not correlate with other factor scores beyond that implied by the factor correla
tion (be univocal). No single estimation procedure can accomphsh these three goals, 
unfortunately, though the most common, multiple regression, usually is sufficient. 
However, factor-score indetenninacy is not as major a problem for the common factor 
model as it appears. For one thing, the unique properties of the component solution 
hold only in the original sample. Most applications actually involve approximations, 
typically derived from the equally weighted sum of salient variables. One should ex
amine the properties of such approximations since they may be hlgnly correlated even 
though the factors they represent are orthogonal. In practice, three or four salient vari
ables are usually sufficient to define a factor score, but one should avoid limiting the 
definition to one variable. 

The next section interrelated the major matrices, vectors, and scalars thus far dis
cussed: X (raw score;:: Z when standardized by columns); R (correlation or some 
other measure of relationship), 8 (factor structure), B (factor pattern), <P (factor corre
lation), W (factor weight), XI (factor score),"T (transformation from initial to rotated 
factors), and U (uniqueness). The major vector output consists of the h2 values, the 
factor variances, and the mUltiple correlations predicting factors from variables. The 
scalars are the proportion of variance accounted for in the model as a whole and the 
root-mean-square error or some equivalent loss function. The S matrix contains all 
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needed informacion in an orthogonal solution, but S, B, and <P are needed in an 
oblique solution (though one of the three is redundant). Moreover. relations among 
factors need not be the same as relations among factor scores, and so additional matri
ces may be defined for factor scores to describe their properties. 

We suggest that the common factor model makes more conceptual sense than the 
component model. We normally think of a construct as standing apart from its defining 
variables, and an individual may be viewed as having a score on a construct even in 
the absence of these defining measures. However, common factor analYSis may lead to 
various anomalies in practice. Consequently we suggest that exploratory factor analy
sis use a component approach in order to guarantee a solution. 

Factor analysis requires decisions about what to place in the diagonals of R, the 
problem of communality estimation. If these entries are too large, trivial and/or spuri
ous factors will emerge, but if the entries are too small, the solution may be anom
alous. A matrix must be Gramian in order to be factored, meaning that can be ex
pressed as the product of a second matrix and the transpose of that second matrix (the 
matrix turned on its side). If a matrix is Gramian, it can be expressed as the product of 
an infinite number of different matrices and their transposes. Moreover, as was noted 
in Chapter 11, the matrix need not contain correlations, but if a correlation matrix is 
Gramian, its corresponding covariance matrix. and sum-of-products matrix will be 
also. Using numbers less than 1 can allow the matrix to retain its Gramian properties 
but be of smaller rank and thus require fewer factors to explain it. 

We reviewed several procedures for estimating communalities, including unities 
(component solution), which are not devoid of meaning. The major ways to estimate 
common factor communalities are (1) to have the hypotheses define the communality 
estimates, (2) to emptoy statistical criteria based upon rank, (3) to iterate communality 
estimates until they converge to the communalities, (4) to use squared multiple correla
tions, which generally provide the lowest estimates, (5) to use reliabilities, which pro
vide the highest estimates, and (6) to use direct estimation, e.g., maximum likelihood. 

Next we compared the empirical properties of component and common factor solu
tions. Some of the major differences are the following. (1) Component eigenvalues are 
larger than common factor eigenvalues; (2) component structure elements are also . 
larger than common factor structure elements; (3) component residual correlations are 
larger than common factor eigenvalues for a given number of factors; (4) absolute val
ues of component residual correlations always decrease with the number of factors. 
but this is not necessarily true of common factors; (5) component solutions provide bi
ased estimates of the obtained correlations; (6) an oblique rotation derived from a 
component solution will tend to be more nearly orthogonal than an oblique rotation 
deri ved from a common factor solution because unique variance in the component cor
relation attenuates the fac[Qr correlation; (7) the initial structure in a PrC or nonitera
tive principal axis method does not change as factors are added, but it does change 
when iterative methods are used; (8) changing the number of factors can have a dra
matic impact upon rotated factors in both a component and a common factor solution; 
(9) a variable that is uncorrelated with other variables in the analysis will tend to pro
vide its own singlet component, but will be eliminated from a common factor solution; 
and (10) you mayor may not be able to obtain a common factor solution and/or the 
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common factor solution may involve an ad hoc process to resolve an anomaly, but the 
major conclusions you reach will be the same in both cases. 

Even though we argue for the conceptual superiority of the common factor model, 
it is not without problems, as several meanings of common variance are possible: (I) 
the actual variance accounted for by linear combinations. but this is effectively a com
ponent solution; (2) the variance shared with variables in the set being analyzed, 
which is estimated by image analysis, a fonn of component analysis; (3) the reliable 
variance, which in principle ignores specific variance; (4) the variance shared with a 
domain of variables, but the concept of domain is vague; and (5) a parameter estimate, 
which may be empty. 

In order to alleviate some of the conceros about communality estimation, we pro
vided data on the estimated magnitude of structure elements as a function of the num
ber of variables and their average correlation. In practice. communality estimates are 
important only when the number of variables is small and their average correlation is 
low. Both problems can be prevented by a suitable design. 

We have thus far considered the most typical design in which correlations are ob
tained among variables and the number of subjects is large compared to the number of 
variables, called an R design. Subjects are usually chosen at random, but variables are 
not. Variables, but not subjects. are standardized. Subjects are assumed to be measur.
able on the same scale (commensurate). The next most popular design, called a Q 
design, reverses the roles of subjects and variables. One must decide whether to stan
dardize scores of SUbjects. This depends upon whether mean and standard deviation 
differences among subjects are meaningful. Although it has been argued that Rand Q 
designs should yield the same outcomes, they are usually intended for different pur~ 
poses. In still other designs. occasions replace variables or subjects, but these alterna
tive designs usually ralse questions that are not factor analytic in nature. Some newer 
factor analytic models involve three-mode analysis in which vru.iables, subjects, and 
occasions can be jointly studied. 

The same method of condensation need not be used to extract aU factors. It is par
ticularly useful to combine factors derived from single variables (pivots in the sense of 
the square root method defined in Chapter 11) with principal components or principal 
axes and then rotate orthogonatly to these pivots. This ad-lib factoring adjusts for (co
varies) the pivots, which might be incidental to the main purpose of the study. 

Just as factors may be viewed as abstractions of variables, so may higher-order fac
tors (factors deri ved from other factors rather than from variables) be viewed as ab
stractions of lower-order factors. Even though they were not developed fonnally by 
factor analysis, the Wechsler scales illustrate this approach. 

The chapter concluded with a series of ways to fool yourself with the results of a 
factor analysis, as by ignoring high factor correlations in an oblique solution. and a 
short postscript on exploratory factoring containing five practical considerations: (1) 
use a confinnatory method if it is suitable, (2) don't worry extensively about the com
ponent versus common factor issue, (3) avoid studies with small numbers of variables 
that intercorrelate poorly, (4) orthogonal and obHque rotations will probably lead to 
the same conclusions, and (5) major groupings will probably be identified regardless 
of method. 
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CHAPTER OVERVIEW 

CONFIRMATORY 
FACTOR ANALYSIS 

We have thus far let one of several mathematical definitions of "best" dictate the orga~ 
nization of linear combinations and then interpreted the content of the resulting fac
tors. We will now essentially reverse the procedure by beginning with some fonn of 
theory that at least partially dictates the content of the factors and see how well that 
theory fits the data. These theories fall into several classes. 

At the least theoretical end, one may wish to compare the factor organization of al
ternative data sets provided by different subjects, sets of variables, or solutioos based 
upon the same variables. There may be actually little or no theory behind the organiza
tion in this case. Prof. Smith may have conducted an exploratory factor analysis of a 
series of problem solving measures in adolescents, and Prof. Martinez may have stud
ied these same variables in adults. You might be interested in the similarity of the two 
solutions. Similarly, you may wish to compare a set of maximum likelihood (ML) fac
tors with a set of principal components (PrCs). Still another application is to evaluate 
factor score estimates. Chapter 12 noted that the properties of components parallel 
their factor scores in the original sample: Orthogonal components produce uncorre[at
ed factor scores. This is not necessarily true of common factors and their estimated 
scores nor of any factor scores obtained in a new sample. 

The next step up in tenns of theory testing, though not necessarily in terms of the 
complexity of the analysis, concerns hypothesized groupings of variables. In Chapter 
11, we described a hypothetical personality researcher who had proposed that anxiety 
over physical hann was separable from anxiety over social embarrassment. That 
investigator administered two sets of four tests each that were assumed to measure 
two respective types of anxiety. A key aspect of the hypothesis is that it makes no 
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statement abo~t how the tests are weighted. ~e investigat?r might prefer that they all 
be equally re I.!ab Ie. and relate equally to t~e factor or o~tslde criterion, bur the theory 
does not reqUlre this. All the theory srates IS that the vanables go together in the sense 
of measuring a construct in common. It is therefore a weak theory (Bernstein, 1988) 
or:. within the tradition of s~ctura~ equation mod.eling w~ will consider in this chapter 
(Joreskog, 1974), congenenc. An Important special case IS when a single factor is as
sumed to underlie all variables, Le., Spearman's (1904) general fuctor hypothesis in
troduced in the previous chapter. 

As a theory becomes more highly developed, statements become more precise. One 
might propose that (1) the two constructs are orthogonal, (2) the two constructs are re
dundant, (3) tests within groups have equal pattern elements (true variance) and so they 
are tau-equivalent, and (4) given that they are tau-equivalent, they also have equal error 
variance so that they are parallel. All these involve hypotheses about measurement. 

Another possibility is the testing of causal hypotheses. For example, one investiga
tor may hypothesize that anxiety over bodily harm is directly related to perceived dan
ger, but another investigator may argue that the relationship is mediated by one's per
ceived competence in handling the danger. Assuming that perceived danger, perceived 
competence, and anxiety about bodily harm are all measurable, the first hypothesis 
states that a perceived danger and anxiety about bodily harm will still be correlated 
after controlling perceived competence; the second hypothesis states that the correla
tion will disappear following this control. Both measurement and causal hypotheses 
are examples of strong theories (Bernstein, 1988). 

Two broad sets of approaches will be considered. One follows directly from the 
correlations of sums and the resulting geometry (see Chapter 5). This gives rise to 
mUltiple group analysis and related procedures. It is quite suitable for comparing alter
native factor solutions and testing weak theories. Also following in this tradition is the 
use of forced rotations, which includes Procrustes. Although the phrase "methods 
based upon properties of linear combinations" is value-free and descriptive, we will 
use the less cumbersome term "classical." Classical methods are more difficult to 
apply to the testing of strong theories but may be used in some cases. 

In contrast, NIL, GLS, and ULS estimation may be used to handle all three situa
tions through the analysis of covariance structures (ACS). Although the term LISREL 
(linear structural relations, Joreskog & Sorbom, 1989) is a very common synonym for 
ACS, it is ambiguous because it also describes a particular computer program. This 
particular program in tum has competitors which may be used to this same general 
end. such as Bentler's (1989) EQS. The notation we will use arbitrarily follows LIS
REL rather than EQS, but we will use the term "ACS" to refer to the abstract model. 
References to LISREL imply the specific computer program we used to evaluate ex.
amples. We will not evaluate the advantages and disadvantages of alternative comput
er programs save one, Muthen's (1988) LISCOMP, because its extension to ACS is 
basic to a major topic in this chapter, the analysis of categorical variables such as 
scales. 

Because of the relative simplicity of Spearman's general factor solution and the re
lated problem of defining the structure of a single factor, we will begin by reviewing 
its logic. 
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SPj:A~MA.~'S GENERAL FACTOR SOLUT10N 

Charles Spearman (1904) was the originator of factor analysis, and even recent theo
rists have been strongly influenced by his ideas. Although he later modified his posi
tion (Spearman, 1927), his early theory was that one general factor (g) underlies all 
mental abilities. This g factor was thought of as the mental yardstick of intelIigence_ 
the only one needed to explain the common ground among all individual differences in 
abilities. Thus, arithmetic, spelling, and judgments of illusions were thought to share in 
g. Spearman additionally theorized that each source of individual differences (each 
test) possessed a unique factor. Unique factors for different tests were assumed to be 
uncorrelated. Consequently g accounts for all correlations among tests. The theory is 
sometimes called Spearman's two-factor theory because each test is assumed to consist 
of a general factor and a unique factor. As a mathematical model, it is not limited to 
abilities measures; e.g., it can be used to evaluate a series of anxiety measures if it is 
proposed that each of the tests has only anxiety in common. 

Spearman used the following line of reasoning. If g completely accounts for corre
lations among tests, these correlations can be accounted for by the correlations of each 
test with g. For example, say that there are five measures, XI to Xj • whose intercorrela
tions are '12. '13, etc. The correlations of each with g are rLg, r28' etc. According to the 
logic of PM correlational analysis, the partial correlation between two observables, 
holding g constant, would be zero if g can explain the correlation between them. Con
sequently, if g explains the common variance among the five variables, all partial cor
relations among these five variables holding g constant (e.g., r12.g) will be zero. It can 
further be shown that the correlation between any two variables equals the product of 
their correlations with g. For example, consider the following variation upon Eq. 5-14, 
partial1ing g from the correlation between XI and X2: 

(13-1) 

The only way for '12'g to be zero is for the numerator to be zero, and the only way for 
the numerator to be zero is for the correlation between the two tests (rI2) to equal the 
product of their correlations with g (r\gr2g)' Thus, the correlations in any matrix ex.
plainable by g equal the products. of their correlations with g. 

We will symbolize the correlations of XL to Xj with g (structure elements) as a, b, c, 
d, and e rather than as T18' r28' etc., to simplify notation. Then, rl2 = ab, 'Il = ac, r23 = 
be, etc. Assuming the correlations can be explained by g, the full correlation matrix 
(R) equals the products of the correlations with 8, as shown in Table 13-1. We will 
employ Speannan's method for calculating the diagonal elements, which was dis
cussed in the previous chapter, as part of the solution. 

Matrices that can be explained by g have some interesting characteristics. One 
characteristic of Table 13-1 is that the elements in any column are proportional to 
those in any other columns, exclusive of diagonal elements. For example, the elements 
in columns 1 and 2 provide 
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TABLE 13~1 CORRELAnONS AMONG FIVE TESTS EXPRESSED 
AS CORRELATIONS WrrH A GENERAL FACTOR 

Test 

Test X, X2 X3 X4 Xs 

Xl ab ae ad ae 
Xa ab be bd be 
X3 ae be ed ee 
X4 ad bd cd de 

Xs ae be ee de 

'IJ '14 rlS -=-=-
raJ '24 '2S 

(13-2) 

This can be seen by substituting the products of the correlations with g for the correla~ 
tion between the measures: 

,IJ ae a 
-=-=-
'23 be b 

'14 ad a 
-=-=-
'24 bd b 

(l3~3) 

'IS ae a -=-=-
r2S be b 

The elements in any two columns are therefore proportional to the correlations of the 
two variables with g. ignoring pairs of elements where either is a diagonal element. 
This holds for any two rows of R as well as for any two columns. 

The first tests of g were made by ex.amining the proportionality of columns in R 
using tetrads. A tetrad consists of two elements from any column (e.g .• '14 and '14) and 
the corresponding two elements from any other column (e.g. '15 and '25)' If Eq. 13-2 
holds so thac the two pairs are proportional, products of the fonn rL4'2S - 'IS'l4 will 
equal zero, a condition known as the vanishing tetrad. All tetrads will vanish in the 
population R matrix if the methods of Chapter 12 are used to obtain communality esti~ 
mates. If you are familiar with the concept of a determinant, you will also recognize 
that vanishing tetrads imply that all 2 X 2 detenninants (which are the values of the 
tetrad differences, e.g .• rl4r2S - rlSr:Z4) will be zero. This also implies that the matrix is 
of rank 1. providing the correlations are not all zero. Harman (1976) discusses how 
such tetrads were investigated and how Spearman's modeL was later expanded to in~ 
elude possible factors beyond g. However. there are now better ways to test the hy~ 
po thesis that a single factor explains R than examining tetrads. Nonetheless, we will 
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present Spearman's method as the eusiest form of factor analysis to calculate by hand 
for the benefit of those who wish to learn by direct calculation. 

Assuming R fits the model exactly, the structure can be computed directly. Equa
tion 13-4a provides the squared correlation of XI with g (a2): 

(134a) 

Equation 13-4b provides the same result: 

(l3-4b) 

In a matrix of five variables, there are six different equations that can be used to infer 
the correlation of any variable with g since there are six ways the four remaining vari
ables can be combined in pairs. All give the same result in the population. This will 
not occur in practice because of sampling error, and so the different equations will pro
vide slightly different estimated correlations with g. A pooled estimate of the squared 
con-elation between Xl and g (a2) can be obtained by (1) adding the numerators of all 
equations, (2) adding the denominators, and (3) dividing as in Eq. 13-5. Spearman and 
Holzinger (1924, 1925) also studied the sampling distribution of these estimates. 

(13-5) 

The numerator is the sum of paired products of correlations between XI and each of 
the other variables, and the denominator is the sum of all correlations not involving XI. 
Parallel expressions estimate the correlations of X2 to X6 with g. 

Equation 13-6 is a simpler way to obtain these estimates: 

., L2_Q 

rig = 2(M - L) 

where r;! = squared correlation of variable Xi with g 
L = sum of correlations in column i, excluding the diagonal element 
Q = sum of squared correlations in column i 
M = sum of all correlations below diagonal of matrix 

(13-6) 

As noted in Chapter 12, Spearman's special case solves the problem of communality 
estimation that plagued later factor analysis. It is a tribute to his intellect that he recog
nized that the problem existed. The results are similar to the structure of the first cen
troid but differ because correlations with the centroid factor involve diagonal terms. 

Table L3-2 illustrates application of Spearman's result to simulated data. Imagine 
that a Prof. Hatfield has developed five measures of aggression, Xl to Xs. The tests are 
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COMPUTATIONAL PROCEDURES FOR DETERMINING CORRELATIONS WITH A GENERAL 
FACTOR 

Correlations 

X, X2 X3 X4 Xs 

Xi .72 .62 .51 .47 
X2 .72 .56 .49 .46 
Xs .62 .56 .42 .38 
Xi .51 .49 .42 .29 
X5 .47 .46 .38 .29 

Column sums (L) 2.32 2.23 1.97 1.70 1.60 
Column sums of squares (Q) 1.38 1.29 1.01 .75 .66 

M=4.91 
r/~ .77 .69 .49 .33 .29 
rig .B8 .83 .70 .58 .54 

Residual coefficients 

X, X2 Xa X4 Xs 

Xi -.01 .00 .01 .00 
X2 -.01 -.02 .01 .02 
X3 .00 -.02 .01 .00 
X4 .01 .01 .01 -.02 
Xs .00 .02 .00 -.02 

all in standard score (J.I. = 0, a= 1) and are all defined by a single factor (g). The popu
lation correlations between Xl to Xs and g are .9, .8, .7, .6, and .5, respectively. be
cause the tests are of decreasing reliability. The raw data look like the following: 

1.30 .77 1.30 2.20 1.14 
-.22 -.51 .74 -.87 -.77 
-.21 -1.27 .18 -1.00 -1.28 
-.91 -1.91 -.73 1.18 -.86 

.07 -.27 -.15 .23 -.05 

After estimating the correlations with g. a matrix of their cross products may be ob
tained and subtracted from the R to produce a residual covariance matrix. Eltamining 
the size and patterning of these values can lead to a decision about the general factor 
hypothesis. Our calculations maintained the full precision of the raw data but were 
rounded to two decimal places for presentation (yours may differ through rounding 
error). As can be seen, the residuals are all of trivial magnitude (less than ±.02 in all 
cases). Moreover, the five structure estimates (.88, .83 •. 70, .58, and .54) are very close 
to the parameters generating the data (.9, .8, .7, .6. and .5). 

A more modem approach is to obtain a single ex.ploracory NIL factor and test the 
residual for significance, using the likelihood ratio chi-square (02) distribution. Other 
tests, discussed below, are more complex but lead to basically the same outcome. Our 
i'vU. results were that the 0 2 value testing the null hypothesis thac there were no 
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common factors in the data was 949.64, which is significant well beyond the .001 level 
with [0 df. This confirms the presence of at least one factor. The 0 2 value associated 
with the residual was only 2.31, which is not significant with 5 df. This indicates that 
the single factor was sufficient to explain the correlations. The structure estimates 
were neal'ly identical to those obtained from Spearman's procedure (.88, .82, .70, .58, 
and .54). Recall that even when the data conform as closely to the model as the present 
data do, the ML procedure is not guaranteed to converge, however. Similar results 
were obtained from other common factor solutions and, for reasons discussed in Chap
ter 12, the structure of the first Pre was slightly larger in magnitude. 

Although Spearman laid the foundation for factor analysis, numerous contrary find
ings made his hypothesized g untenable as a substantive explanation of how cognitive 
abilities relate. It became quite obvious that a single factor could not explain the corre
lation matrices obtained from larger sets of more diverse measures, such as verbal 
skills, spatial skills, perceptual skills, numerical skills, etc. Additional factors were ob
viously needed. This required both an augmentation of theory and the development of 
mathematical procedures that went beyond testing for only a general factor. Various 
efforts were made to extend Spearman's factoring method to the multifactor case. 
Most of these basically consisted of inferring factors from clusters of partial correla
tions in the residual matrix. produced by removing g. One widely used method of this 
form was Holzinger and Swineford's (1937) bifactor method cited in the previous 
chapter. However, two major changes took place in extending Spearman's original to 
the multi factor case. 

First, factoring gradually switched from confirmatory to exploratory analysis be
cause groupings of residual correlations were inferred from their sizes rather than 
specified before the analysis. Second, the mathematics of obtaining correlations with g 
did not provide an adequate basis for developing a general logic for ex.ploratory factor 
analysis. The efforts to obtain additional factors consisted largely of trial-nnd-error 
techniques requiring numerous assumptions about patterns of correlations in the ma
trix. These methods had no solid mathematical basis as the centroid, PrC, and NlL 
methods do. 

This change in emphasis from confirmatory to exploratory analysis took place 
around 1930. The resulting forms of el<pioratory analysis (e.g., PrC plus varimax) 
have been greatly refined and applied widely. However, a variety of psychological the
ories and prior data have provided more definite hypotheses about factor structures in 
the last 20 years. Consequently testing hypothesis with factor analysis has returned to 
vogue, and there is great interest in confinnatory factor analysis. Spearman's old, ele
gant model for g is still a perfectly good procedure for testing the hypothesis that a 
particular collection of variables is dominated by only one common factor. When its 
results are radically different from ML, the data probably deviate so radically from a 
single factor structure that the correlations with g are of no interest. 

COMPARING FACTORS IN DIFFERENT ANALYSES 

An important re~earch problem is to determine how similar sets of factors are in differ
ent analyses, as in the e){ample given at the beginning of the chapter concerning the 
two investigators who studied a series of abilities measures in populations of different 
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ages. Science cannot progress on the particular; its most valuable discoveries are gen
eral. A single exploratory (or, for that matter, confirmatory) analysis has limited value. 
Results contribute to our knowledge when they are replicable under different condi
tions. Groups differing in age, gender, and ethnicity, are the most obvious, but not the 
only, ways to generalize. It is also useful to ex.plore differences across populations. 
One might find that there is greater variability in a verbal ability factor among mem
bers of group A than group B or that two uncorrelated factors in group A are highly 
correlated in group B. However, such differences are meaningful only when there is 
some degree of factorial similarity to provide a basis for comparison. 

In investigating such issues, it is essential to remember that factors can be viewed 
as linear combinations of variables-actual linear combinations in component analysis 
and hypothetical (estimated) linear combinations in common factor analysis. Similarly, 
factor scores are linear combinations of observed scores-again, actual in the case 
of component factors and hypothetical in the case of common factors. Both must 
be sharply distinguished from structure elements (correlations between variables and 
factors). 

Gorsuch (1983) discusses three situations where one might compare factors andlor 
factor scores: 

lOne set of variables, such as a set of cognitive abilities measures, has been given 
to the same subjects (same variables-same subjects). The goal might be (a) to compare 
alternative factor solutions, (b) to evaluate the properties of factor score estimates, or 
(c) to compare exact or estimated factor weights with approximations based upon 
salient variables. 

2 One set of variables is given to two different groups (same variables-different 
subjects). The goal is to test for factor invariance. 

3 Two or more distinct sets of variables are given to a single group of subjects 
(different variables-same subjects). The goal is to relate factors obtained from one set 
of variables to factors obtained from other sets of variables. 

There is a vital functional difference between the same variables-same subjects 
case (1) and the different variables-same subjects case (3), but you cannot tell which 
is which simply from looking at the variables. The choice depends upon the goals of 
the analysis. A case-1 factor may contain salients from different sets, but case 3 pro
vides separate factors for each set of variables. 

Classical Approaches to Testing Factor Invariance 

Assume that an investigator has obtained either a series of measures from the same 
subjects on two occasions (case 1) or the same measures from two different groups of 
subjects (case 2) and wishes to compare the resulting factor structures. 

Investigators commonly determine the similarity of the two sets of results based 
upon corresponding structure elements (factor-variable correlations) or, even worse, 
pattern elements (beta weights predicting variables from factors) or factor-score 
weights (beta weights predicting factors from variables.) We cannot suggest strongly 
enough that this not be done, especially when the variables underlying these factors 
are highly correlated, as they should be. The "it don't make no nevemrind" principl~ 



TABLE 13-3 

550 PART 4: FACTOR ANALYSIS 

(Kaiser, 1970; Wainer, 1976) we have stressed is tha.t two sets of weights tnat appear 
highly different may generate linear combinations that are highly correlated when the. 
underlying variables are highly correlated. 

Conversely, it is possible to rotate two orthogonal factors so that their structure (and 
therefore pattern) elements become highly similar; e.g., XI correlates .4 with both fac
tors and Xl correlates .3 with both factors. This is because statistical and geometric or
thogonality are distinct concepts (see Chapter 11); orthogonal factors can produce 
structure elements that are correlated. Only Pre and principal axis analyses produce 
uncorrelated factors with uncorrelated factor structure elements, and rotation destroys 
this property. Do not base comparisons upon the similarity of structure (or pattern Or 

factor-score) elements because these elements are not the factors. 
One classical approach is to correlate the scores produced by the two factors, which 

is also the correlation between the factors in a component solution. When the same 
measures are obtained from all subjects, it does not even matter whether the two fac
tors are based upon the same or different variables, i.e., whether case 1 or case 3 holds. 
Factors I and II are each defined by a set of factor weights. These weights were sym
bolized in terms of a single matrix (W) in Chapters 11 and 12 but are better viewed as 
two distinct vectors here, symbolized w .. and w, (the use of lowercase boldface to de
note vectors is conventional). One may correlate the two sets of factor scores by ap_ 
plying w .. and Wy to the data matrix X, and the procedure generalizes to scores on mUl
tiple factors. However, it is much si.mpler to apply the vectors to R instead of X. An 
alternative and somewhat popular procedure, which dates back to Burt (1948), is the 
coefficient of congruence. This is a formal measure of the similarity of two sets of pat
tern elements. It provides a simplified measure of the correlation between compO£leDts, 
but it can lead to anomalous results in other settings. Consequently we do not recom
mend it for the reasons we do not recommend any comparison based upon factor pat
terns (for details, see Gorsuch, 1983; Harman, 1976). 

We will illustrate how these calculations follow directly from the methods of Chap
ter 5. Recall the mythical Prof. Hatfield's five aggression measures. Equally mythical 
Prof. McCoy administers these (Xt to X,) to 500 people insntutionalized for acts of vi
olence and finds that these measures correlate .9, .8, .7, .8, and .8 with Prof. McCoy's 
factor I because X4 and Xs are more reliable than they were in the original study. These 
correlations appear in Table 13-3. 

COMPUTING THE CORRELATION PRODUCED BY TWO SETS OF FACTOR WEIGHTS 

Correlation Matrix 

Variable Weight X1 Xz X3 X4 X, 

XI .29 1.00 .75 .62 .75 .74 
Xa .28 .75 1.00 .58 .67 .66 
Xli .26 .62 .58 1.00 .81 .55 
X4 .23 .75 .67 .61 1.00 .66 
Xs .21 .74 .66 .55 .66 1.00 
Accumulalive sum .99 .94 .86 .93 .90 
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Prof. Hatfield's factor weights (w.J were .29, .28, .26, .23, and 21, whereas Prof. 
McCoy's factor weights (Wy) were .25, .24, .21, .24, and .23. Note that McCoy's X 
and Xs have larger weights than Hatfield's because McCoy's were more reliable. Thes; 
trends also appear in Prof. McCoy's factor structure, which is not presented. We will 
illustrate the calculation using Prof. McCoy's correlation matrix. 

1 The variances produced by w .. and wyand their covariance are needed, as in any 
correlation. These quantities in tum require what we will term intermediate vectot"S. 
The weights w .. appear in the first data column of Table 13-3. Accumulatively cross
multiply these by the correlations in the first column of the correlation matrix: 
(.29)(1.00) + (.28)(.75) + (.26)(.62) + (.23}(.75) + (.21)(.74) = .99. This is the first ele
ment of the intermediate vector (the process illustrates matrix multiplication). 

2 Repeat this for the remaining columns in the correlation matrix. This produces 
the values .94, .86, .93, and .90, as shown at the bottom of the table, that constitute the 
remainder of the intermediate vector. 

3 Accumulatively multiply the corresponding terms in wyand the intennediate 
vector to obtain the covariance of the two linear combinations: (.29)(.99) + (.28)(.94) 
+ (.26)(.86) + (.23)(.93) + (.21)(.90) = 1.095. 

4 Accumulatively multiply the intermediate vector by w .. instead of Wy to obtain 
the variance produced by w ... The result is 1.201. 

5 Place the values of Wy instead of w .. in the first column and accumulatively mul
tiply the resulting intermediate vector by w x to obtain the variance produced by wy
The result is 1.0. This will always be the case when component weights are applied to 
their corresponding matrix. 

6 The correlation, as always, is the covariance divided by the square root of the 
product of the variances: or 1.09S/V(1.201)(1) or 1.0 within rounding error. Had you 
used the structure weights (variable-factor correlations), the variance would equal the 
variance accounted for by the factor. However. the covariance would be affected in a 
parallel manner, leaving the correlation unaffected. When structure elements other 
than those produced by Pre are used, the correlation will differ from the proper value 
obtained using factor weights. 

The correlation between the two sets of weights can be determined in a like manner 
for Prof. Hatfield's correlation matrix, and either set of weights can be compared to 
equal weights (1, 1, I, 1, 1). In fact, all of these correlations are .999 or larger. When 
the results for both matrices are as similar as they are here, report this fact and one ar
bitrarily chosen set of results. Otherwise, report both sets of results and explore the 
r~ason for the difference; e.g., see if one group may have been range-restricted. 

The fact that the correlations between Prof. Hatfield and Prof. McCoy's factors are 
all so high means that their properties are practically identical. Clearly, it is very 
strained to say that two factors are different when their factor scores correlate above 
.95, as is often true. We strongly recommend the present method for most problems 
(an exception will be noted) because it is sensitive to both the structure elements and 
the correlations wong the observed variables and not just to the structure elements 
themselves. This point may appear obvious given the similarity in magnitude of COlTe

lation and factor weights, but the results of an ACS analysis, presented below, will be 
of interest. 
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Some Practical Aspects of Comparing Factor Structures 

1 Some lack of in variance in a component solution may reflect unreliability. Equa. 
tion 7-12 can be used to estimate the reliability of the factors, and Eq. 6·36 can then be 
used to correct the correlation between factors for attenuation. The result approximates 
the correlation between common factors, which are theoretically error-free. 

2 Lack of factor invariance across groups could imply that group differences mod. 
erate the correlations among groups. or it could simply arise from sampling error. 
Bernstein, Garbin, and McCleUan (1983; also see Jensen, 1980) formed pseudogroups 
to evaluate this issue. Assume you have obtained correlation matrices from samples of 
500 males and 500 females. Compute two additional correlation matrices. Obtain one 
by selecting half the males and half the females at random. aod obtain the other from 
the remaining cases (e.g., the even sequence numbers, assuming these are random). 
These two matrices define the pseudo groups. and correlations between corresponding 
factors obtained from them can differ only through sampling error. They provide a 
baseline for evaluating the correlation between factors obtained from the male and fe. 
male correlation matrices. 

3 Imagine comparing a set of cognitive abilities measures in groups of engineer. 
ing and liberal artS students at a fairly selective university in order to compare the re. 
suIting factor structures. If the engineering subjects are uniformly high in numerical 
ability, they will be range· restricted on relevant measures, but they may vary more 
widely in verbal ability. As a consequence, verbal skills might dominate their major 
dimension of variation (PrC 1). Just the reverse may be true of the liberal arts stu. 
dents. The comparison may profit by using the initial rather than rotated factors. 
Comparing rotated factors confounds differences in the overall structure with differ· 
ences in rotation (e.g., the angle of rotation might be 30' in one group and 40" in the 
other) which would be superimposed on any difference in the composition of the 
PrCs. 

4 Comparing pairs of weights in each group can become cumbersome when there 
are several groups (e.g .• whites, blacks, Hispanics, and Asians) since there will be two 
correlation matrices to compare foe every pair of groups. Moreover, the correlation 
matrices used to compare whites and blacks will both be different from the correlation 
matrices used to compare Hispanics and Asians. Standard references on multivariate 
analysis (see Chapter 11) describe how to obtain the pooled within-group covariance 
matrix, which may then be used to obtain a composi~e correlation matrix. For applica~ 
tions, see Kaiser, Hunka, and Bianchini (1971) and Bernstein, Teng, Garb in, and 
Grannemann (1987). However. examine the separate matrices for systematic differ
ences in variance andloe covariance. Appropriate procedures may be found in the mul· 
tivariate texts listed in Chapter 11. 

5 Comparing the two professors' factors was greatly simplified because the 
properties of component factor scores are identical to the properties of their corre~ 
sponding factors. In common factor analysis, this is not generally the case. Can· 
sequently circumstances may arise in which one wishes to compare two common 
factors, a factor with factor~score estimates derived either from that or another factor. 
or two sets of factor-score estimates. Gorsuch (1983) deals with this issue in de· 
tail. The basic idea is to use the structure matrix (8) to investigate properties of 
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factors, and the factor weight matrix (W) to investigate properties of factor-score 
estimates. 

6 Case 3, discussed above, involves two sets of variables that are administered to 
the same subjects, say, lO demographic and IS attitudinal measures, which are intend
ed to yield separate sets of factors. Factor the lOx lO matrix of demographic correla
tions separately from the 15 x 15 matrix of attitudinal measures. Then obtain the 25 X 

25 matrix containing all possible correlations both within and between sets. Assume 
the first variables in the matrix are the demographic ones. Augment the demographic 
weights on its factor(s) by adding 15 zeros at the end of each. Then, augment the atti
tudinal weights on its factar(s) by adding 10 zeros at the beginning of each. The proce
dure used to evaluate the similarities of the two professors' factors can also be used to 
compare these two groups of factor-score weights. 

Comparing Overall Solutions 

The above discussion was directed toward comparing pairs of factors and/or factor 
scores. A rather different problem involves the overall similarity of two solutions. 
Consider two investigations, each of which employs the same variables, case 2 above. 
Each investigation provides a two-factor solution. Denote the two factors obtained 
from one study as I.r and II.r, and the two factors obtained from the second study as Iy 
and IIy. Using the above principles, you discover that the correlation between I", and Iy 
is only .7, and that the same is true of IIx and IIy• What does the fact that the two pairs 
of factors have only 50 percent overlap say about the overall solutions? 

The answer is that you don't know. It is possible that a simple rotation may trans
form I.r and II.e into Iy and IIy, but it is also possible that this is not so. That is, all four 
factors may he in the same plane [i.e., be coplanar (in general, share a common hyper
plane that is a subspace of the overall solution)] or they may not, depending upon 
other possible relations (e.g., between l.r and IIy). Following the above logic, the extent 
to which I, falls in the plane defined by I.r and II.T may be defined by its multiple corre
lation with the latter factors. The extent to which I", and II.r are related to Iy and II, 
may be inferred from a canonical correlation analysis involving the two groups of 
factors. (Standard textbooks on multivariate analysis discuss canonical correlation 
analysis.) 

Cliff (1966; also see Meredith, 1964) developed a system of forced rotation to 
make two sets of factors as similar as possible. His procedure is one of a larger class a f 
such procedures including Procrustes, discussed later as a confirmatory procedure. Al
though the details of the method involve a very complex eigenanalysis, the solution is 
readily programmed. Basically, [.r and II .• are rotated to form I~ and II~. Simultaneous
ly, 1y and IIy are rotated to form I~ and II~. The angles of rotation make the sum of the 
squared distance between I~ and l~ and between W. and II; as small as possible. The 
relevant computations are described in Gorsuch (1983) and Harman (1976). Cliff's 
method 15 orthogonal in that both I .• and II.r are each rotated by the same amount and Iy 
and II, are also rotated by the same amount (but probably a different amount than I .• 
and II .• ). However, oblique methods, which allow all four factors to be rotated by dif
ferent amounts, are also available. 
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Approaches based upon the ACS compare the fit of two solutions. In one, parameters 
are estimated separately for each group, and in the other, they are constrained to equal
ity. This is fundamentally the same ~ogic used in Chapter 10 with item response theory 
to test for differential item functioning nnd comes from the same roots in Ilumetical 
estimation. The parameters involved in comparing the correlational structure are the 
pattern weight.'!, the factor correlations (in a muttifactor solution), and the uniqueness
es (the reason that ACS stresses pattern elements over structure elements will be given 
later in this chapter). Unlike classical methods which can be used with both compo
nent and commOn factor solutions, ACS effectively makes sense only as a common 
factor solution. 

Parameters that can vary freely among groups must provide better overall fit than 
fixed or constrained parameters, by definition. but the inferential question is whether 
this fit is significantly better (Le., whether the 0 2 values for the two models differ by 
more than chance), and the descriptive question is how much better the fit is. Com
paring groups often requires that one analyze either the covariance matrix (the values 
of r,)?IN and r,;cy/N) or the mean sum-of-products matrix (the values of r;x'2./N and 
r.XYIN, alsu caned the moment matrix) rather than R. Strictly speaking, the 0 2 test 
used to evaluate models should always be based upon the covariance matrix or the 
mean-sum-of-products matrix rather than the R matrix, though it often d~s not dif
fer appreciably when R is used. The mean-sum-of-products matrix is needed When 
mean differences are under investigation. For example, it allows one to test whether 
groups that have been gjven a set of abilities measures differ in overall ability. There 
has been much recent discussion about when to use these other matrices and when to 
use R (Cudeck, 1989). Computer programs provide standardized output as an option 
to place the parameters in the same metric that R wouLd produce, as well as standard 
errors. 

We will provide a detailed example later. For the moment, we note that Prof. Hat
field's and Prof. McCoy's solutions were significantly different by ACS criteria, de
spite the .999+ correlation between the corresponding components. Is it a mistake to 
conclude that the two solutions are different? Earlier we suggested that one not look at 
differences in pattern weights as implying a difference in factor structure, yet that is 
precisely what is done here. We suggest it is a mistake to conclude differences exist if 
one's primary interest is in the properties of the composites they generate. However, it 
is just as proper to ask questions about properties of individual tests in relation to the 
structure, and ACS is certainly correct in noting between-group differences caused the 
very nature of the simulation. However, to ignore the trivial effects of these differ
ences upon the composite is a failure "to see the forest for the trees." 

TESTING WEAK THEORIES (THEORIES CONCERNING 
GROUPINGS OF VARIABLES) 

Weak theories concern how variables group, e.g .• that XI' X2• and X3 define one factor, 
X4, Xs, and X6 define a second factor, etc. The correlations among factors is also of in
terest in determining how separable the factors are, but the factors are not assumed 
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independent Moreover, the investigator is not concemed with whether the proposed 
factors completely explain the relations among variables. For example, measures from 
two separate factors may share method variance in the sense of Chater. 5. This would 
not be counter to the weak theory as long as it is minor compared to the differences 
among the proposed types of tests. In other words, the proposed groupings need not be 
exhaustive. The example involving hypothetical Prof. Brown's research on two forms 
of anxiety used in Chapters 11 and 12 will be used here. 

The two main classical approaches are the multiple group method, which usually 
defines factors as the equally weighted sum of variablell presumably comprising each 
cluster, and Procrustes (forced rotation). The classical approach treats weights as equal 
if there is no basis for treating them as different (both methods can be used to test pro
posed unequal weightings, but that is an isstle of strong theory). In contrast, ACS nU
merically estimates optimal linear combinations. Although we will argue in favor of 
the multiple group method over Procrustes. Procrustes is available in at least one 
major computer package (SAS), but the mUltiple group method is not. However. it is 
simple to write a multiple group program in a matrix-oriented language like SAS 
PROC IML. Bernstein (1988) provides a program written in a precursor form of 
PROC IML which SAS can translate into usable fonn. 

Multiple Group Confirmatory Analysis 

The multiple group method was developed nearly simultaneously by Thurstone (1945) 
and Holzinger (1944). It is also called the group centroid method because it is only a 
variation of the centroid method discussed in Chapter 11. Centroid analysis places a 
factor among all the variables in the analysis. Multiple group analysis places factors 
through proposed groupings. The factors are usually correlated, and so a third name is 
the oblique multiple group method, but it is also possible to ex.tract orthogonal factors. 
The mathematics is extremely simple, following directly from the correlation of sums 
(Chapter 5). The analysis may be applied to correlations (standardized variables), co
variances (deviation scores), or mean sums of products (raw scores), but we will use 
correlations. We will use a component model, but a common factor model may also be 
employed. 
The basic results are as follows. 

1 The factor structure (S): the correlations between each of the variables and the 
centroids 

2 The factor correlations (cfI): the correlation s among the centroids 
3 The pattern (B): the regression weights predicting variables from the centroids. 

As in any factor analysis, other quantities of interest 1ike the 112 values may be derived 
from these three matrices. 

In the present case. Prof. Brown's proposed bodily hann factor, factor I, is defined 
simply as XI + X,. + X3, and the social anxiety factor, factor n, is likewise defined as X4 

+ Xs + X6• Factor I is the centroid (average) of ,(ariables Xl. X2, and X), and factor II is 
the centroid of variables X4, Xs, and X6 (as with rotated factors, which factor is denot
ed I and which is denoted II is arbitrary). 
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The concept of a hypothesis matrix is basic to coofinnatory factor analysis eVen 
though it does not appear explicitly in the calculations that we will present. A hypothe~ 
sis matrix has one column per factor and one row per variable. The process of specifi~ 
cation in weak multiple group analysis defines which variables are associated with 
which factors. A +1 or a -1 includes the variable in a given row with the centroid 
(group) represented by the column, and a 0 excludes it. The sign reflects the relation 
between that variable and the others in the group. 

In the present case, the hypothesis matrix is 

1 0 
1 0 
1 0 
o 1 
a 1 
a 1 

In contrast, the overall centroid would be represented as 

1 
1 
1 
1 
1 
1 

If, for reasons to be made clearer later, factor I is to be defined as the sum of variables 
Xl> X3, and Xs, and factor II as the sum of variables X2• X4• and X6, the hypothesis ma~ 
trix would be 

1 0 
a 1 
1 a 
a 1 
1 a 
a 1 

It is easier to apply the formula for the correlation of sums to a correlation matrix (R), 
covariance matrix. or mean-sum~f-products matrix than to a data matrix 00. The 
analysis relies heavily upon the general formula for the correlation of equally weight
ed sums of standard scores, Eq. 5-Bc, which can be written in the form of 
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where fl.lI == correlation between linear combinations I and II 
RI.Il = sum of all elements in the cross-correlation matrix between the two linear 

combinations 
RI,Ru = sum of elements within the respective correlation matrices 

If either linear combination is ~ indiyidual variable rather than a sum of several vari
ables, the corresponding tenn (RI or Ru) equals 1 and the numerator (RI.IT) equals the 
sum of correlations between the individual variable and the members of the linear 
combination. 

Table 13-4 contains a worked-out example of the multiple group method testing 
Prof. Brown's hypothesis. The correlation matrix is partitioned so that the top left con
tains the correlations within factor I (Xl + Xl + X3), the bottom right contains the cor
relations within factor II (X4 + X, + X6), and the bottom left (or top right) contain the 
correlations between the two sets. These values of RI , Rn. and RI.ll are 1.00 + .75 + .83 
+ ... or 7.56, 1.00 + .79 + .82 + ... or 7.74, and .32 + .25 +.39 + ... or 2.81. Conse
quently, assuming an oblique solution, the factor correlation f>ul is 2.81/v' (7 .56)(7.74) 
or .37. 

The correlation of any variable with group centroid I (the sum of XI, Xl. and X3) is 
obtained from Eq. 13-7 as follows. Since these structure elements equal the correlations 
of individual variJlQles with the sum of Xl to X3, only one term appears in the 
denominator, Y R I == 2.75. The numerator is the sum of correlations of each variable 

COMPUTATIONAL PROCEDURES FOR OBTAINING MULTIPLE GROUP FACTORS 

Correlation Matrix 

X, Xa X3 X4 Xs xe 
X, 1.00 .75 .83 .32 .28 .36 
Xa .75 1.00 .70 .25 .31 .32 
X3 .83 .70 1.00 .39 .25 .33 

X4 .32 .25 .39 1.00 .79 .82 
Xs .28 .31 .25 .79 1.00 .76 
Xe .36 .32 .33 .82 .76 1.00 

R1=7.56 ~=2.75 
RII=7.74 ~1=2.78 

AI.I1=2.81 

Sum of correlations with groups Structure 

II " 
X, 2.58 .96 .94 .35 
Xa 2.45 .88 .89 .32 

Xs 2.53 .97 .92 .35 
X4 .96 2.61 .35 .94 

Xs .84 2.55 .31 .92 

Xa 1.01 2.58 .37 .93 
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with XI to X3• For ex.ample, the sum of the correlations of XI with XI> X?, and XJ vari
ables is 2.58 (1.00 + .75 + .83), and so the structure element for XI on factor I is 
2.58/2.75 or .94. The remaining five structure elements for factor I are defined analo
gously. Unfortunately, computing the pattemelements is cumbersome and not particularly 
instructi ve to do by hand. It is the matrix product of S and what is known as the inverse of 
4> (see p. 616 for the definition of an inverse). We will present these pattern elements 
later when we compare the various procedures for performing a confirmatory analysis. 

In an oblique solution, the structure for factor II is obtained in the same general 
way that the structure for factor I was ~tained. The difference is that one divides 
sums of correlatio,g§ with X4 to X6 by VR" rather chan dividing sums of correlations 
with.XI to X) by Y RI. This Illustrates slmultaneous extractIon of factors as discussed in 
Chapter 11, in contrast to the successive extraction that characterizes ex.ploratory fac
toring. However, we could have made factor II orthogonal to factor I, using successive 
extraction. Factor II would be obtained from a residual matrix following extraction of 
factor r (Rc) rather than from R itself. A third option is to extract factor II first, gener
ate a residual matrix, and then extract factor I. The orthogonal group centroid structure 
may also be obtained by transfonning the oblique factors, as described in Harman 
(1976) and other standard references on factor analysis. 

Table 13-4 shows the structure, which is almost identical to the promax solution in 
Table 12-2. For example, rii is .94 in both cases. The difference in obliqueness is triv
ial, cos (~) = .37 here versus .38 previously. Both rotated factors go through clusters of 
variables. There is, however, a very important difference in how the two sets of results 
are obtained: Factors were defined mathematically in the exploratory solution but were 
hypothesized in advance in the group centroid solution. We therefore solved for these 
multiple group factors directly. The two approaches need not provide similar results, 
particularly when the number of variables is large (more than 20) and numerous fac
tors are extracted. Note that the structure matrix in Table 13-4 does not look especially 
simple. The variables that define factor I have correlations of about .3 with factor II, 
and vice versa. The reasons are the same as noted in the discussion of oblique rota
tions in Chapter 12. However, the structure elements for the three variables that define 
each factor are all much higher (=.9) than the structure elements of the three variables 
excluded from the factor (=.3), and so the nature of each factor is clear. 

The multiple group method can be used to test for any number of hypothesized fac
tors. If a single common factor (g) is hypothesized to underlie a group of variables, the 
first group centroid contains all the variables. In other words. one simply extracts the 
first centroid factor, as illustrated by the second hypothesis matrix above. The method 
can be easily extended to more than two groups of variables. Oblique factors can be 
determined directly from the correlation matrix by sectioning off the variables that 
constitute [he various groups. Formulas for the correlation of sums are applied to each 
of these sections. After all factors are extracted from R, they can be mutually orthogo
oalized by the transformation mentioned above. These orthogonal strucrure elements 
can be used to obtain a final matrix of residuals. Consequently, one can compute a 
residual matrix after extracting four factors without computing earlier residual matri
ces. All variables need not to be assigned to a group factor. There are often firm 
hypotheses about the factorial composition of some variables, but other variables may 
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be included on a more exploratory basis. The correlation of sums can be used to com
pute their structure elements without affecting the structure elements for the original 
variables. 

It is important to be able to disconfirm a hypothesized set of groupings. Both au
thors have worked quite extensively on this problem (for applications, see Bernstein, 
1988; Bernstein & Teng, 1989; Bernstein, Teng, & Garbin, 1986; Bissonnette & Bern
stein, 1990). Several statistics are useful toward this end besides the structure elements 
themselves and the overall fit of the model (proposed groupings) in terms of the pro
portion of variance accounted for or the root-mean-square error. In order to put the 
overall lit in perspective, it is useful to determine the fit of a like number of Pres (two 
in the present case) since that imposes a mathematical upper limit on the fit. 

It is also useful to determine the fit of a like number of pseudofactors. These in
volve assigning variables to groups as arbitrarily and as independently of the proposed 
organization as possible. That was why we formed a hypothesis matrix with XI, X3, 

and Xs assigned to one factor and X2, X4, and X6 assigned to the other. These groupings 
are examples of pseudofactors. Pseudofactors may be fonned in a variety of ways in 
more complicated models. One set of proposed pseudofactors may be used to test that 
proposed factors I, II, and ill are all separable from one another, and another set may 
be used to test that factors II and III are separable from each other given that factor I is 
separable from both of them. For technical reasons, pseudofactors are guaranteed only 
to provide solutions in a component analysis. Bernstein (1988) describes the details of 
the process of forming pseudofactors. 

Other useful data may be provided by the (1) average off-diagonal correlation with
in each group of variables that define a factor, (2) the residual correlation matrix ob
tained after all factors have been extracted, (3) the correlations between the proposed 
factors and the Pres or principal axes, and (4) the factor correlations. 

These data are used as follows: 

1 A variable assigned to a group might not correlate highly with the centroid for 
that group, which means that the variable does not have much in common with the 
other variables. This is unlikely to happen When the groups contain only a small num
ber of variables because each variable is prominently represented in the centroid-at 
least a modest correlation is built in because the factor is partially defined in terms of 
that variable. As the number of variables defining the factor increases, the spurious ef
fect of variable-factor overlap diminishes. When six or fewer variables define each 
centroid, however, the structure elements will be inflated. 

2 The average off-diagonal correlation is a less biased measure of the extent to 
which variables group, especially when only a few variables define the factors. Table 
13-4 indicates that these average correlation are .76 and .79 for factors'j and TI, respec
tively. Both of these averages are lower than the structure elements, even though they 
are large. 

3 Another possible way to handle the potentially misleading effect produced by the 
overlap of items on factors is to place communality estimates in the diagonal spaces of 
the correlation matrix and perform a common factor analysis. However, this has a very 
strong tendency to produce spurious outcomes such as Heywood (1931) cases. 
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4 Very strong disconfirrning evidence can arise when a variable has a higher cor
relation with a factor to which it is not assigned than its own factor. While unlikely, for 
the reasons given above, it does happen. 

S It is preferable that residua! correlations be smaU and not systematic. However, 
this is relative, especially to the information provided by pseudofactors. The RMS 
residual may be large in proportion to the average absolute correlation in the original 
matrix because the groupings are in fact ill-chosen and so explain the common vari
ance poorly. However, the theory may be incomplete in the sense of having failed to 
account for additional and possibly meaningful relations that exist above and beyond 
those postulated. One source of additional systematic variance is that due to method 
(see Chapter 3). For example, some of the Prof. Brown's anxiety measures may be 
based upon self-report, and others may be based upon observation. Secondary group
ings may fonn on this and similar bases even though the original theory is not wrong. 
Examining residuals "provides room for further discoveries as multiple group factoring 
may be used as part of an ad lib strategy, as discussed in Chapter 12. 

6 The model should not be evaluated simply by looking at the absolute level of 
fit. When variables are highly intercorrelated, the absolute fit will be good regardless 
of how variables are assigned to groups by the "it don't make no nevermind" principle 
(Kaiser, 1970; Wainer, 1976), as long as they are given proper signs within groups. 
The more relevant comparison is [0 the fit of a like number of PrCs. Any grouping will 
explain some variance; the extent to which they fall in the hyperspace generated by a 
like number of PrCs describes their appropriateness. Were they to explain as much 
variance as the PrCs after correcting for chance, they would be rotations of these earli
er, most important dimensions, which would be strong support for the model. Note 
that part of the disparity between the two reflects sampling error-a Pre solution capi
talizes on chance because it selects optimum weights for that sample; a multiple group 
solution. using prior weights, does not. Bernstein, Teng. and Garbin (1986) show how 
to cross-validate the'PrCs to estimate how much of the disparity arises from capitaliza
tion on chance. 

7 Likewise, the fit must be appreciably better than the arbitrary assignment of 
variables to factors (pseudofactors) for the factors to have divergent validity. 

8 Factor correlations provide additional data about possible redundancies; e.g., if 
factors I and II correlate .8, they probablY can be replaced by a single factor (but this is 
highly context~depenaent, as noted in Chapter 12). Redundancy may also exist when 
all factors intercorrelate modestly but no single factor correlation is ex.tremely high. 

9 Sometimes the fit of a given number of pseudo factors is very similar to the fit 
of a Uke number of Pres. This implies that no model will fit better than an arbitrary as-
signment. It is another sign of redundant facwrs. . 

10 If the proposed factors correlate poody with the first few PrCs, they probably 
represent trivial sources of variation. 

Do not directly compare the fit of one set of proposed groupings to another if the 
number of groupings (factors) is not the same. The proportion of variance accounted 
for is an average ~quared multiple correlation. which is biased upward with the num
ber of predictors (fac"tors in this case) as noted in Chapter 5. The RIvIS error is likewise 
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affected. Compare each model to its appropriate pseudofactor baseline instead. You 
may be unable to decide between one solution that is more parsimonious (contains 
fewer factors) but less complete (explains less variance) than another. 

We will evaluate the solution presented in Table 13-4 after considering alternative 
approaches. Th~ authors are ':sold" on the general usefulness of the mUltiple group 
method for testmg weak theones. It may be fully confirmatory, as when the proposed 
organization is fully defined in advance, or it may be partially exploratory, as when 
variables are included that have not been assigned to any group. 

Procrustes Confirmatory Analysis 

Another approach to confirmatory factor analysis is through forced rotation. The rota
tion is a least-squares approximation to a hypothesized factor structure that typically 
starts with PrCs or principal axes. However. any method of component or common 
factor condensation can be employed. The rotation may be either orthogonal or 
oblique (the more common procedure). Some versions allow the user to stipulate the 
sizes of factor correlations in oblique solutions, or this can be left up to the method of 
forced rotation. We have also noted that Procrustes is part of a broad family of forced 
rotations, including promax rotations and Cliff's (1966) approach to comparing two 
obtained factor solutions. Cramer (1974) provides a useful discussion of the various 
forms of Procrustes. The name "Procrustes" comes from the innkeeper in Greek 
mythology who had a bed that would fit anyone. If the visitor was too short for the 
bed, Procrustes stretched the visitor on a rack. If a visitor was too tall to fit the bed, 
Procrustes trimmed the length of the visitor's legs to fit the bed. 

Procrustes uses a hypothesis matrix that generally looks identical to its multiple 
group counterpart, including the use of equal weighting, but it has a different meaning. 
Multiple group analysis specifies factors in terms of variables, but Procrustes specifies 
variables in terms of factors. Consequently multiple group analysis fits factor weights, 
but Procrustes fits pattern weights. Which is preferable is a matter of debate. Strategi
cally, weak theories describe the composition of factors rather than variables; e.g., 
tests Xlo X2, and X3 may be proposed to measure a partiCUlar trait. The multiple group 
method embodies these hypotheses more directly than Procrustes. Conversely, the for
mal factor analytic model, Eqs. 11-1, defines variables in terms of factors. 

One major objection to Procrustes is that the methods are "too fleltible" in that any 
hypothesis matrix may be fit by a suitable cutting and stretching of the original factors 
so that Procrustes methods take advantage of chance. Many parameters (the pattern el
ements and factor correlations) tIoat free, and so it is difficult for the process not to re
semble the hypothesis matrix. For example, Hom and his associates (e.g., Horn & 
Knapp, 1973) obtained good simple structures from what we term pseudofactors. In
deed, since the Procrustean rotation takes place in the space defined by the number of 
factors, it will explain as much variance and have the same RMS error as a like num
ber of PrCs, regardless of whether the groupings are appropriate or not. However. 
there will be other evidence of misspecification; e.g., the factor correlation will be ex
tremely high and neither the pattern nor the structure may resemble the incorrectly hy
pothesized groupings particularly well. The problem described by Horn arises when 
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one evaluates a solution in an ab1!olute sense rath~l' than in the context of altemative 
solutions. 

Procru:>tes methods are no longer widely employed for confirmatory factor analysis 
because of the popularity of ACS. Even though Hom's critique may not be totally ap~ 
propliate, we see no clear advantage to Procrustes in evaluating proposed groupings of 
variables. If it is used, the same criteria that were applied to the multiple group method 
can be used, save that results relating to the proportion of variance accounted for will 
be meaningless since they will not differ among Pre (or principal axes), proposed, and 
pseudofactor solutions. 

ACS Confirmatory Analysis 

We have noted that ML, GLS, and ULS estimation are even more useful and popular 
as confinnatory methods than as exploratory methods and that they can be used to 
compare factor structures. ACS describes confirmatory approaches based upon such 
numerical estimation that compares three models differing as to the restrictions placed 
upon their parameters: the elements of the pattern matrix (B), the factor correlation 
matrix (fll), and the uniqueness matri."<. (U). As we have noted in Chapters 4 and 10, the 
estimation algorithms are extremely complex. Some applications have thus far been im~ 
plemented only with GLS since its mathematics is often simpler, and it converges upon 
the'ML estimates in very large samples (unfortunately, "how large" is difficult to state). 
Unless one or more variable deviates m.arkedly from normality, there seem to be few ad
vantages to ULS for continuous variables. Our examples employ ML estimation. 

The three basic models are the following. 

1 An unCOllstrained (saturated) model is one in which all parameters are allowed to 
vary freely. It is a best-case scenario. However, an infinity of such models can be ob
tained by rotation. 'The model thus explains nothing because it is not identified; Le., it 
has no unique solution. Whether or not a model is identified is a difficult and complex 
topic that is beyond the scope of this book. A necessary but not sufficient condition is 
that the number of estimated parameters be smaller than the number of known values, 
e.g., sample correlations. Unconstrained models exhaust the degrees of freedom avail
able for model testing; however. it is important to keep in mind that the model will not 
fit perfectly. 

2 A substantive model is one in which parameters are fixed at specified values or 
constrained to equality with one another, as in the above comparisons of factor struc
tures. Specifically, a weak model treats a pattern element as a free parameter if a vari
able is proposed to relate to that factor and fixes it at zero if a variable is not proposed 
to relate to that factor. This is the equivalent of specifying values at 1 and 0 in the mul
tiple group and Procmstes methods. Factor correlations and uniquenesses are also free 
parameters. 

3 A null model is one in which there is no structure because the matrix being ana
lyzed (e.g., R) is spherical. The B matrix contains only zeros, and so all factor correla
tions are also zero, by default. It is a worst-case scenario. There are some controver
sies over null model selection (Tanaka, 1987). 
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The basic inferential property of a model is its 0 2, i.e., the sample size time!; the 
value of the fitting function. We will denoce the 0 2 valueI' as:mciated with the unre
stricted.(satu~ed), substantive (weak in this ~ase), and null model~ as G~, 0;, am! G~ 
and thelf associated degrees of freedom as di,l' dJ., and elf,.. The G~ and ctj., are both 0 
since the unrestricted model fits perfectly but exhausts all the degrees of freedom. by 
definition. A substantive (constrained) model cannot fit as well as an unconstrained 
model because no estimate of a free parameter is ever zero nor are any pair of esti
mates ever eltact1y equal because of sampling error. However, if the difference in fit 
between the models is slight, parsimony dictates accepting the substantive model be
cause it contains fewer free parameters. Similar considerations hold in comparing the 
substantive model to the null model, which contains the fewest free parameters (none). 
These three basic models are depicted in Table 13-5 where an F denotes a free para
meter and an 0 denotes a parameter fixed at zero. Fixed parameters may assume values 
other than zero in other applications, but the same logic holds. 

When we consider the testing of strong theories, we will consider alternative sub
stantive (constrained) models, particularly those that form a hierarchy of progressive 
constraints. As in hierarchical multiple regression (Chapter 5), the process controls for 
(partials, in effect) variables previously considered. ACS bears kinship to both the 
multiple group and Procrustes approaches. It is similar to multiple group analysis in 
that one obtains a solution directly from R or related matrices rather than condensing 
and rotating separately, but it is similar to Procrustes in defining variables in terms of 
factors. 

Chance can playa major role in model testing when an investigator refits models 
until an acceptable solution is reached, a not-uncommon situation. One way this can 
occur is for the investigator to add or eliminate variables on factors after looking at 
the effects of a given factor definition. We also cannot stress too much that sample 
sizes must be much larger than in multiple group analysis because more parameters 

TABLE 13-5 ALTERNATIVE SPECIFICATIONS OF MODELS WITH SIX VARIABLES 
AND TWO FACTORS 

Unconstrained Weak Null 
model model model 
factor fact~r factor 

VarIable II I II II 

X1 F F F 0 0 0 
X2 F F F 0 0 0 
X3 F F F 0 0 0 
X4 F F 0 F 0 0 

Xs F F 0 F 0 0 

Xs F F 0 F 0 0 

Nota: F denotes a free parameter, and 0 denotes a parameter flxed at zero. The 
uniquenesses and lactor correlation are not shown but are free parameters In the 
unconstrained and weak models. The uniquenesses are fixed atl, and the factor 
correlation Is fixed at 0 in the null model. 
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are estimated. Multiple group analysis takes very little l\dvant~\ge of chance because 
factor weights are defined as unities in advance of the analysis. The.'1e weights are 
sample-optimized in ACS, and so they capitalize upon chance, by definition. ff your 
sample is small, consider multiple group analysis. which we suggest should be done 
anyway for the weak theory problems under present discussion. Even though ACS of
fers more powerful inferential tests than the mUltiple group method. we have stressed 
that these inferential tests a.re a mixed blessing. To our knowledge, there are no suit
able inferential tests for use with Procrustes. 

Tests of Prof. Brown's particular hypothesis about the two kinds of anxiety (vari
ables XI to XJ and X4 to X6) involve two common factors and six variables. There are 
19 possible parameters: 12 pattern weights (6 variables by 2 factors). 1 factor correla
tion, and 6 uniquenesses (measurement errors. making the usual assumption that only 
the diagonals of U differ from zero). The model would be constructed somewhat dif
ferently if covariances or mean sums of products were used, which probably would be 
the case in practice, but the principles would be the same. There are only (6)(5/2) = 15 
sample correlations in R, but the 6 diagonal values are also treated as observations. 
This provides 21 "known" values, even though the diagonals must be LO. This is one 
reason why it is technically incorrect to test a model inferentially using R rather than a 
covariance or mean-sum-of-products matrix. where the diagonal elements are mean
ingful observations. However. many strong applications of ACS involve difference G2 

values between substantive models in which this spurious effect is eliminated by sub
traction. The constrained (weak) model estimates 13 parameters (6 pattern elements, 
1 factor correlation, and 6 uniquenesses). and so 8 (21-13) are available for model 
testing. 

There has been great recent emphasis upon developing descriptive measures. Un
fortunately, there is much less agreement about the proper descriptive measure than 
there is about tbe proper inferential test. Our discussion follows recent reviews by 
Bentler (1990) and McDonald and Marsh (1990). Also see Bollen (t990) and Mulaik, 
James, Van Alstine, Bennett, Lind, and Stilwell (1989). We have stressed the impor
tance of description because it is counterproductive to reject a model based solely 
upon a significant 0 2 in a very large sample. Because error in the model reflects the 
unique variance, this problem tends to become more severe as the communality of the 
variables increases. Conversely. the fitting function times the sample size may not 
have a G2 distribution in a small sample. Another assumption. multivariate normality, 
may not hold, bur the evidence suggests ACS is relatively robust as long as the data 
are continuous. 

Bentler and Bonnett (1980) introduced the distinction between measures of com
parative fit and incremental tit. Comparative fit is concerned with testing a given 
model such as the weak model under consideration. Incremental fit is concerned with 
testing differences between two nested models, e.g., between the weak model and 
stronger assertions to be discussed. To simplify the discussion, we will assume that 
models being compared are based upon the same numbers of SUbjects. This might not 
be tbe case, as in comparing the fit of a given model in two populations. Most, but not 
all. descriptive measures are intended to be coefficients that fall between a (no fit) and 
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1 (perfect fit) in the population. Some are also guaranteed to fall between 0 and I in 
the sample, but others are not. In addition, some attempt to correct fol' the number of 
degrees of freedom in a model and therefore overcome a bias toward better fit in a 
model with more free parameters; others do not. Although there is a strong tendency to 
view coefficients in excess of .9 as indicative of good fit, it is difficult, if not impossi
ble, to state a criterion value with any assurance. 

We will present four broad classes of descriptive indices. Each class has variants 
that differ in order to achieve some statistical goal, e.g., to correct for the number of 
degrees of freedom. The current literature seems sufficiently complex for us to avoid 
endorsing anyone, but all are justifiable. 

1 The first class consists of measures that act like squared mUltiple correlations (R2 

values), at least in some cases, by comparing the variance explained by the model to a 
total variance. Joreskog and Sorbom's (1989) goodness-of-fit index (OFI) compares 
the similarity of the observed (sample) and estimated (model) correlation, covariance, 
or mean-sum-of-product matrices. Unfortunately, it is difficult to describe without ma
trix notation. See the above source (the USREL reference manual) and other Sources 
on the analysis of covariance structures such as Long (1983a, 1983b) and Byrne 
(1990) for further information. Unfortunately, it has an upward bias like the mUltiple 
correlation, so that the fit apparently improves as the number of free parameters in
creases. It is thus poorly suited to comparing alternative models with different degrees 
of freedom. J6reskog and Sor]:>orn's (1989) adjusted goodness-of-fit index (AOPI) at
tempts to correct for the degrees of freedom and is perhaps the most popular descrip
tive index currently used. 

2 A second class is based upon the differences between the substantive and worst 
(null) models. These are based upon an index proposed originally for exploratory eva... 
analysis by Tucker and Lewis (1972) which compares this difference to the difference 
between the best (unrestricted) and worst models. In perhaps the simplest versi.on, 
Bender and Bonnett's (1980) normed-fit index (NFI), distances are defined in terms of 
G2 values: 

(13-8) 

An incremental version of the NFl is obtainable by placing the difference in G2 be
tween two substantive model values in the numerator of Eq. 13-8. The nonnormed-fit 
index (NNFI) introduces a correction for the number of degrees of freedom. The e~
pected value of G2 in the absence of any misspecification is degrees of freedom itself. 
The difference, G2 minus degrees of freedom is an estimate of the degree of misspeci
fication for a given number of free parameters beyond that expected by chance. Conse
quently rhe NNFI" replaces values of G2 with G2 minus degrees of freedom. More re
cently, Bentler (1990) introduced a family of estimates of this fonn, two of which are 
termed the comparative-fit index (CFI) arid rhe fit index (FI). Bollen (1989) also pro
posed a coefficient of this general form. 
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3 The third class is based upon differences between a best and a substantive 
model. Akaike's (1974, 1987) information critedon (AlC) is commonly defined as 

The symbol p denotes the number of parameters estimated by the model, e.g. 13 for 
the present weak: modeL. The Ale is the Pythagorean distance (see Chapter 14) be
tween the two sets of parameters. The Ale's two components denote the respective 
contributions of sampling error and the number of free parameters to any misfit. Mc
Donald and Marsh (1990) note that it becomes increasingly biased toward models with 
more free parameters as sample size increases. 

4 The loss (fitting) function itself may be used. For example, the root-mean-square 
residual has been previously defined as the square root of the average squared discrep
ancy between the predicted and obtained correlations or covariances and is the ULS 
loss function. Unlike the previous classes of measures, a small RMS denotes a good 
fit. It is perhaps the most strongly biased class of measures in favor of models with 
more free parameters. The ML and GLS fitting functions and related tenns such as the 
model G2 have similar properties. Consequently, it is least recommended. 

A Comparison of the Three Approaches 

We will now apply the three methods to the data in Table 11-2 to test the proposition 
that there are two (correlated) factors among the six variables. We have assumed a 
sample size of 500, which is reasonable and not extremely large. The component 
eigenvalues ofR were 3.49,1.61, .37, .22, .19, and .11. Any criterion for selecting fac
tors would suggest at least two; most would suggest ex:actly two, but the residual G? 
associated with the ML residual was 109.09 with 4 dffp < .0001). Although this im
plies the need for additional factors, we will consider this issue later since even a 
residual G2 of this large magnitude may reflect trivial sources of variation. Table 13-6 
contains details of the solutions: the structure, pattern, h2 values, variances accounted 
for by each factor individually and as a total, and factor correlation. A component so
lution was used for the mUltiple group solution and Procrustes, and a common factor 
solution was used for ACS. Consequently, some of the differences among the results 
reflect general differences between components and common factors. 

The multiple group solution contains the same structure elements as in Table 13-4. 
The pattern elements are consistent with the proposed organization. but, as we have 
noted, this cali be deceiving. The important findings are the following. 

1 About .85 of the total variance is explained by this grouping, which is the same 
(to three decimal places) as that explained by the PrCs. 

2 All h2 values are similar to this .85 figure •. meaning that variables were equally 
explained by the model. 

3 The factor correlation (.37) is not so high as to suggest redundancy. 
4 Less important, but not trivial. is that the two factors explain approximately the 

same amount of variance (.48 and .49) because the two groupings are fairly parallel. 
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TABLET 13-6 FACTOR SOLUTIONS FOR MULTIPLE GROUP, PROCRUSTES, 
AND ACS SOLUTIONS: ·CORRECr GROUPINGS 

Pattern Structure 

Variable II I II h2 

Multiple group solution: 
Xl .94 .00 .94 .35 .88 
Xl! .90 -.01 .89 .32 .79 
X3 .92 .01 .92 .35 .85 
X. .01 .94 .35 .94 .88 
Xs -.04 .93 .31 .92 .84 
X6 .03 .92 .37 .93 .86 
Prop. var. .48 .49 .85 

Procrustes component solution 
XI .94 .00 .94 .35 .88 
Xl .90 -.01 .89 .32 .79 
X3 .92 .01 .92 .35 .85 
X4 .01 .94 .35 .94 .88 
X, -.04 .93 .31 .92 .84 
Xi .03 .92 .37 .93 .86 
Prop. var. .48 .49 .85 

ACS solution: 
XI .94 .00 .94 .37 .88 
Xl .80 .00 .80 .32 .64 
X3 .89 .00 .89 .35 .78 
X. .00 .92 .37 .92 .85 
X, .00 .85 .34 .85 .73 
X& .00 .89 .36 .89 .79 
Prop. var. .45 .46 .78 

Note. The groupings are correct in that XI to X3 are assigned to iactor I 
and X. to XI are assigned to factor 11. The three lactor correlations are .37 • 
. 37, and .40. The ACS G'- value was 117.36 based upon n = SOO sublects 
(p < .0001 with 8 df); the ACS goodness-of·fit index was .93, and the ACS-
adlusted goodness-ol·nt Index was .82. 

The Procrustes solution is nearly identical to the mUltiple group solution. However, 
the fact that it accounts for as much variance as the first two prcs is an artifact of the 
method rather than a result of interest. The ACS results are similar to both once its 
common factor nature is considered (see Chapter 12). Its distinctive feature is that the 
fixed pattern elements for X4 to X6 on factor I and for Xt to X] on factor II are exactly 
zero (ACS programs generally do not provide the structure matrix, and so these were 
obtained by hand; ttte LISREL program we employed also referred to the h2 values as 
"squared multiple correlations"). Note in addition that the 0 2 value was significant, as 
was true of the exploratory ML solution, implying a rejection of the model given this 
sample size, although the goodness-of-fit statistics provided by ACS were fairly good 
(OF! = .93 and AGFI ;: .82). Finally, all of the solutions were similar to their promax 
counterparts. 
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Before considering why the misfit occurred, it is instructive to look at obviously in
correct groupings, and so XI. Xl. and Xs were assigned to pseudo factor I. and X2• ~. 
and X6 were assigned to pseudofactor II. These data are presented in Table 13-7. 

The effect of this misspecification appears at several places in the mUltiple group 
solution: 

1 The pattern does not resemble the pseudofactol's. Indeed, the pattern actually re
sembles the correct grouping more than it does the pseudofactor groupings. 

2 The strUcture does not differentiate the two factors well-all elements are at 
least .59 in magnitude. 

FACTOR SOLUTIONS FOR MULTIPLE GROUP. PROCRUSTES. 
AND ACS SOLUTIONS: ·PSEUDOFACTOR" GROUPINGS 

Pattern Structure 

Variable \I II h2 

Multiple group solution: 
X1 1.20 -.39 .88 .60 .83 
Xa .61 .15 .74 .65 .55 
Xa 1.17 -.37 .S7 .59 .80 
X. -.24 1.05 .63 .B6 .76 
Xs .02 .76 .64 .n .60 
Xa -.37 1.20 .61 .89 .84 
Prop. var. .54 .54 .73 

Procrustees solution: 
Xl 1.21 .62 .Bl -.14 .88 
Xa 1.13 .58 .77 -.15 .79 
X3 1.1B .63 .7B -.13 .85 
X4 .62 1.20 -.15 .81 .88 
X5 .55 1.16 -.19 .B1 .84 
Xa .64 1.19 -.12 .7B .76 
Prop. var. .32 .33 .85 

/ 
ACS / 

X, .91 .00 .91 .44 .83 
At .00 .36 .17 .36 .13 
A3 .90 .00 .90 .43 .82 
x.. .00 .89 .43 .89 .78 
Xs .33 .00 .33 .16 .11 
Xa .00 .92 .44 .92 .84 
Prop. var. .36 .36 .59 

Note: The groupings are pseudofactors In that X,. X3• and Xe are 
esslgned to factor I and ~ X •• and Xe are as"ed to factor II. The factor 
correlations are .82. -.B4. and .48. The ACS value was 976.65 basad 
upon an assumed n= 500 sub/ects (p < .0001 with 8 df); the ACS goodness-
aI-lit Index was .69. and the ACS-adlusted goodness-ol-fit !ndex was .19. 
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3 The factor correlation is extremely high (.82), unlike that found with the correct 
groupings. 

4 The individual hI values, and therefore the proportion of variance accounted for 
are smaller than in the "correct" solution-.73 versus .85 for the model as a whole: 
Note, however, that this model, which is as wrong as possible without using incorrect 
signs, still accounts for nearly three-fourths of the total variance, an illustration of the 
"it don't make no neverrnind" principle that we have frequently cited. 

Procrustes also fails to provide a structure that resembles the pseudo factors Or that 
is simple in any sense, and the factor correlation is very high (-.64). As noted, it is an 
artifact of the method that this solution still accounts for .85 of the total variance. This 
deceptively good fit is the basis of Hom's critique. 

ACS shows the effects of misspecification somewhat differently. 

1 Four of the six free pattern elements are of appropriately large magnitude, but 
the other two are extremely small. The two that are large on each factor are the two 
that correlate highly with each other, and their h2 values are also much higher than that 
of the third variable assigned to the group. 

2 As in the other two approaches, the factor correlation is higher tban in the cor
rect solution, bue in this case, the difference is not especially large (.48 versus AD). 

3 The G2 is much bigher than in the correct solution, and the GF! and, especially, 
the AGFI, are much lower. 

All noted in Chapter 12, common factor solutions are noe always obtainable. This is 
likely to be·true whenever you attempt to fit pseudofactors because an ex.tremely high 
factor correlation may cause the program to terminate without providing estimates. 

These data were not constructed with a particular disparity in mind, and so we ex
plored the reasons for the significant ACS G2 value in the correct grouping by chang
ing the specifications, just as an investigator would in a real problem. One strategy is 
to free the parameters that were fixed at zero. This might significantly improve the fit 
if. for example. one of Prof. Brown's ostensive social embarrassment items also re
flected anxiety over physical harm, or vice versa. However, this did not help the situa
tion. The largest pattern element that had previously been fixed at 0 was only .17, and 
the difference Gi. was not significant. Adding a third factor defined by X2• X3• and Xq. 
did improve the fit. even though the residual Gl of 14.23 was still significant with 3 df 
(keep in mind that these additional tests are no longer truly confirmatory, and so one 
should not accept the alpha levels as true). This factor had no pattem element larger 
than .35, and so it was trivial. It might reflect such effects as method variance in a real 
problem. Had the sample been smaller. of course. even the original model would have 
fit, but one should never sacrifice power in order to gain an acceptable fit. We con
clude by accepting the proposed groupings, especially because a weak model contains 
the potential for unspecified sources of variance. 

In sum, the disparity between the correct and pseudo factor solutions makes it clear 
that, contrary to what you may have beard, you cannot prove anything with factor 
analysis. You have to know what to look for. and each of the three methods found the 
misspecification quite easily in this extreme case; ACS also provided evidence to 
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reject a good but not perfect model. Both authors suggest that the correct groupings 
are at least a good first approximation to the data and would never criticize someone 
for accepting this as a solution, the ACS G'J. statistic notwithstanding. Although ACS 
and exploratory ML (which are effectively identical in testing the hypothesis that all 
variables load on one general factor) are certainly appropriate, neither should preempt 
use of Procrustes and, especially, the multiple group method, especially in small sam
ples. The advantages of ACS are more apparent with strong theories. 

FACTORING CATEGORICAL VARIABLES OTEM LEVEL FACTORING) 

Thus far we have assumed that variables are continuous in the sense of Chapter 4. This 
includes scores on multi-item scales with 11 or more dichotomous items per scale 
(somewhat fewer multicategory items are needed to qualify). At this scale level, ordi. 
nary PM correlations indelt similarity of content (Le., what is measured), even though 
extremely disparate distributions and, especially, floor and ceiling effects can have 
spurious effects. A "floor effect" is a value that observations cannot fall below, such as 
zero errors on a learning task, and a "ceiling effect" is a value that observations cannot 
exceed, such as a perfect score. If values of the observed variable fall at the floor or 
ceiling, the distribution is said to be censored. In some cases, the variable is not ob
served, in which case the distribution is said to be truncated. Distributions of continu
ous variables need not be nonnally distributed and will not be Wheh they are Scores on 
multi· item tests. However, as long as floor or ceiling effects are not strong influences 
upon the data, analyses that assume normality are not likely to produce misleading 
results. 

The same cannot be said about analyses using categorical data, e.g., item-level 
factoring. The problems we will discuss are generally greater with dichotomous items 
than with multicategory items, such as Likert scales, but this is not always true (see 
Bernstein & Teng, 1989, for an example). The problem is that the resulting PM correla
tions are affected by the similarity of their distributions as well as the similarity of their 
content. Moreover, categorizing affects the factor structure even when the variables 
(items) have identical distributions (e.g., a series of equally difficult true· false items) be
cause the correlations are lower than they would be if the data were continuous. 

Consider a series of eight continuous measures. These measures are parallel in that 
each correlates .5 with a single factor (g). Consequently their measurement errors are 
~, and the population correlation between any two will be .25 (see Eqs. 11-2 or 
11-4). The measures are also standardized to a mean of 0 and a standard deviation of 
1. A series of 1000 observations of this form was generated to produce what we will 
call latent measures. In turn, these latent measures were categorized in the following 
four different ways. 

1 All eight observed measures were a 0 if their latent counterparts were less than 
zero and a 1 if they were mOre than zero. These measures could denote incorrect and 
correct on abilities tests or no and yes sentiments. The results simulate a set of items of 
average difficulty (p = .5) to fonn the dichotomous-same data set. 

2 The first four observed measures were a 0 if their latent counterparts were less 
than -1, and 1 if they were greater than -1. The last four observed measures 5 to 8 
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were considered a 0 if their latent counterparts were less than +1, and a 1 if they were 
greater than +l. These mimic four easy items (p = .84) followed by four difficult items 
(p = .16) to form the dichotomous-different data set. 

3 All eight variables were a 0 if their latent counterparts fell below -.44, a I if they 
fell between -.44 and +.44, and a 2 if they fell above +.44. The three response cate
gories have equal population frequencies and fonn the trichotomous-same data set. 

4 Finally, the first four measures were a 0 if their latent counterparts fell below + I, 
a 1 if they feU between + 1 and + 1.5, and a 2 if they fe 11 above + 1.5. The three respons
es have expected response proportions of .84, .09, and .07. Conversely, the last four 
measures were a 0 if their latent counterparts feU below -1.5, a 1 if they fell between 
-1.5 and -1, and a 2 if they fell above -1. These produce converse proportions to form 
the trichotomous-different data set. 

The'factor analytic tradition provides at least seven logical approaches to infening 
the dimensionality of the data. Two other approaches may be used that are not directly 
derived from classical factor analysis (both are formally equivalent to factor analysis). 
One is to fit the data to an IRT model (Chapter 10), which may require very large sam
ples. It is important to note the formal equivalence of IRT and classical factor analysis 
as models. The other is to use categorical modeling (Chapter 15), which is not well 
suited to items that vary in cJjfficulty. The factor analytic approaches are as follows. 

1 Simply pretend that you are factoring continuous data and use a classical ap
proach. This is what nearly all inexperienced individuals do. We will show why it will 
almost certainly suggest that unidimensional data are multidimensional. 

2 Pretend that you are factoring continuous data and use ACS, an approach that 
has become increasingly popular. We will show how ACS's greater inferential power 
is unfortunately even more likely to produce spurious results. 

3 Use a classical method but take the categorical nature of the data into account 
using simple methods to be described. 

4 Use classical methods, but factor polychoric (tetrachoric correlations for di
chotomous items) estimates of PM correlations (see Chapter 4). 

5 Use ACS to factor PM correlations but take the categorical nature of the data 
into account. 

6 Use ACS to factor polychoric correlations. The newest version of ACS (version 
7.1) has a preprocessor called PRELIS that computes these estimates, but there are 
other ways to obtain these quantities (e.g., Martinson & Hamdan, 1975, as modified by 
Beardwood, 1977). 

7 Use an extension of ACS, Muthen's (1988) LISCOMP, specifically designed to 
evaluate categorical data. 

We do not consider approach 1 or 2 to be viable. Approach 3 is satisfactory for 
most applications, but the others can also be viable as long as one realizes the effects 
of categorization. One major problem with real data is that investigators tend to think 
that the results reflect the effects of item content. Thus, if the data suggest two factors. 
investigators look at what items in the first set have in common, assign a label, and 
then do the same with the items in the second set. This is a stimulating and enjoyable 
enterprise, especially if you have constructed the items. However, you must keep in 
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mind that the structure may simply reflect statistical properties of the items. It is a bit 
embarrassing to have someone point out to you, especially in print. that your ego anxi
eties, id anxieties, and superego amcieties subscales can more parsimoniously be 
viewed as highly common anxieties, moderately common anxieties, and uncommon 
anxieties subscales. It is especially poor practice to develop a set of items and con
struct subscales based upon an exploratory factor analysis since that analysis will re
flect item distribution differences in large part. 

The coefficient IX reliability of the latent data set is .74, which is reasonable for a 
relatively short test; the reliabilities of the categorized data sets vary from .52 to .6l. 
This illustrates one' effect of categorization. The latent data clearly illustrate that the 
data reflect a single factor. Each expected correlation is .25, and the observed correla
tions ranged from .22 to .30. This range of correlations can be shown to reftt=ct sam
pling error. Because the expected correlation between each variable and factor I (g) is 
.5, the expected h2, which is also the expected proportion of variance accounted, is .52 

ar .25. The expected value of the first eigenvalue is (8)(.25) or 2 since there are eight 
measures. However, the earlier sample value..o;, including the first (2.81), are biased up
ward. and the later sample values are biased downward for reasons noted in Chapter 
11. Figure 13-1 shows the scree with 11 to As sloping gradually downWard (the tri
chotomized data are omitted for clarity). 

The categorization inherent in item l"Bsponses induces two quite distinct effects. One 
that is always present is the loss of information which polychoric and polyseriaI correla
tions attempt to regain. Consequently the correlations observed in the dichotomized
same data set are clearly lower, ranging from .14 to .22, and the correlations observed in 

FIGURE,3·' SCfee plots of eigenvalues for (1) eight latent continuous measures. (2) eight measures 
dichotomized at z::: O. (3) four measures dichotomized at z = -1 and four measures dichotomized 
at z=+1, and (4) eight measures lrichotomized at z=-O.44 and z .. +O.44. 
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the trichotomized-same data set ranged from .17 to .25. The difference between the two 
cat~gorized data s:cs illustr:utes how ~i:i~ing dat~ into two approximately equal cate
gones loses more mformation than dlVldmg data mto three approximately equal cate
gories. This loss of information affects 71.1 directly; the corresponding values are 2. 16 
and 2.43 instead of the previously noted value of 2.81. Conversely, A.2 to 71.8 are larger 
for the categorized data because the sum of all eigenvalues must be 8. In neither case did 
the second eigenvalue ex.ceed the criterion value of 1. However, this is solely a function 
of the small number of items; simulations using larger numbers of items will easily pro
duce values of A.2 in ex.cess of 1. The existence of these difficulty factors (perhaps a bad 
name considering that they are found in an areas) has been long known (Carroll, 1945; 
Ferguson, 1941) and ignored just as long, unfortunately. 

The second statistical effect of categorization arises from the fact that item distribu
tions usually are heterogeneous. Although our examples were ex.aggerated for didactic 
reasons, we have observed them in real data (e.g., Bernstein et al., 1986). This causes 
items to cluster on the basis of the similarities of their distributions. For example, fOllr of 
the six correlations among the pairs of easy dichotomized-different items ex.ceeded .15, 
but no correlation between an easy and a difficult item was this high. Similar trends held 
for trichotomized-different items. In both cases, the clustering caused two eigenvalues 
to exceed 1.0. The resulting two factors were defined by items with similar item distrib
utions, e.g., the easy items in the dichotomized-different condition formed one factor, 
and the difficult items formed a second factor after varimax rotation. 

If one were to replicate this study, and the item distribution differences were also to 
replicate, the spurious multidimensional factor structure would also replicate. Hence, 
replicability is not in itself evidence that categorical data require mUltiple 
dimensions. It might simply suggest the similarities of the distributions in the two 
studies. Conversely, if the item distributions were to change (e.g., because of differ
ences in skill), the factor structure would also change. In both cases, a multi variate 
procedure (factor analysis) is being used to explore a univariate issue-item distribu
tion differences. 

We have previously mentioned a third consideration of a less statistical nature that 
can arise in personality tests when items are keyed in different directions; factors tend 
to arise based upon item keying because endorsing a trait is not equivalent to denying 
its absence. In a sense this is true (content-related) factor variance, but it is method and 
not trait variance in the Campbell and Fiske (1959) sense. Gorsuch (1983) suggests 
some additional approaches to item-level factoring. These include forming groups of 
items and higher-order factoring. In particular, he suggests that difficulty factors tend 
to form a common higher-order factor. Gorsuch (1984) provides an example. 

ACS and Related Approaches with PM Measures 

It does not matter whether one uses an exploratory lvIL solution with a single factor 
specified or a confirmatory ACS solution with pattern elements allowed to vary freely 
to test for unidimensionality. The G2 and degrees of freedom will be the same withln 
rounding error. 

The residual G2 for the latent data was quite small and not significant (21.47), cor
rectly identifying the data as unifactor. Paradoxically, the 0 2 value obtained from the 



574 PART 4: FACTOR ANALYSIS 

dichotomous-same data was even smaller, 14.72, which apparently also correctly iden
tifies the data as being unifactol'. However, recall that this test statistic is based upon 
the difference in at between the substantive model and a best-fitting model. In the pre
sent case, this best-fitting model fit poorly because of the low correlation magnitudes, 
and so the difference between models was small. The remaining three residual G7. val
ues were all highly similar (31.83, 3l..S5, and 31.29). The first two barely reached sig
nificance (p < .05), and the third just missed it. All comparisons were based upon 20 df 
[(8)(7/2) = 28 known correlations minus 8 estimated pattern elements). We also at
tempted GLS solutions. These were nearly identical to the ML results for the latent 
data. However, estimation failed in several cases with the categorized data. This could 
also have happened with ML, but it did not 

Consider a set of items designed to measure how frequently you perform a num
ber of activities, such as going to the movies, sporting eventS, etc. The stems for 
each question are (a) at least once a week, (b) at least once a month, (c) at least once 
a year, and (d) hardly ever (less than once a year). Now, consider the specific item 
"going to the movies." You saw (or, what is really at interest, thought you saw) 14 
movies. However, you aren't allowed to report this number directly; you must 
choose one of the four alternativeS. This number in your head (14) is the latent vari
able that underlies your choice of a response from (a) to (d). This item really trans
lates to the following form. Let X denote the number of times you thought you went 
to the movies: 

1 If X ~ 52, then answer (a). 
2 If 52> X ~ 12, then answer (b). 
3 If 12 > X ~ 1, then answer (c). 
4 If 1 < X, then answer (d). 

The numbers 4, 12, and 52 on this scale are thresholds in the IRT sense that convert 
the latent variable to an observable variable. They do so quite explicitly in this case, 
but the cutoffs are less explicit in most applications, as when the stems are "frequent
ly" and "seldom." The model infers these latent variables from the observables; an 
item with k categories requires k - 1 thresholds. In the present case, the true cutoffs are 
(1) at 0 in the dichotomized-same data, (2) at -1 for items 1 to 4, and at + 1 for items 5 
to 8 in the dichotomized-different data, (3) at -.44 and +.44 in the trichotomized-same 
data, and (4) at 1 and 1.5 for items 1 to 4 and at -1.5 and -1 for items 5 to 8 in the 
dichotomized-different data. The eight latent variables each correlate .5 with the one 
common factor that underlies them all. 

The proportion of 1 responses to items land 2 observed in the dichotomized-same 
data were .47 and .52. These observed cutoffs correspond to thresholds of .06 and -.05 
which are obtained by taking the ~ score corresponding to the proportion and changing 
its sign-the higher the proportion, the lower the threshold. The values couid be used 
to detemrine polychoric correlations which might then be factored (method 6 above). 
However, LISCOMP tests models that estimate these values along with other parame
ters (e.g., the pattern weights), and so they need not be the same as the observed 
values. In the present case, the observed thresholds and those estimated with 
LISCOMP fit equaUy well. Their corresponding RMS error values for the 
dichotomized-same data were .0440 and .0433. 
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LISCOMP uses a GLS algorithm for categorical data because there are som~ tech
nical problems presently associated with developing 1vIL algorithms. In principl~. 
there seems to be no reason why an ML algorithm will not eventUally be obtained. We 
found it difficult to obtain GLS estimates with dichotomous data and high item inter
correlations, though it was less likely to be a problem with three Or more categories. 
Perhaps these problems will abate when ML estimation becomes possible. LISCOMP 
can be used to place further restrictions on parameters. e.g., the user can specify that 
all thresholds are to be equated to one another. This logic is the same as in ACS. In ad
dition to modeling categorical variables, it can also be used to analyze censored and 
truncated distributions. 

LISCOMP has considerable potential as an analytic tool, but the current version of 
the program as of this writing (version 1.1) shares problems with other ACS programs 
providing solutions reliably. This is especially true with dichotomous data and high in
teritem correlations. We reiterate our suggestion that the average user stick to classical 
methods for analyzing item-level data but be aware of the artifacts that may suggest 
multidimensionality. 

Suppose, for example, that you have proposed that the first four dichotomously scored 
items on an eight-item test form scale A and that the second four dichotomously 
scored items form scale B. One can use multiple group analysis with the following hy
pothesis matrix: 

1 0 
1 0 

1 0 
1 0 
o 1 
o 1 
o 1 
o 1 

In the continuous-variable case, the fit of the resulting model would be compared to 
the fit of the first two PrCs and to a pseudofactoT model, perhaps of the form 

1 0 

o t 
1 0 
o 1 
1 0 

o 1 
1 0 
o 1 
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This will not suffice with categorical data since the fit may reflect similarities of item 
distributions. That is, if items I to 4 are endorsed more often than items 5 to 8 for sorne 
reason, the cwo groups of items will tend to fonn separate factors even though all eight 
measures may reflect unidimensional latent data. A more suitable baseline is achieved 
by ranking the items in terms of their p values. Assign the four items with the highest p 
values to one factor, and the four items with the lowest p values to the second factor. 
Call this a mean model in distinction to the pseudofactor and substantive models dis
cussed above. If the rank ordering of items is 1,5, 2, 3, 8,4, 7, 6 (it doesn't matter 
whether the ranking is from high to low or the converse), the hypothesis matrix. will be 

1 0 
1 0 
1 0 
o 1 
1 0 
o 1 
o 1 
o 1 

This model provides a better baseline for dichotomous data. If the proposed matrix. 
and the mean model are the same, or very similar (as is the case here), one cannot 
clearly determine whether it is the content of the items or their statistical distributions 
thl!.t are causing items to cluster, assuming both models fit better than pseudofactors. 
The analysis has gone as far as it can go without constructing additional items; e.g., if 
the factor I items are easier as a group than the factor II items, attempt to construct 
some difficult factor I items and some easy factor II items. The mean model suffices as 
a baseline with dichotomous data because the item's p value completely summarizes 
the distributional properties. Multicategory items require additional tests. Construct 
two other models, called the variance and skewness models, by ranking items on the 
basis of these two additional item statistics. Generally, these are not independent of 
one another: Items with means near the end of the scale tend to have smaner variances 
than items with means near the middle of the scale because of range restriction (cen
soring), items with a small mean tend to be positively skewed, and items with a large 
mean tend to be negatively skewed. 

The above analysis, which forms correlations from variables that are scored as 1 
versus 0, standardizes each item. Gorsuch (1983) notes thac if the reciprocal of the 
items' standard deviations are used in place of Is, the results are totally equivalent to 
an ordinary item analysis. Structure coefficients are item-total correlations (not cor
rected for overlap), and factor correlations are correlations between scales. 

TESTING STRONG THEORIES 

We have been concerned with whether or not proposed groupings of variables exist 
{weak theories}, which we suggest are tested mOre at least as easily through multiple 



CHAPTER 13: CONFIRMATORY FACTOR ANALYSIS 577 

group analysis as ACS. We now turn our attention to strano theon'e" wi, ACS . 
o ", ere IS 

uniquely applicable. . 

Spearman's g illust.rates the simplest categ~ry of strong .theories. It is not enough to 
demon~tr~te that a sen~s of measures are dommated by a smgle factor; one must show 
that thIS sIngle factor IS the only factor, unless perhaps additional factors are den d 
by method variance. If the mythical Prof. Brown had intended measures X X undn~ . It." I\.] 

to measure only anxiety about physical harm and measures X./o Xs and X6 to -measul"~ 
only anxiety about social embarrassment (allowing, in both cases, f.or random meu
surement error), the theory would be strong and, a.'i we have seen, incon·ect. 

Strong theories exploit the effects of being able to fix andlor constrain pm'ameter 
estimates. The ways that this can be done are limitless. However, certain strong tests 
are especially likely and are good ways to illustrate the properties of ACS. In general, 
they assume that groups of variables measure the same thing that we would describe 
as conforming to a weak theory but that the ACS tradition refers to as congeneric 
("measuring the same thing," Joreskog, 1974). These tests may be combined with each 
other and with tests that compare different groups. 

1 Orthogonality. The factor cOl1'elation was left as a free parameter in testing Prof. 
Brown's model because the model did not say that the two classes of measures were 
independent of one another. Had that been proposed, the factor correlation would have 
been fixed at .0. Assuming that nothing else was changed in the specification, the dif
ference in G2 between the two would illustrate the effects of nesting and would explic
itly test orthogonality given that the pattern had been correctly specified. Note that the 
overall G" might be large because the pattern had been incorrectly specified, buc the 
difference G2 specifically tests for orthogonality. 

2 Redundancy. Conversely, suppose one or more factor correlations were very 
high. You might suspect that two or more factors can be replaced by one. Simply fix 
the appropriate factor correlations at 1.0 to see how much the fit is degraded. This also 
illustrates that fixed parameters need not always be O. 

3 Tau-equivalence. Suppose a series of measures can be assumed congeneric. It is 
quite possible that the variances of the raw scores (or deviation scores, since they will 
be equal) vary because the measures differ in true and unique variance and are there
fore unequally reliable. One might wish to test for equality of true variance. This may 
be accomplished by comparing the fit of a model in which pattern elements and 
uniquenesses are both free with a model in which pattern elements are constrained to 
equality but uniquenesses remain free. The difference 0 2 in this case specifically tests 
for equality of pattern. This test requires that one analyze either the covariance matrix 
or the mean-sum-of-products matrix. 

4 Parallelism. Parallelism implies that the measures have equal pattern elements 
and equal uniquenesses, Le., that they are tau-equivalent and equally reliable. The test 
involves constraining the pattern elements to one another and the uniquenesses to one 

. another. It may be evaluated as a difference G2 relative to the more general model in 
which both sets of parameters are free or relative to the tau-equivalent model. Note 
that tests which meet the criterion for parallelism need not differ only in measurement 
error; they can differ in the nature of their specific variance as long as the magnitudes 
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are the same. Parnllelism also requires that one analyze either the covaIiance matrill Or 
the mean sum-oF-products matrix. 

Introduction to the Full ACS Model 

In order to appreciate the complexity of the ACS model and its range of applicability, 
assume that an investigator has obtained three indicators (the term used in ACS to de
note what we have called variables) of each of the following four constructs (factors, 
in more traditional language). 

1 Psychopathology: two MMPI scales and a clinical rating 
2 Intelligence: verbal ability, quantitative ability, and social intelligence measure 

as found on a number of personality inventories 
3 Job performance: a peer evaluation, a supervisory evaluation, and a self

evaluation 
4 Job satisfaction: a peer evaluation, a supervisory evaluation, and a selt'

evaluation. 

Although the ,issue will not be pursued, the six measures in constructs 3 and 4 may 
be further analyzed in ACS using a multitrait-multimethod approach as discussed in 
Chapter 3; see Browne (1984) and Cole and Maxwen (1985). 

Assume that data from a large number of individuals have been gathered. The data 
form a 12 x 12 correlation or covariance matrix which may be used to investigate the 
following hypotheses. 

I The three indicators of psychopathology define a construct. 
II The three indicators of intelligence define a second construct. 

m The three indicators of job performance define a third construct. 
IV The three indicators of job satisfaction define a fourth construct. 
V Psychopathology impairs job performance. 

VI Intelligence facilitates job perfonnance. 
vn Job performance facilitates job satisfaction. 

Hypotheses I to IV are weak. In ACS terminology, they involve the measurement 
portion of the full model, and the principles are the same as previously considered. 
However, hypotheses V to VII are of quite a different form. They involve relations 
among constructs which are similar in many ways to higher-order factoring. These 
proposed relations are causal in nature and involve the structural portion of ACS. 

ACS funher distinguishes between two types of constructs and indicators, exoge
nous and endogenous. Exogenous indicators and constructs are assumed to be deter
mined by sources outside the model. In this model, psychopathology and intelligence 
are assumed exogenous. The causes of each (genetics, early family history, stress, etc.) 
are not at issue in the particular study. By definition, an exogenous construct is never 
assumed to be caused by any other construct. In contrast, endogenous indicators and 
their associated constructs may potentially be influenced (caused) by other constructs 
in the model (both exogenous and endogenous). Job performance and job satisfaction 
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are hypothesized to be endogenous. The full ACS model thus has three distinct 
aspects: 

1 A measurement model that relates exogenous constructs to indicators 
2 A measurement model that relates endogenous constructs to indicators 
3 A structural model that relates exogenous andlor endogenous constructs to en

dogenousconstructs. 

However, a given study need not use more than one or two of these aspects. 
We have stressed the importance of structure elements over pattern elements be

cause of the difficulties that frequently affect people inexperienced with oblique rota
tions. ACS does precisely the converse because it allows effect strengths in both the 
measurement and structural portions of the model to be described in the same way. 
Unfortunately, most ACS programs do not even report structure elements, which we 
feel is a mistake. 

In order to get a better idea of the structural model and learn about the complex nota
tion used in LISREL (alternative programs use different, but just as complex, 
notation). consider Fig. 13-2. 

Figure 13-2 is a path diagram of the proposed organization of the data. We will dis
cuss the meaning of upath" in more detail shortly, but it is simply the direct effect of 
one variable upon another. Variables in squares are observables, with X denoting 
exogenous indicators and Y denoting endogenous indicators. Subscripts distinguish 

FIGURE 13-2 A path diagram interrelating three proposed measures of psychopathology and three proposed 
measures of Intelligence as exogenous Indicators, and three proposed measures of job 
performance and three proposed measures of job satisfaction as endogenous indicators. 



580 PART 4: FACTOR ANALYSIS 

between both constructs and indicators. Hence, XI to XJ are the three psychopathology 
indicators, X4 to X6 are the three intellectual indicators, YI to Y3 are the three job per
fonnance indicators, and Y4 to Y6 are the three job satisfaction indicators. Terms in cir
cles are constructs (factors). Greek lowercase xi (c;) denotes exogenous constructs, and 
Greek lowercase eta ('1]) denotes endogenous constructs. Consequently ~I denotes psy
chopathology, ~2 denotes intelligence, 11! denotes job performance, and Th denotes job 
satisfaction. Arrows imply relations between constructs and between indicators and 
constructs. 

Gamma (r) denotes a causal relation (path) between an exogenous construct and an 
endogenous construct, and beta (/3) denotes a path between two endogenous con
structs. The first subscript denotes the proposed effect, and the second subscript de
notes the proposed cause. Thus, the arrow drawn from ~l to 111 describes the hypothe
sis that intelligence is causally related to job performance (being sman causes better 
job performance), Y12' Likewise, the arrow drawn from 111 to 112' which is identified as 
~21' describes the hypothesis that job performance (TIl) causes job satisfaction (11v. In 
this proposed model, intelligence is assumed unrelated to job satisfaction, and so there 
is no path identified as '¥n. 

Figure 13-2 is good for depicting the overall proposed model without excessive 
"clutter," but it ignores several important details. Figure 13-3 contains these missing 
elements in the exogenous portion of the model, and Figure 13-4 contains parallel ele
ments in the endogenous portion of the model. The uniqueness of endogenous variable 
i is symbolized as Ej, and the correlatiqn between endogenous constructs j and k is 
symbolized by \)Ijk. It is often useful to refer to an aggregate of exogenous or endoge
nous variable elements, e.g., all of the exogenous path coefficients. Following more 
general statistical practice, the resulting matrix or vector is described by boldface. 
Consequently the set of A. x values is denoted A",. 

FIGURE 13-3 Details of the exogenous portion of the full model depicted In Fig. 13-2. 

6
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FIGURE 13-4 DetaIls of the endogenous portion of the lull model depleted In Ag. 13-2. 

Assumptions 

It Is sometimes necessary to distinguish between the true (parametei:') value and the 
estimate notationally. As in other areas of statistics, a circumflex (hat) is used to de
scribe an estimate. Consequently ~1 is the estimated strength of the effect of job per
formance upon job satisfaction whose true value is ~t. A particularly important appli
cation of this principle applies when we algebraically combine all the parameter 
estimates used in a particular model. The result is an estimate of the correlation, co
variance, or sum-of-products matrix being analyzed and is denoted :to As in the mea
surement model described previously, the analysis makes ± as close as possible to the 
sample 1: matrix, which is assumed to be the best estimate of the unknown population 
1: matrix. We will assume that these are ML estimates, but they may also be GLS or 
ULS estimates. and a variety of strategies are possible. Table 13-8 summarizes the var
ious symbols (one further symbol will be mentioned below simply for completeness 
that plays an extremely minor role in the model). 

The full ACS model may be described in terms of equations that describe the exoge
nous measurement model, the endogenous measurement model, and the structural 
model. These are given by Eqs. 13-l0a to 13-lDc, respectively. They merely state for
mally what has already been presented in this general section and, in the ease of the 
two measurement models. what has been considered starting in Chapter 11. 

X=A.x11+£ 
y=A.,,;+ a 

11 = B11 + r~ + ~ 

(13-l0a) 

(13-l0b) 

(l3-lOe) 
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ACS NOTATION 

Matrix Element 

Variable lYpe Name Name Role 

Indicator Ex X x Observables 
Construct Ex III' q Factors and factor interrelations 
Pattern Ex A~ A~ Regressions of exogenous indicator on 

construct 
Uniqueness Ex 95' Ii Errors In measurement model 
Indicator En Y y Observables 
Construct En i " Factors and factor Interrelations 
Pattern En Ay Ay Regressions of endogenous indicator on 

construct 
Uniqueness En Se" E Errors in measurement model 
Path Ex-+En r 'Y Causal effect of exogenous variables 
Path En-+En B ~ Causal effects of endogenous variables 
Error Ex-+En ~ Errors in structural model 
Overall model 1:: Observed data relations, e.g., covariances 
OVerall model 1: Estimated data relations, e.g., covariances 

Note: Ex. Exogenous; En, endogenous. Matrices contain regression weights unless denoted by an asterisk ('), 
in which case they conialn covarlances (correlations when standardized). 

Equations 13-1Oa and 13-10b provide a standard factor analytic definition of observed 
scores as the product of a factor score and regression weight plus measurement error 
as presented in Eqs. 11-1. Equation 13-10c may appear unusual because a matrix ell) 
appears on both sides of the equality and is therefore defined in tenns of itself. In fact, 
the Tl on the right describes a different quantity (set of path coefficients) than the one 
on the left. This equation merely says that a given path coefficient is a function of 
other path coefficients (11 and s) plus measurement error (/;). 

Joreskog and Sorbom's (1989) statement of ACS make the following major 
assumptions. 

1 Errors of measurement (0 and e) are assumed to be uncorrelated with constructs 
(11 and ~). but they may be correlated among themselves. Ordinarily, all measurement 
error is assumed independent, but this need not be the case in ACS. Errors of measure
ment may be correlated because certain variables are measured on the same day and 
other variables are measured on different days. Some programs estimate a matrix of 
covariances between exogenous errors (8) and endogenous errors (8), symbolized e, 
but there is little use for this in most applications. 

2 Errors of measurement are also assumed to be uncorrelated with structural mea
surement error (1;). 

3 An endogenous variable c~nnot "cause itself," so that the diagonal terms ofB are 
zero (a more technical restriction on.this matrix that goes beyond this text is described 
in the ACS manual). 
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Properties of Path Coefficients 

We will now consider the properties of the two matrices of path coefficients r u d U 
in more detail. At a purely descriptive level, "fl2 merely describes the cha~ge i~ th~ 
first endogenous construct, Til Gob performance in the example), produced by a unit 
change in the second exogenous construct, ~2 (intelligence), holding constant all other 
constructs, both exogenous and endogenous (psychopathology and job satisfaction in 
the example). Likewise, i321 describes the analogous effect upon 112 Uob satisfaction) 
produced by 111 Uob performance). Save for the fact that these tenns are all constructs, 
their properties are really no different from the properties of regression weights con
sidered in Chapter 5 and pattern elements as discussed in chapters on factor analysis. 
As we have stressed, pattern elements index the direct effect of one variable Upon an
other by holding constant all other variables. Consequently two constructs, just like 
two observables, may be correlated, yet the regression weight (pattern element) relat
ing one to the other may be zero. 

Assume for a moment that the model depicted in Fig. 13-2 is correct. It says tha[ 
there is no path connecting ~l and 112; i.e., psychopathology per se does not cause higher 
or lower job satisfaction. There may well be a high correlation between the two
the more psychopathological iitdividuals may be the more dissatisfied. However, one 
could attribute this to other constructs; e.g .• more psychopathological individuals might 
perform their jobs more poorly and those who do their job more poorly on the job might 
be more dissatisfied. Holding constant (partialling) job performance would eliminate 
the correlation between psychopathology and job satisfaction. In other words, the rela
tion between psychopathology and job satisfaction is mediated by job performance. The 
model may be wrong. There may be a relationship between psychopathology and job 
satisfaction, holding both intelligence and job performance constant, e.g., more dis
turbed individuals may in fact be more dissatisfied with their job. This model, with its 
added path, is depicted in Fig. 13-5. 

A Note on Inferring Causality from Correlational Data 

If one simply sticks to this essentially mathematical interpretation of path coeffi
cients, there is little to argue with and much to find beneficial about these mathemati
cal deductions. However, most users iinpute a stronger meaning to these terms, 
namely, causation, and many raised in the tradition that "correlation is not causation" 
are bothered by inferring causation from measures which were not manipulated ex.
perimentally. We share this skepticism to a large extent. For example, suppose the 
amount of rainfall and the proportion of people carrying umbrellas are highly corre
lated. One possible interpretation is (1) that rain causes people to carry umbrellas. 
Two other possibilities are (2) carrying umbrellas causes rainfall, and (3) a third vari
able, such as the weather forecast-people may carry umbrellas because the forecast 
causes them to expect rairi'. Alternative 2 is obviously implausible, as it requires the 
effect to precede the cause in time, but alternative 3 is obviously quite viable and 
perhaps testable by giving subjects incorrect weather reports. It is difficult nor to 
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FIGURE 13-5 A modification of the model proposed in Fig. 13-2 in which It Is further assumed that 
psychopathology affects job satisfaction. 

think of a situation in which third (or fourth, etc.) variables do not operate. Including 
more variables in the network, on the one hand, allows control over these third vari
ables. but, on the other. makes it more difficult to focus upon key variables. As one 
goes through all the assumptions made in a typical analysis, it is difficult not to con
sider alternative ways to formulate the model. The exogenous-endogenous distinction 
suffers from this same basic problem of equivocality. By considering a variable such 
as psychopathology or intelligence as exogenous, it is removed, by fiat, from the in
fluence of other variables. 

One can attempt to address the issue by treating the variables as endogenous so that 
they may be the object as well as the subject of causal linkages. ACS does not require 
any exogenous variables, but it does require at least one endogenous variable. Howev
er, the more such paths allowed in the model, the greater the chance that the model 
will not be identified in the sense previously described of providing a unique solution 
(the reader is referred to works listed in Suggested Additional Readings for the techni
cal aspects of identification). Merely being flexibLe about allowing relations does not 
necessarily solve the problem. Consequently assumptions made to rule out possible 
paths are a necessary and important part of the analysis. 

At the same time that we are critical of the strong use of causality in ACS and path 
analysis in general, we do not wish to lose sight of some real benefits. Questions of 
whether the relation between two variables disappears once other variables are con
trolled are interesting and important. ACS is a powerful tool allowing these issues to 
be addressed while simultaneously addressing questions of how multiple indicators of 
constructs define these constructs. 
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Model Specification in ACS 

There is a total of eight matrices in a full ACS model: 

1 The exogenous pattern (A.J 
2 The covariances among the ex.ogenous constructs (c:t» 
3 The exogenous uniquenesses (81» 
4 The endogenous pattern (A ,) 
5 The covariances among the endogenous constructs ('I') 
6 The endogenous uniquenesses (8E) 

7 The path coefficients from ex.ogenous variables to endogenous constructs (D 
8 The path coefficients among endogenous constructs CB). 

As we have noted, every element in each matrix must be specified as a fixed para
meter, a free parameter, or a constrained parameter. In addition to introducing con
straints consistent with the substantive demands of the model, other constraints are 
necessary to impose a unit of measurement. Many pitfalls might produce an unidenti
fied model. 

For example, the exogenous factor pattern Ax could be constructed in the following 
form, where the six rows are the six exogenous indicators and the two columns are the 
two exogenous constructs (psychopathology and intelligence). The symbols Fr and 0, 
respectively, denote free parameters and parameters fixed at zero: 

Fr 0 
Fr 0 
Fr 0 
o Fr 
o Fr 
o Fr 

One of several possible ways to provide the unit necessary for the first construct (psy
chopathology) is to fix the element in the first column and row at 1.0. 

The matrix of variances and covariances among ex.ogenous constructs (r;I» 
will have two rows and two columns since there are two constructs. All four elements 
will be free parameters. Since it is more Iike~y that I: will be analyzed as a covariance 
matrix or a sum-of-products matrix than a correlation matrix, the diagonals 
are not necessarily 1.0, but ACS can provide standardized output, and so you can 
also evaluate rp as a correlation matrix. Proper specification of Ax will also ensure 
that the factor variances are defined. Although there are four elements in ell, only 
three estimates are needed because of its synunetry; only those variables below the di
agonal are considered in a symmetric matrix. Consequently <P takes the following 
form. 

Fr 
Fr Fr 
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The exogenous uniqueness (error variance) matrix (9 li) has six columns and six. rows 
corresponding to the six endogenous variables. Because the error terms are conSidered 
uncorrelated, the terms off the diagonal are tilted at zero, leaving only the diagonal 
terms to be estimated. Consequently, 9 6 takes on the fonowing form. 

Fr 
0 Fr 

0 0 Fr 
0 0 0 Fr 
0 0 0 0 Fr 
0 0 0 0 0 Fr 

There is genetally no logical connection between the dimensions of the three cone. 
sponding endogenous manices, but they have the same form as the exogenous matri
ces in this problem. 

The matrix of path coefficients relating exogenous constructs (columns) to endoge
nous variables (rows) or r will have two rows and two columns in this case, though it 
will generally not be square and therefore not symmetric. According to the model pro
posed in Fig. 13-2, both exogenous constructs are assumed to affect the first endoge
nous construct Gob performance), and so the elements in the first row will both be free 
parameters. Likewise, neither exogenous construct is a~sumed to affect the second en
dogenous construct, and so the elements in the second row are fixed at zero: 

FI Fr 
o 0 

On the other hand, the model proposed in Fig. 13-5 implies a path between psy
chopathology and job satisfaction, and so the matrix appears as: 

Fr Fr 
Fr 0 

Finally, the path coefficient relating the endogenous variables to each other (B) is 
square since both the rows and columns are endogenous variables, but it is usually not 
symmetric. Since the only specification postulated is an effect of job performance (111) 
on job satisfaction (lla) and since ~auses appear in columns and effects in rows, the 
matrix is: 

Fr 0 
o 0 

The 12 observables provide 12 variances and (12)(11/2) = 66 co variances, for a total 
of 78 distinct elements in I.. The eKogenous measurement model requires 15 parame
ters, the endogenous measurement model requires 15 parameters, and the structural 
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~ode1 requires 3 p~rameters, .leaving 55 dfto ~est the .model. Each ACS program has 
Its own syntax for Implementing these constrrunts whIch we will not discuss here. A 
given specification pan often be achieved several different ways·; e.g., you can fix an 
entire matrix and .then free selec~ed elements, or vice versa. The output nonnally tells 
you how each van able has been mterpreted. One of the first things you should do is to 
check to see if the model has been specified as intended. You may find that this has not 
been done even if you are highly experienced. Fortunately, computer programs de
scribe the specification with reasonable clarity. 

Recursive and Nonrecursive Models 

One thing that we did not do in either version of the model was to allow causal effects 
to operate in both directions. That is, we assumed that job satisfaction did not affect 
job performance when we assumed that job perfonnance affected job satisfaction. In a 
more general sense, no path through the structural model crossed itself. A "recursive 
model" is one in which no possible path crosses itself. and a "nonrecursive model" is 
one with a crossing, as would arise from reciprocal causation. 

It was extremely difficult to test a nonrecursive model before ACS. Among the 
many things that ACS did in unifying correlational analysis was to make analysis of a 
nonrecursive path model as easy as analysis of a recursive path model since the only 
difference between the two types of models is in the specification of the structural 
model. In a recursive model, a free or constrained parameter in the ith row andjth col
umn must be associated with a parameter fixed at 0 in the jth row and ith column, 
whereas this need not be the case in a nonrecursive model. In general. the rows and 
columns in B can be rearranged to fonn a triangular pattern of zeros in a recursive 
model. Although it is possible to have an identified nonrecursive model, lack of recur
sion often leads to lack of identinability. Although nonrecursive models often have ap-
peal for their flexibility, they have very distinct pitfalls. 

Cross-lagged Correlation 

Cross-lagged correlation has been suggested as an approach to inferring causation 
(Duncan, 1969; Kenny, 1975). It may be implemented as a strong theory in ACS. In its 
simplest (two-wave) case, two variables are each studied at two points in time. For ex
ample, assume that each of a large number of clinical supervisors has an associated 
trainee. Each supervisor rates the proficiency of each trainee, and each trainee rates the 
quality of supervision of each supervisor. Both ratings are made on two occasions, 
e.g., at 6 months and at the end of a year. Designate the two supervisory ratings as Xl 
and X2, and the two trainee ratings as YI and ft. 

Correlating over pairs yields six correlations (or covariances): r .... IYl and r .... 2Y2 (cor
relations between two variables measured at the same time), r:'j X2 (correlations be
tween the same variable measured at different times), and r .... l12 and r .... 2YI (correlations 
between different variables measured at different times). The last-named cross-lagged 
correlations are of greatest interest. Although the analysis has several features, the key 
is the relative magnitude of rX1Y2 and rx2y \' In essence, if rX1Y2 is greater than r.1'2Y I' 
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then X causes Y. Conversely, if r.~,Y2 is greater than r,~p'2' then Y causes X. Finolly, if 
both correlations are of similar magnitude, the relations between the two could be at
tributed to a third variable. 

Claims appeared in the literature that cross-lagged methods could put correlational 
research on a par with experimental research as far as inferring causality was Con
cerned, e.g., Crano and Mellon (1978). The wide applicability of cross-lagged meth
ods from 1970 to 1985 and the general interest in infening causality from correlation 
make it important that we briefly define the technique. However, everyone considering 
this method should read Rogosa's (1980) profound critique. His penetrating mathemat
ical analysis of the difference between the two correlations reveals its dependence 
upon the magnitudes of the other four correlations. He notes, and provides plausible 
examples, of how both unequal cross-lagged correlations could arise in the absence of 
causal effects, equal causal effectS, or causal effects that are actually in the direction 
opposite those apparent in the correlations. 

Once a model bas been properly specified, ACS then estimates the desired parame
ters and provides the diagnostic infonnation discussed above and considered further 
in works listed in the Suggested Additional Readings. Since the additional concepts 
are either regression weights or covariances, there literally is nothing in this com
plete ACS model that was not considered in the more restricted confinnatory factor 
analytic setting. One should consider not only the summary 0 2 but descriptive mea
sures of fit and the statistics available for individual parameters. Free parameters that 
yield numerically small estimates might be fixed at zero. Fixed parameters whose de
rivatives are large might be freed, e.g., one might consider the specific relaxation im
plied by Fig. 13-5 relative to Fig. 13-2. These possible parameter relaxations should 
be thought of in advance as possible alternative models based upon substantive con
siderations. 

Keep in mind that the overall fit of an ACS model is a joint function of all parame
ters even if they are not of equal interest. In the present application, the path coeffi
cients (r and B) are clearly of most concern. followed by the pattern elements (A" and 
Ay). The uniqueness of (95 and 9 E) are often of least importance. Note that 12 of the 
33 parameters estimated, over one-third, were uruquenesses in the example used in 
this section. This is not atypical and is a far cry from component analysis where these 
tenns were disregarded. If one's interest is in weak theories, the "[ail clearly wags the 
dog." Recall that at its core, ACS is basically a numerical estimation program. Howev
er, those within the common factor tradition, including Thurstone, see factor analysis 
as the separation of common variance from error and view the emphasis placed upon 
the uniquenesses as most proper. 

It is rare that one simply fits a model and stops. Hopefully, the investigator has formu
lated several alternative hypotheses, as we have done in Fig. 13-5, to make meaningful 
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modifications. However, most modifications are data-dd ven by unexpected findings. 
ACS's diagnostic information allows parameters to be added by freeing previoLisly 
fix.ed or constrained parameters or deleted by fixing previously free parameters. 

As in nearly all multivariate applications, the standard errors of estimates and the 
correlations among estimates are extremely important. Large standard errors relative 
to other parameters and a high correlation between two estimates imply that the esti
mation process IS unstable. The derivatives of the fitting function with respect to 
fixed parameters describe the expected change in the function with a Slight change in 
the parameter. A large value implies that the value chosen for the parameter is not 
correct. For example, if a variable actually belonged to a factor to which it was as
signed a zero value, its' derivative would be large. Freeing the parameter to take on a 
more optimal value would improve the fit. But be careful that freeing the parameter 
does not cause the model to become unidentified. Conversely, if a parameter estimare 
is close to zero, little fit will be lost by fixing the parameter at zero. Likewise, if a 
factor correlation is close to 1, try fixing it at 1 to eliminate the factor. In both cases, 
use the ratio of the parameter's value to its standard error of estimate, which is a t 
ratio. 

ACS provides a variety of other information useful for respecification. Once this is 
done, the result is no longer strictly confirmatory, no matter how plausible the outcome 
is. The most recent versions of ACS can automatically respecify a model for you. Log
ically, this is not very different from using stepwise multiple regression in that it gets 
the program to do your thinking for you. Moreover, exert care in trying to explain a 
small but significant decrease in the residual a2 in a large sample if that parameter 
greatly complicates your theoretical interpretation. Finally, keep in mind that the alpha 
levels are no longer true once you start respecifying on the basis of the data. It is al
ways useful to replicate the model on a new sample. 

Classical Approaches to Strong Theories 

Strong theories differ in "strength." For example, suppose that you wish to construct 
parallel forms of a test. Form A has a mean of, say, 10.3, a standard deviation of 4.1, 
and a coefficient (J. reliability of .84. Form B has a mean of lOA, (l standard deviation 
of 4.0, and a coefficient alpha reliability of .83. The correlation between forms is .80, 
so that it becomes .80;-V(.84)(.83) or .96 when corrected for attenuation. Do these 
slight disparities from parallelism make a difference, even if significant? In most situa
tions, probably not. If you ran a pre-post design, randomly administering one form on 
the pretest and the other on the posttest, the effect of any disparity would be neutral
ized. On the other hand, if you had hoped to use either form as part of a college admis
sions process, you would not wish to use a common criterion though separate cutoff's 
would be defensible. 

Classical methods are quite useful if you only need to approximate the conditions 
of a strong model such as parallelism. For example, multiple group analysis makes 
misspecifications more manifest than ACS since it does not force pattern weights to 
zero. The tendency Of multiple group factors to point out a more correct solution is es
pecially valuable in theory modification. Regression methods may then be used on the 
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equally weighted sums that represent the constructs to infer path strengths. You have 
fewer decisions to make about parameters than you do in ACS. A multiple group 
model will never fit a sample as well as an ACS model because you have not opti
mized it for that sample. but it may be more robust across samples. However. ACS a1 

tests are much more systematic than classical methods and are more appropriate if 
needed to test models in a striCt sense. The point of the above paragraph was not to 
decry ACS. It was to note that you should be skeptical about any method of data 
analysis as a "royal road" to truth. The more your substantive conclusions remain the 
same across different methods of analysis. the less you have to worry about them 
being artifacts of any particular method. Perhaps theories will someday be so highly 
developed in all areas and investigators will always gather large amounts of data. At 
that time (which certainly is the present in certain areas). ACS will be mandatory. 
However. this is clearly not now the case universally. Cliff (1983b) describes some 
useful cautions. 

[n contrast to previous chapters, where ex.ploratory factors were defined to meet math
ematical criteria such as accounting for the most variance, this chapter concerned con
finnatory factors defined to meet substantive (theoretical) Objectives. The goal of con
finnatory factor analysis is to see how wen proposed factors ex.plain the data. There 
are two general traditions. Classical approaches stress the algebra of linear combina
tions and place relatively little emphasis upon statistical inference. A newer approach 
is based upon ML and related techniques of numerical estimation used to infer popula
tion parameters from sample data. It stresses statistical inference, although many de
scriptive measures have also been proposed. This tradition is perhaps most commonly 
called LISREL. but we use the designation analysis of covariance structures (ACS) to 
avoid confusion with USREL as a specific computer program. 

Factor analysis began with Spearman's (1904) hypothesis that measures of intelli
gence consist of a common factor (g) plus a unique error. If g accounts for all the com
mon variance. partialling it out should reduce all correlations to 0 within sampling 
error. All tetrads (correlations in paired rows and columns) will vanish. The difference 
in cross products of the tetrad values is also the second-order determinant. A matrix 
that contains correlations which are not all zero but whose tetrads vanish is of rank 1. 
Even though ML and related methods can provide explicit tests on the sufficiency of g 
and the original theory is substantively incorrect. Spearman's logic is important since 
it is simple to apply and relates to unifactor hypotheses in general. 

It is important to be able to compare factor structures so that results may be related 
across studies and establish generality. Three general situations have been distin
guished: (1) the same variables may be given to the same subjects, as when one com
pares alternative factor solutions or factors to factor scores, (2) the same variables may 
be given to different subjects to look for factor invariance, and (3) different variables 
may be given to the same subjects to relate two or more classes of factors. One should 
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not simply look at the pattern, structure, or factor weig.hts to infer similarity, since 
these could generate highly similar factors or factor Scores when the underlyinrr vari-
ables are highly correlated. Correlating factor scores is sounder. '" 

Some practical considerations in making comparisons classically are (I) lack of 
correlation between sets of factors roay reflect unreliability; (2) conversely, it could 
represent true group differences that moderate relationships; (3) correlating rotated 
factors among groups confounds differences in correlational structure with differences 
in rotation angies-correlating unrotated solutions eliminates the latter artifact; (4) use 
the pooled within-groups covariance matrix for multiple comparisons if the individual 
matrices are similar; (5) equations comparing factors involve the structure matrix, 
whereas equations comparing factor scores involve the factor weight matrix. Relevant 
procedures were then discussed. We also discussed how to compare overall structures, 
as opposed to individual factors, using forced rotations. 

ACS compares factors acroSS groups by evaluating the difference between a model 
in which relevant parameters are constrained to equality across groups versus being al
lowed to vary freely. These parameters may come from the factor pattern, the factor 
correlation matrix, or the uniqueness matrix when a correlation (R) matrix is analyzed. 
However, problems typically require analyzing the covariance or mean-sum-of-prod
ucts matrices. The former allows groups to be compared as to variability on the factor, 
and the latter allows groups to be compared on both variability and location. Factors 
which are highly correlated may still each be significant, so proper interpretation is 
very import/int. 

Weak theories propose groupings of variables but do not assert that groupings are 
independent or exhaustive. Three approaches were presented. All three require the 
proposed groupings to be specified by a hypothesis matrix. In mUltiple group analysis, 
factors are defined as sums of variables, and the properties of these sums define the so
lution. For example, the correlation between sums from two groupings defines their 
factor correlation, and the correlation of individual variables with groups defines the 
factor structure. In Procrustes, variables are defined terms of factors. A set of original 
factors are rotated to best fit the proposed organization in a least z squares sense. Un
like the multiple group method, the rotation always takes places within the hyperspace 
defined by the appropriate number of factors, and so the solution artifactually explruns 
as much variance as a like number of original factors, whether or not the grouping is 
appropriate. ACS tests a weak theory by evaluati~g a model in which pattern weights 
for variables assigned to a factor are treated as free parameters and pattern weights for 
variables not assigned to a factor are fixed at zero. The factor correlation(s) and 
uniquenesses are additional free parameters. We then described the importance of arbi
trarily chosen groupings (pseudofactors). 

Next, we discussed evaluating the results. A variable that correlates poorly with its 
assigned grouping in multiple group analysis is probably misspecified, but the correla
tion is inflated because the variable belongs to the group with which it is correlated. 
Looking at the average off-diagonal correlation or perfonning a common factor analy
sis may reduce the bias somewhat. Even stronger evidence for misspecification is 
when a variable correlates more highly with another grouping than the one to which it 
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is assigned. Looking at residuals may suggest further relations even though a weak 
theory does not require them to be nonsystematic. Do not give much credence to the 
absolute level of fit (e.g .. proportion of variance accounted for), which may be high 
even with a major misspecification when variables are highly correlated, but the fit 
must clearly ex.ceed that provided by pseudofactors. The factor correlation should not 
be extremely high. If the pseudo factors tit nearly as well as PrCs, too many factors 
have probably been proposed. Finally. the proposed factors should correlate highly 
with the early Ptcs in order to represent major sources of variation. 

ACS compares three models. The unconstrained (saturated) model uses aU the 
data to obtain a best fit. It explains nothing and is not unique. The substantive model 
describes the proposed groupings, and the null model assumes there is no structure 
(no common variance). Inferential tests are based upon the respective values of G2. 
which is the sample size times the value of the appropriate fitting function, e.g., NIL. 
The substantive model must be identified, meaning that its solution is unique. In gen
eral, a substantive model's fit may be comparative, assessing the model itself. Or in
cremental, assessing the model in relation to another nested model in the hierarchy. 
However, weak model testing is comparative. One should not dismiss a model 
because of significant G2 in a very large sample, and various descriptive measures 
have been proposed. We discussed four classes of measures: (t) those that are like 
squared mUltiple correlations. which estimate the proportion of total variance ac
counted for by the proposed model. (2) those that compare the fit of the proposed 
model to the null model. (3) those that compare the fit of the proposed model to the 
saturated model, and (4) those based upon the fitting function. A major problem is to 
avoid a bias in favor of models with more free parameters; the fitting function is 
especially subject to this artifact. Two examples. one involving a correct grouping 
and the other involving an incorrect grouping were compared. The ACS solution 
suggested a misfit in that the residual 0 2 was significant, but this reflected a trivial 
source of variance. 

Many erroneously feel that item-level (discrete, categorical) data can be factored in 
the same way as scale-level (continuous) data. However, even though correlations usu
ally describe the similarity of content of continuous measures, they do not for discrete 
data. Categorization attenuates correlations and thus diffuses the factor variance. Even 
though the underlying data may be unifactor, the analysis may suggest additional, spu
riOLlS factors. In addition, categorical measures tend to group on the basis of the simi
larities of their distributions. A third source of artifact is that items with the same key
ing will tend to correlate more highly than items with opposite keying because of 
shared method variance. 

Several ways to deal with categorical data were considered. One is to factor poly
choric estimates rather than correlations themselves, but this has problems as well as 
advantages. Muthen's (1988) more recent LISCOMP was considered. It exploits the 
equivalence of factor analysis and item response theory. Observable responses are 
linked to underlying continuous variables which in tum are linked to factors. Response 
probabilities are assumed to reflect thresholds along the underlying continua. Unfortu
nately, some problems were noted in reliably obtaining estimates, especially with 
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dichotomous data and high underlying correlations. Another approach involves the 
similarity of obtained factors to those defined on the basis of univaliate item statistic:>. 
e.g., p values. 

We then considered testing strong theories using ACS. The simplest strong theory 
is that proposed groupings are exhaustive, as in Spearman's g. The test simply 
involves looking at the residual 0 2• More specific examples include testing (I) that 
groupings are indepe.ndent ~y fixing their f~ctor correlation at 0, (2) that groupings 
are redundant by fixmg thelr factor correlatlOn at 1.0, (3) for equality of true vari
ances (tau-equivalence) by constraining the pattern weights to equality, and (4) for 
parallelism by constraining the pattern weights to equality and the uniquenesses to 
equality. 

The full ACS model relates two groups of factors (constructs) and their associated 
variables (indicators). Endogenous terms are assumed to originate outside the model, 
whereas endogenous variables are caused, at least in pan, by exogenous 
variables and other endogenous variables. Indicators are related to their constructs 
through a measurement model, the confinnatory factor analytic model thus far 
discussed. The remaining relationships arise from the structural model that defines 
paths among constructs. Path coefficients describe the direct relationship between 
constructs which are, by definition, pattern elements. The resulting model contains 
a series of eight matrices whose elements must be specified as fixed, constrained, 
or free. These are the (1) exogenous pattern, (2) covariances among the exogenous 
constructs, (3) exogenous uniquenesses, (4) endogenous pattern, (5) covariances 
among endogenous constructs, (6) endogenous uniquenesses, (7) path coeffi
cients from exogenous constructs to endogenous constructs, and (8) path coefficients 
among endogenous constructs. The considerations involved in specification were 
discussed. . 

Perhaps the majority of models are recursive in that paths do not cross and there is 
no reciprocal causation (if A causes B, then B does not cause A). However, ACS al
lows nonrecursive models to be evaluated just like recursive ones, although it is often 
somewhat more difficult to ensure identification. Cross-lagged correlation is another 
topic related to causation. In its simplest case, it involves obtaining two measures at 
two different points in time. Inferences about causation are made based upon the pat
tern of correlations. However, a cogent critique by Rogosa (1980) should give users of 
this procedure cause to seek alternatives. 

Several things need be considered in evaluating an ACS model. Free parameters 
which provide small numeric estimates might be fixed at zero, estimates that are very 
similar might be constrained, and fixed parameters that suggest an instability might be 
freed. It is rare that the first ACS model tested is ideal. It is preferable that an investi
gator has a series of alternative models in mind that lead to a theory-based modifica
tion. Look at the standard errors. Moreover, once the model is respecified in the origi
nal sample, the original alpha levels are no longer true; one will tend to capitalize 
upon chance. Consequently replication in a new sample is strongly suggested. We con
clude by noting how certain classical approaches may be useful when the goal is sim
ply to approximate such conditions as parallelism. 
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PART FIVE 
ADDJTIONAL STATISTICAL 

MODELS, CONCEPTS, 
AND ISSUES 

Several additional models are useful in psychometric theory, and this final part con
sists of two chapters devoted to them. The first of these chapters concerns ways to 
group profiles. 'Ibis may arise when one's interest is in finding latent groups, IS in 
cluster analysis, profile analysis, and multidimensional scaling. In contrast, it may In
volve ways to best discriminate among existing groups, as in discriminant analysis. In 
most cases, measures of interest are based upon the similarity of one observation to 
another; however. measures of dominance (preference) may also be analyzed. Part of 
this material involves a further consideration of the geometric model presented in the 
chapters on factor analysis. The last chapter involves ways to analyze categorical data 
sucb as ethnicity or religion. This discussion also illustrates some alternative, nongeo
metric models. 





CHAPTER OVERVI~ 

CHAPTER "11 ~ 
PROFILE ANALYSIS, 

DISCRIMINANT ANALYSIS, 
AND MULTIDIMENSIONAL 

SCALING 

Although factor analysis is probably the most common way to study similarities 
among measures, it is only one of a number of possible methods. This chapter will 
consider the fOUT most popular alternative ways to study similarity. First, cluster 
analysis began as an alternative to factor analysis. Second, like factor analysis, profile 
analysis and discriminant analysis are usually concerned with scaling people, although 
they can be applied to scaling stimulus objects as well. Finally. multidimensional scal
ing is usually concerned with scaling stimuli, but it also has some special uses in scal
ing people. It is particularly useful when data fail to fit the unidimensional scaling 
models discussed in Chapter 2. 

Like factor analysis, cluster analysis, profile analysis, and discriminant analysis 
begin with a rectangular data matrix. (X). Variables define the columns of X, and peo
ple define the rows. Just as one major purpose of most ex.ploratory factor analysis is to 
discover clusters of variables, the same is true of classical cluster analysis. Each clus
ter consists of variables that tend to measure the same thing and something different 
from other clusters. In contrast, profile analysis and discriminant analysis are con
cerned with relations among people, as in Q-design factor analysis. We will show that 
similar mathematical procedures underlie conventional factor analysis, profile analy
sis, and discriminant analysis. The same is true to a large extent of multidimensional 
scaling. Currently. these methods are largely exploratory in the sense of Chapters 11 
and 12, rather than confirmatory in the sense of Chapter 13. 

Most of this chapter concerns data that are like correlations in the sense of describ
ing similarity, referred to in many sources as proximity measures, e.g., Davison 
(1983). Dominance relations. as exemplified by preferences, are a very different form 

597 



59B PART 5: ADDITIONAL STATISTICAL MODELS. CONCEPTS. AND ISSUES 

of data. Methods appropriate to the study of dominance relations will be considered in 
the last main section of this chapter. 

Do not confuse similarity and dominance judgments even though both may be Used 
to scale stimuli and the resulting scales may in fact be quite similar. They require quite 
different methods of analysis. For one thing, there is no counterpart in the study of 
dominance that matches the power of the PM correlation as seen in factor analysis and 
other multivariate procedures. Second, similarity relations are symmetric: If stimulus a 
is highly similar to stimulus b, then stimulus b is highly similar to stimulus a. The cor
relation between stimuli a and b (rab) is the same as the correlation between stimuli b 
and a (rba)' On the other hand. dominance relations are asymmetric: If you prefer stim
ulus a to stimulus b, you cannot prefer stimulus b to stimulus a. 

CLUSTER ANALYSIS 

The original purpose of cluster analysis (Tryon & Bailey, 1970; Lorr, 1983) was very 
similar to a common goal of factor analysis. As the name implies, cluster analysis con
sists of methods of classifying variables into groups. or Clusters. A "cluster" is defined 
as it was in Chapter II-variables that have .high correlations with one another com
pared to their correlations with other variables. However, cluster analysis employs dif
ferent methods for exploring groupings. Chapter 15 will introduce a somewhat differ
ent approach to clustering, SchvaneveIdt's (1990) Pathfinder model. 

One traditional approach is as follows. Reflect (reverse the direction of) variables 
as in centroid factor analysis to maximize the sum of positive correlations in the ma
trix if their sum of correlations with the remaining variables is negative. Next, find the 
highest correlation in the matrix. The two involved variables fonn the nucleus of the 
first cluster. Then look for variables that correlate highly with these and include them 
in the cluster. The nucleus for the second cluster is formed by finding two variables 
that have a high correlation with each other but a low correlation with members of the 
first cluster. Include variables that correlate highly with the two variables serving as 
the nucleus of the second cluster in this second cluster. Proceed in this same way to 
obtain additional clusters. 

If clusters were quite clear, cluster analysis would be a more direct way of identify
ing groups of variables than factor analysis. Unfortunately, this is seldom the case for 
several reasons. When there are but a few variables, the patterns of relationship are 
often visible by simply inspecting the correlation matrix (R), as was true of the six
variable problem used in Chapters 11 through 13. However, it is easy to get lost in a 
large matrix. Also, groupings may be apparent in the residual matrices following fac
tor extractions that were not originally discernible in R. McQuitty (e.g., McQuitty & 
Koch, 1976) has developed a number of clustering routines for large matrices. Unfor
tunately, these methods involve numerous subjective decisions about the number of 
clusters and their composition. 

If you think of factor analysis as a fonn of cluster analysis (which has considerable 
merit). we recommend multiple group factor analysis to determine how well prede
fined clUsters hang together. ACS is a second possibility. If clusters are not predefined, 
multiple grQup analysis can still be used. Include the variables having the highest cor-
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relations with one another in the first group centroid. Obtain a reSl'dual m'lt ' d . . , ,nx. un' 
form a second factor usmg those variables which have the highest residual correlution~ 
with one another. etc. Whether one uses trial-and-error methods of cluster analysis or 
formal factor analysis. factors can be thought of as clusters. We have stressed how 
subsequent work with factors almost always involves sums of three or four sulient 
variables at most. 

In recent years, cluster analysis has come to describe grouping people on the basis 
of the similarity of their profiles (score vectors). This is the problem of profile anulysis 
to which we now tum. 

PROBLEMS IN PROFILE ANALYSIS 

"Profile analysis" is a generic term for all methods concerned with grouping people, 
and what we speak of here as profile analysis is frequently called cluster analysis. 
However, there are some key differences between clustering people in profile analysis 
and clustering variables in conventional factor analysis. One important class of profile 
analysis problems involves groups that are known in advance of the analysis. The pur
pose is to use the data to best distinguish groups from one another. For example, one 
might collect MMPI scale scores from groups of psychiatric patients and try to use the 
IvlMPI profiles to distinguish among these groups. Discriminant analysis can be used 
to address this problem. In discriminant analysis, one simultaneously tests bypotheses 
regarding the differentiation of these groups using these profiles and forms maximally 
discriminating linear combinations of those measures. 

The other major class of problems in profile analysis occurs when groupings of 
people are not stated in advance of the analysis. In this case, the purpose of the analy
sis is to cluster individuals in terms of their profiles and thereby discover meaningful 
latent groupings. Discriminant analysis thus detennines the extent to which previously 
defined groups hang together, and the clustering of profiles attempts to discover latent 
groups of people that hang together. Typically, relatively few people fall into pure 
clusters; most people combine the traits that define the clusters. 

Characteristics of Score Profiles 

The tenn "profile" comes from the practice in applied testing of plotting scores on a 
battery of tests as a profile. Figure 14-1 contains examples of profiles for subjects I. 2, 
and 3 on six variables. They have been separately standardized over people, as dis
cussed in Chapter 12. 

A profile contains three items of information: level, dispersion, and shape. The 
level is typically defined by the person's mean score over the variables in the profile. 
i.e., by simply averaging that person's scores. Subect I's level is clelll'ly higber than 
subject 2's, and subject 2's is higher than subject 3's. However. the mean denotes little 
unless ail variables are pointed in the same direction and concern the same domain of 
behavior, i.e., have large positive intercorrelations. Levels describing poorly related 
measures are essentially meaningless. This does not mean that one should not incorpo
rate unrelated or negatively related measures in a profile; it only means that their level 
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FIGURE 14-1 Score profiles lor two people on six variables. 

will not be meaningful. Moreover, even if the variables all relate to the same domain 
of behavior, the level is difficult to interpret if variables are pointed in different direc
tions; e.g .• some scores denote maladjustment and others denote adjustm~nt. 

As the word implies, the dispersion (also called the scatter) defines how widely 
scores in a profile diverge from the average (level). One way to describe the dispersion 
of a person's profile is as the standard deviation of scores. Subject 1 's dispersion is 
larger than that of subjects 2 and 3, whose dispersions in turn are identical. Whereas 
levels may be compared directly, assuming the individual measures are positively cor
related so that the process is meaningful, dispersions are much more difficult to com
pare because they depend upon the correlations among variables in the profile. The 
more highly correlated the measures are, the smaller the dispersions will be. A particu
lar person's dispersion is therefore meaningful only relative to the dispersions of other 
people. One way to facilitate comparing dispersions is to obtain the distribution of dis
persions over people and conven them to percentiles, although this is seldom done. 

The last remaining information in the profile, the shape, concerns where the "ups 
and downs" in the profile occur. EVen though two people may have the same level and 
dispersion, their high and low points might be quite different. The shape obtained from 
a profile of abilities measures indicates an individual's particular talents. The shape is 
definable from the rank order of scores for each person. Thus, subject l's rank order
ing from high to low in Fig. 14-1 is X4, X6, Xs, XI' X3, and X2• In contrast, the rank or
derings of subjects 2 and 3 are Xs, X6, Xl' X4• X2• and XI' Their shapes are identical 
even though their levels are different. 

Level, shape, and dispersion are interdependent over people. The dispersion must 
be relatively small because of range restriction when the level is either very high or 
very low so that there is generally a moderate curvilinear correlation between disper
sion and level. If a person's dispersion is small, the ordering of variables (shape) rep-
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resents only tiny differences in performance and may simply ret1ect measurement error 
(see Chapter 7). Consequently one should not interpret a profile's gh~\pe unless the dis
persion is relatively large. The physical appearance of a particUlar profile also depcnus 
~n the order of listing the variables. Th~s ordering is usually a~bit~ary, and so the phys
ICal ap~earan.ce of the profile can typIcally be ch~ged arbltranl.y without affecting 
level, dlsperslOn, or shape. In some cases such as trials on a learntng curve, variables 
are naturally ordered. 

The profiles shown in Fig. 14-1 could have depicted the average SCores for groups 
of people rather than individuals. The term "profile analysis" is frequently used to 
refer to the statistical description of differences among group profiles, which includes 
inferential tests on the significance of the group differences (these methods are dis
cussed extensively in works concerned with multivariate analysis listed in the Suggest
ed Additional Readings). However, significance testing should not be confused with 
the more major problem of describing the clustering of profiles and discriminant 
analysis which is considered here. 

CLUSTERING OF PROFILES 

Although there has been considerable controversy over how to cluster profiles (see 
Lorr, 1983). there are some straightforward methods for handling the problem. As
sume that each of N people has been measured on V variables. There are marked dif
ferences in the levels of the individual profiles. but differences in shape are especially 
interesting. The study concerns individual differences in the patterns of these respons
es to determine whether people fall into meaningfully defined clusters. Nunnally 
(1962) placed the problem of clustering profiles in the general perspective of multi
variate analysis and demonstrated that all major clustering problems could be handled 
by the same powerful factor analytic methods more traditionally employed to study 
correlations among variables. 

Measures of Profile Similarity 

The first step in clustering is to define profile similarity. If profile level and dispersion 
are unimportant. one suitable measure is the PM coefficient over profile elements, as 

. in Q design factor analysis (see Chapter 12). The measurements for each person are 
standardized by subtracting the individual's level (mean) from each of the individual 
measures and dividing by the dispersion of the profile. The correlation between two 
people is the average cross product of these standardiied scores, Eq. 4-6, but, as in Q
design factor analysis, the average is computed over profile elements (V) rather than 
people (N, see Chapter 12). 

If the profile level, profile dispersion, or both are important aspects of similarity, as 
they often are, the PM correlation is not a proper measure of the similarity of two pro
files. The computations equate aU profiles for level and dispersion; each profile level 
becomes 0, and each profile's dispersion (standard deviation) becomes 1. The PM co
efficient is sensitive only to similarities in shape and not in level or dispersion. Two 
examples that indicate how this could produce misleading results are (1) the profiles of 
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subjects 2 and 3 in Fig. 14-1 correlate perfectly, which hides their obvious level differ
ence, and (2) two people could have the same shape and level on their profiles, also 
producing a PM correlation of 1, but they could differ in dispersion. 

The two primary standards for choosing a measure of profile similarity are that (1) 
it should include all relevant information and (2) it should lend itself to formal mathe
matical analysis. The first is largely a matter of situational demands, but a given mea
sure may place severe limits on the methods of analysis that can legitimately be em
ployed. If level, dispersion, and shape are all important, the similariry measure should 
obviously consider all three types of information. Later, however, we argue that it is 
sometimes better to ignore one or more of the three sources of information. Numerous 
measures have been proposed for various purposes (Cronbach & Gleser, 1953; Helm
stadter, 1957; Muldoon & Ray, 1958; Tryon & Bailey, 1970). 

One possible measure that considers level, dispersion. and shape is the sum of the 
absolute differences in scores. This is zero for two identical profiles and grows larger 
as profiles differ in level. dispersion, or shape. Although it makes sense descriptively, 
it suffers from the same fault as many other proposed measures of profile similarity: It 
does not lend itself to mathematical analysis because it is difficult to work with ab
solute differences. 

One very appealing measure of profile similarity is the distance measure CD) (Osgood 
& Suci, 1952; Cronbach & GIeser. 1953). D is the generalized 'Pythagorean distance 
between two points in Euclidian space. We will define the properties of a Euclidian 
space later in the chapter; for now, just think of it as the space around us which one or
dinarily studies in geometry. With two people and two variables, D is the length of the 
hypotenuse of a right triangle, as illustrated in Fig. 14-2. The square of the distance 
between the points for subjects 1 and 2 is obtained as follows: 

(14-1) 

The square root of the above expression is the distance (D) between the two points. If 
the number of variables (V) exceeds two. the squared distance is 

D~ = (X .. l - Xb1i + (X .. 2 - Xb2)1 + .. , + {Xak - Xbli 

=I.(X",-Xbi 

(14-2a) 

(14-2b) 

The distance D between the two points corresponding to the profiles for two people 
equals the square root of the sum of squared differences on the profile variables, re
gardless of the number of variables. The number of terms involved (V) describes the 
number of dimensions in the space. When V = 1; (i.e .• the space is unidimensional), 
D=(X .. -Xb). 

All scores for a person on the V variables define a point in a V-space of variables. 
Each variable is plotted at right angles to the others. [More complex methods that do 
not assume that the variables are orthogonal exist (cf. Bernstein. 1988, Chapter 9), but 
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this issue will be considered below.] This point summarizes all the infonnation about 
the person's profile. Although it is not phy'sically possible to represent such points for 
more than three variables (dimensions) at a time, the logic of measuring distance with 
D still holds. . 

D is intuitively appealing because it considers profile level, dispersion, and shape. 
Also, it lends itself to powerful methods of analysis. For these reasons, the authors 
generally recommend, as others have, that profile analysis be based upon D. Many al
gorithms begin by computing D between all possible pairs of individuals to fonn an 
N x N symmetric distance matrix (Lorr, 1983; Osgood, Sud, & Tannenbaum. 1957; 
Sawrey, Keller, & Conger. 1960; Tryon & Bailey, 1970). People with small Ds have 
similar profiles, and people with relatively large Ds have dissimilar pro·files. However, 
we will shortly discuss a transfonnation of D that is at least as useful. 

Hierarchical and Overlapping Clustering 

There are several ways to define the best clustering of G groups based upon a set of N 
individual profiles. One is to maximize the variance of profiles ~tween groups rela· 
tive to the pooled within-group differences. Specifically. the two most similar profiles. 
in terms of D or a related measure, are grouped into a cluster. 

In hierarchical clustering, one proceeds sequentially by grouping the two most sim
ilar profiles in this way and treating their average scale values on the original two pro
files as a new single profile. Next, these two most similar profiles are grouped. This 
grouping may include the profile that was averaged at step I or two different profiles. 
The process proceeds until only a single profile remains. At each step, a measure of 
the homogeneity of clusters is obtained, such as the ratio of between- to within-group 
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profile vanatlOn. which steadily decreases. Conversely, measures reflecting errOr 
(within-group variation) steadily increase as the number of clusters decreases. Both 
changes occur because the clusters steadily become more dissimilar. One way to de
cide upon the number of profiles to be retained is to look for an "elbow" in the curve 
relating the criterion measure to the number of clusters. A tree diagram can be used to 
plot the history of the clustering process. 

Most forms of clustering limit a subject to one and only one cluster: An exception 
is overlapping clustering wh.ich allows a subject to belong to multiple clusters. Lorr 
(1983) discusses these and other clustering methods. 

RAW-SCORE FACTOR ANALYSIS 

TABLE 14-1 

Most proposed methods of cluster analysis that analyze matrices of distance measures 
are based upon trial- and error. Consequently they lack a general algebra. are indetermi
nate, and are messy to compute. This section considers one useful method for cluster
ing. raw-score factor analysis (Nunnally, (962). As the name implies, it is based upon 
scores that have not been standardized over subjects. It also illustrates (l) a Q design. 
since the measures of relationship are applied among people over variables. and (2) 
that factor analysis need not always be applied to a correlation matrix. Imagine that 
there are profiles of six people (l to 6) on LO variables. Table L4-t and Fig. 14-3 con
tain the distances (D) between all pairs of individuals. These hypothetical distances 
were chosen to fall exactly in a 2-space, which will never happen in actual research. 
There is nothing sacred about the way points in Fig. 14-3 fall on the page. They could 
be shifted to the right or left or rotated as long as their final positions maintain the 
same distances among the six points. Distances are ratio measures (see Chapter 1), and 
so they may be multiplied by a constant without disturbing the configuration. For ex
ample. if all the distances in Fig. 14-3 were multiplied by 2.5. the geometric configura
tion would be remain the same, but it would be spread out more on the page. However. 
one cannot add a constant to these distances without affecting the configuration of 
points. Adding a constant will probably change the number of dimensions required to 
contain the points. 

Figure 14-3 and Table 14-1 indicate that there are two clusters. respectively. defined 
by subjects 1. 2. and 3 and subjects 4. 5. and 6. It is. of course. unlikely that an actual 

MATRIX OF D VALUES FOR POINTS SHOWN IN FIG. 14-3 

Person 

Person 2 3 4 5 6 

1 .0 1.0 1.4 7.8 7.1 6.4 
2 1.0 .0 1.0 7.2 6.4 5.8 
3 1.4 1.0 .0 6.4 5.7 5.0 
4 7.8 7.2 6.4 .0 1.0 1.4 
5 7.1 6.4 5.7 1.0 .0· 1.0 
6 6.4 5.8 5.0 1.4 1.0 .0 
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study would employ so few cases and provide such definite clusters; if this were to 
happen, refined methods of analysis would not be needed. A method of factor analysis 
that uses D measures will be described which can recover these clusters. It can be used 
equally well with any .number of people, regardless of how apparent the clusters are. 
The method was derived by Suci (Osgood, Suci, & Tannenbaum, 1957). Suci and the 
first author cooperati vely explored his method of factoring D and found it to be a spe
cial case of raw score factor analysis. Chapter 11 noted that values of 1:XIY can be fac
tored just as r can be factored. Since N (which represents the number of profile ele
ments and not people) is a constant, it can be ignored. so that factor analysis can be 
performed using sums of cross products (1:XY) as the basis measure of similarity. 

An Example of Raw-Score Factor Analysis 

We will provide a worked-out example of raw-score cross-product factoring because 
of its relative unfamiliarity. The first step is to obtain the sum of raw cross products 
over the profile variables as in the following example for subjects 1 and 2 for four 
variables. XI to X4• These scores need not be standardized. 

Variable Subject 1 Subject 2 Cross prodUcts 

Xl 1.5 1.0 1.5 
X2 .5 2.0 1.0 
X3 -2.0 -1.0 2.0 
X4 1.2 -.5 -.6 

The sum of cross products for subjects 1 and 2 is 3.9 (1.5 + 1.0 + 2.0 - .6). The 
sums obtained for all pairs of subjects produce a symmetric matrix of raw cross prod
ucts-the mathematics places no limits on the scoring units employed for each vari
able. We will later consider common units for all variables (e.g .• standardizing all vari
ables). as in Fig. 14- t. 

Table 14-2 shows a hypothetical matrix of cross products which was constructed to 
be compatible with the D values shown in Table 14-1 by working backward from the 
distances. In practice, the distances would be obtained by summing actual cross prod
ucts. Note that large sums of cross products in Table 14-2 correspond to small D val
ues in Table 14-1. and vice versa. Each diagonal entry is simply the sum of an individ-
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RAW-SCORE CROSS PRODUCTS AND FACTOR SOLUTION 
FOR POINTS SHOWN IN FIG. 14-3 

Person 

Person 2 3 4 5 6 

1 36 30 30 6 6 12 
2 30 25 25 5 5 10 
3 30 25 26 11 10 15 
4 6 5 11 37 31 32 
5 6 5 10 31 26 27 
6 12 10 15 32 27 29 

ual's squared profile elements (LX2). This parallels placing unities in the diagonal 
spaces of a correlation matrix in component analysis. 

Any of the methods of factoring correlation coefficients can be applied to these 
cross products: prc, principal axis. multiple group or ACS confirmatory analysis, etc. 
We will use a PrC analysis so that you can repeat the. relatively simple computations. 
One problem you may confront if you attempt the analysis is that you must tell the 
program that you are analyzing covariances and not correlations. Actually you are not; 
the terms are values of LXY rather than !.:cy/N. However, the program will then allow 
numbers larger than 1 to appear in the matrix. The program may standardize the struc
ture to correl.ations, which is not what you want. Obtain the normalized eigenvectors 
and multiply each element by the square root of the associated eigenValue. You can 
tell if the eigenval.ues are on the proper scale by seeing that their sum equals the sum 
of the diagonal elements of the matrix:. Equation 12-1, or, if you have several factors, 
Eqs. 12~2, may be used for rotation. The varimax: rotation applied to standardized data 
is not the saine as the varimax. rotation that should be applied to the cross products be
cause all vectors are not the same length, but jt is usually satisfactory. The rotated 
structure clearly describes the clusters shown in Fig. 14-3 and Tables 14-1 and L4-2. 
Figure 14-4 shows a plot of the rotated structure; the interpoint distances are identical 
to those in Fig. 14-3. 

How Raw-Score Factor Analysis Works 

Variables in profiles can be described by mutually orthogonal axes in Euclidian space 
unless they are extremely highly correlated. If they are, the original variables can be 
factored and rotated orthogonally to provide more meaningful composite measures. 
and the raw scores replaced by factor scores. Each profile can be plotted as a point in 
the space, and D measures the distance of such points from one another. Raw-score 
factor analysis provides a basis (or sernibasis) for the profile space; i.e., the factors 
provide a geometric frame of reference. 

Because any sufficient basis preserves distances between points, the structure pre
serves the original D value. This can be tested with the data in Table 14-2 by obtaining 
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D values from the rotated structure. For example, the D between subjects 1 and 2 is al
most exactly 1.0, which is what was given in Table 14-1. Similarly, all the D values 
can be calculated from either the centroid or rotated structure matrix. If factoring is not 
complete, the factor matrix will serve to explain most of the distances. Thus informa
tion about clusters that can be obtained from a matrix of D values also can be obtained 
from a matrix of cross products. Whereas it is complex to factor matrices of D values 
directly, it is simple to factor cross-product matrices. Consequently, although it is use
ful to think of a profile as a point in Euclidian space, these points are better analyzed 
with the sums of cross products than with D. 

There is a simple relationship between the two measures: 

(14-3) 

Standardizing both profiles over the V profile variables and dividing both sides of Eq. 
14-3 by V produces 

(14-4) 

Thus, when two profiles are standardized over profile variables (not people), the PM 
correlation between the two profiles is a monotonically decreasing function of D'2, and 
thus of D. 

Raw score factor analysis is part of a more general model for factoring vector prod
ucts, though we will discuss some limits upon the utility of geometric analogies in the 
next chapter. Chapter 11 developed this model by translating any correlation into 



608 PART 5: ADDITIONAL STATISTICAL MODELS, CONCEPTS, AND ISSUES 

hiCOSljhj, where hi and hj equaled the lengths of the vectors depicting the two variables 
(square roots of diagonal elements) ~nd cosij equaled the cosine of the angle between 
them. The more general method permits one to factor any matrix: of elements of the 
fonn h;eosijhj that can be legitimately construed to lie in a Euclidian space. In raw 
score factor analysis, hI equals the square root of the sum of squared elements in sub~ 
ject 1 's profile. h2 equals the square root of the sum of squared elements in subject 2'8 
profile, and cos 12 equals the cosine between the two vectors (profiles). These lengths 
are not unity, as in component factoring of correlation matrices, or some flaction of 
unity, as in common factor analysis, but are determined by the actual sums of squared 
profile elements. 

We will consider factoring in multidimensional scaling where there are no variables 
over which cross~product terms can be summed later in the chapter. The data are a 
symmetric marrix of similarity measures. If either the raw judgments or some modifi~ 
cations of them can be construed as vector products (hi cosij hj)' this matrix. can be fac~ 
tored and rotated too. 

Transformations of Variables 

Two types of transformations are important in profile analysis: transformations of indi~ 
vidual variables, considered in this section, and transformations of profiles, considered 
in the nel<t section. The most common variable transformation is standardization. i.e., 
making the mean of a variable 0 and its standard deviation 1. 'This is the simplest way to 
handle the problem that an observed variable's standard deviation ·Cover people) often 
reflects arbitrarily chosen units of scaling. Thus, SAT Scores have a standard deviation 
of 100, whereas their grade point averages might have a standard deviation of t .S. These 
differences artifactually influence the profiles unless something like standardization is 
employed. In general, standardize all variables unless differences in their units are 
meaningful. If the differences are small. standardizing will not have much effect. 

A second issue regarding the transformation of variables arises when observed vari
ables are correlated over people, as they almost always are. Sometimes, as with human 
abilities measures, these correlations may be substantial. Some have argued chat it makes 
no sense to employ D or to perform cross-products analyses on these observed variables if 
they are correlated at all. Replacing the anginal variables with orthogonal components is 
a possible solution to this problem. However, there are two arguments in favor of analyz~ 
ing the original variables even though they are correlated-one mathematical and one 
theoretical. The mathematical argument is that the use of D and cross-products analysis is 
not restricted to uncorrelated variables. Correlated variables are commonly depicted al~ 
gebraically and geometrically with orthogonal axes. The depiction is used to determine 
the degree of correlation. For example, scatter plots use orthogonal or uncorrelated coor~ 
dinates in order to examine the relationship between two variables. 

A more general example will help show why correlated variables can be depicted 
as orthogonal. Equation 14-4 showed that the correlation (r) between two profiles is a 
monotonically decreasing function of D. When r is derived from two variables rather 
than two profiles, D is the distance between two variables in a space of people rather 
than two people in a space of variables. In that instance, each person is represenred by 
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an ax.is which is orthogonal to the axes for all other people. The r between any t 
variables can be obtained either as a function of D or as the averulJe product of' .t.WO 

'" ~ ,tn-
dard scores. People are viewed as independent (orthogonal or uncorrelated) dimen-
sions because their data are obtained independently. No one seriously question" the 
customary use of correlational analysis simply because it is usually depicted in a space 
of orthogonal people. Yet, some think it is not correct to use D or the sum of cross 
products unless the variables are orthogonal. For the same reason, there is no strong 
mathematical argument for insisting upon variables being uncorrelated in order to 
compute the D statistic or perform cross-products analysis over people. 

Although there is no obvious mathematical necessity for having uncorrelated vari
ables, substantial correlations among the variables do make it difficult to interpret the 
results. On the one hand, it is improbable that a well-conceived problem would in
volve clustering of profiles based upon unrelated variables. Variables in an overall the
oretical system probably correlate at least modestly. The structure of these correlations 
determines the redundancy of the variables and thus the extent to which they differen
tially influence D and any cross-products factors used to explain the distance space. 
For example, two highly correlated reasoning tests will make approximately the same 
contribution to D and have essentially the same influence on raw-score cross products. 
If two people have similar scores on these tests, they will tend to have similar profiles, 
even though they may differ substantially in other respects. The potential problems 
caused by substantial correlations among profile variables relate to the generalizability 
of results that can be obtained from profile clustering. 

Ideally, the variables included in a cluster analysis should be representative of some 
specified domain of variables, e.g., physiological variables relating to stress or tests 
representative of different factors of reasoning. The D statistic indexes dissimilarity, 
which raises the knotty question of "Dissimilar with respect to what?" This question 
can be answered only if investigators can define the domain of variables and thus de
clare the traits over which results can be generalized. Two approaches will help ensure 
generalizability. The first is to sample the variables thought to be important in a speci
fied domain, e.g., reasoning abilities. The study would include a little of everything 
thought to be important, have the broadest feasible coverage, and involve a relatively 
large number of measures. A complementary approach to selecting variables can be 
used if a more definite theory is available about the domain of variables. For example, 
if prior results suggest six major reasoning ability factors, tests that measure these spe
cific traits should be included in the profiles. 

If generality can be ensured either by sampling or structured selection of variables, 
the D statistic and the cross-products analysis can be interpreted directly even if there 
are some substantial correlations among the variables. That is, it makes sense to say 
that two individuals are similar over a sufficient mapping of the variables from a do
main, even if some of the variables correlate substantially. The chosen variables can be 
factored before performing cross-products analysis if the original variables are highly 
correlated, as noted earlier. One might find, for example, that four factors explain most 
of the common variance. Factor scores over people could be obtained on the four fac
tors, the D statistic could be computed using these factor scores, and cross products 
could then be factored over the profile elements. However, a factor analysis may raise 
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more problems than it solves. First:, one may end up wich so few variables that there is 
not much room to perform cross-products factor analysis. Second, the specific vari. 
ance of each variable will be excluded from D, so that one may throwaway the most 
important part of the data. 

One approach 1s co employ component analysis and extract as many factors as there 
are variables. This will represent the full variance of all variables on D in an orthogonal 
space. The resulting cross-products analysis is mathematically proper, but the results 
might be difficult to interpret. However, this may be the wisest approach if it is difficult 
to define the domain ofvariables clearly and/or the variables are highly intercorrelated. 

Transformations of Profiles 

Regardless of what transformations, if any, are made of the distributions of individUal 
differences on variables, possible transformations of intraindividual distributions of 
profile scores also need to be considered. If it is meaningful to consider level. disper
sion, and shape in clustering profiles, these should be permitted to vary when cross 
products are analyzed. If, however, one or more of these aspects are irrelevant, they 
should be eliminated before the analysis. For example, if level is unimportant, all pro
file means should be equated, typically to zero, using the methods of Chapter 12. Then 
form cross products among the resulting deviation scores about each person's level. 

DISCRIMINANT ANALYSIS 

Discriminant analysis is employed to distinguish predefined groups from one another 
. on the basis of their score profiles. Examples of groups are different types of psychi
atric patients, vocational groups, and college seniors majoring in different fields. 
Mathematically, there is no limit to the types of variables that can be employed, but 
problems may arise in interpreting the results. These problems will be cliscussed later. 

There are three related problems in discriminant analysis: 

1 Determining the statistical significance of differences in score profiles for two or 
more groups 

2 Maximizing the discrimination among groups by forming linear combinations 
among the variables 

3 Establishing classification rules to place new individuals into one of the groups. 

The first of these is most important when sizes are small. Appropriate tests such as 
Wilks' lambda are discussed in all major textbooks on multivariate analysis (see the 
Suggested Additional Readings). Rejecting the null hypothesis allows one to infer that 
the group profiles differ. We have previously noted two reasons why statistical tests 
are not highly important in most research problems when sample sizes are at least 
moderate. First, the results of such tests are frequently difficult to interpret. For exam
ple, groups may not differ significantly on any of the original variables, but the overall 
difference between profiles may be significant. Such tests combine the information 
from the different variables into an overall significance test. It may be difficult to inter
pret a significant difference in overall profiles unless some, and preferably most, vari
ables differ significantly. At best, such tests provide rather meager information about 
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the significance of differences. At the same time, they ace important in ruli ng out the 
null hypothesis when sample sizes are small, as they are in much laboratory research. 
This inferential aspect of discriminant analysis is known as the multivariate analysis of 
variance (MANOYA). Moreover, it i.r proper to aggregate a series of fallible measures 
into a more reliable composite, which discriminant analysis often does. An even more 
important reason is that merely knowing that the average profiles differ among groups 
does not tell one how to combine the Information or classify new subjects. 

The major problem in discriminant analysis is to maximize the discrimination 
among groups. Most of this section will consider issues related to that problem. The 
problem of classifying new individuals will be discussed later in the section. 

Geometric Interpretation of Discriminant Analysis 

The geometric model previously given for profile analysis will help explain discrimi· 
nant analysis. If there are N people and V variables, any person's profile can be tepee· 
sented as a point in V-dimensional space. Each axis of the space consists of one of the 
variables, and the axes are depicted as mutually orthogonal. In discriminant analysis, it 
is useful to think of a particular group as being concentrated in a region of the space. 
Discriminant analysis provides the most infonnation when members of a given group 
cluster in a given region and different groups occupy different regions rather than 
being scattered throughout the space. The tighter the clustering of groups in the V 
space and the less overlap there is among groups, the more useful the information. 

Figure 14~5 illustrates a simplified example of a space for two groups (males and 
females) on two variables (X, and X:z), e.g., raw scores on two physiological stress in-

FIGURE 14-5 Scores of females (open circies) and males (open squares) on two hypothetical measures of 
physiological reaction to stress. The solid circle and solid square ate the group centroids. 
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dicators. Each female is represented by an open circle. and each male is represented by 
an open square. It can be seen that the two groups tend to occupy different regions of . 
the space: Males tend to be high on X, and Iowan Xl. and females tend to be Iowan 
X, and high on X2• However, both groups overlap on each variable. 

The solid circles and solid squares in Fig. L4-5 represent the centroids for males 
and females. respectively. Simply stated. a "centroid" is the average profile of a group. 
The average score for the group is obtained for each variable, and the resulting means 
are plotted as though they were scores for an individual. Points for individuals balance 
in all directions around a group centroid. just as variables balance around a centroid 
factor. U groups are well discriminated. centroids are far apart. and the members of 
each group hover near their centroid. 

Instead of depicting each person as an individual point. it is more convenient to de
pict regions of scatter for the groups as a whole. This is done in Fig. 14-6 for the pro
file points depicted in Fig. 14-5. The amount of overlap between the contours of scat
ter indicates the extent to which the two variables fail to discriminate between the two 
groups. The individual scatter plots are circular because the two hypothetical measures 
are uncorrelated within each of the two groups. The two regions of scatter are of equal 
size aild shape in the diagram, Le., homoscedastic. This implies that the distinguishing 
characteristics of the groups are additive with respect to the underlying variables. This 
need nor be the case in reality; the group scatter may be heteroscedastic, which greatly 
c·orriplicates the analysis and renders the figure of little value. Bernstein (1988) dis
cusses this issue at length (also see Chapter 15). 

FIGURE 14-6 Areas of scatter for males and females on two measures of physiological reaction to stress. 
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Linear Discriminant Function 

Some means of combining the information from the two variables to best discriminate 
members of the two groups is helpful in the problem depicted in Figs. 14--5 and 14-6. 
TIlls could potentially be done with various functions of the variables, but a simple lin
ear function has been used most often. Such a function is referred to as a linear dis
criminant function: 

where Y == scores on linear discriminant function 
XI> X2 == raw scores on variables 
b I> b2 = weights for variables 

Weights bt and b2 are applied to raw scores on variables Xt and X2 for each person in 
each group. This produces a new scare for each person, called a discriminant SCore (Y. 
which we will use to .sYmbolize both the linear relation and the individual scores; a 
more fonnal notation would use a subscript to denote scores, e.g., Y/ for the ith sub
ject) which combines the information from X t and X2 to discriminate among groups. 

Figure 14-6 illustrates how a linear function can discriminate between two groups. 
The weights define a line in the space (Y), and the discriminant scores of all individu
als can be projected on that line as in Fig. 14-7. These discriminant scores on Y can be 
"taken out" of the space for the variables and depicted separately as a frequency distri
bution (Fig. 14-8). The distributions of the discriminant scores overlap much less than 
the individual distributions of Xt and X2 : Y has condensed the discriminant informa
tion present in the two variables. 

Obtaining the weights requires a rule for optimization, as is true whenever optimum 
weights are sought. Just as mUltiple regression weights are usually obtained by the 
lease-squares principle of minimizing the sum of squared errors of prediction, linear 
discriminant weights maximize the foUowing ratio. 

Variance between means on Y 
Variance within groups on Y 

In fact, Fisher (1936) noted that this optimization rule maximizes the F ratio of 
between-means variances to within-group variances, and so it is an extension of an or
dinary one-way analysis of variance (ANOVA). The discriminant function provided by 
the weights produces a score for each person. 

After proposing an optimization rule, Fisher used calculus to derive the linear dis
criminant functions' weights. This is especially simple with only two groups, regard
less of the number of variables. The solution involves a special use of multiple regres
sion analysis in which members of one group receive a score of 1 and members of the 
other group receive a score of 0 (since correlational analysis standardizes the group 
scores, any other two numbers, do as well, and it does not matter which group is given 
which score). The predictors are used to best estimate group membership. 
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FIGURE 14-7 ProJeclion of scores onto a discriminant function Y. 

FIGURE 14-8 Distribution of scores on a discriminant function. 
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Multiple Linear Discriminant Functions 

Most research problems involve more than two groups. It is both possible and usuall 
desirable to derive more than one discriminant function to provide a multiple discrimi~ 
nant analysis (MDA) when there are at least three groups and two predictors. The first 
discriminant function is that linear combination of the variables which maximizes the 
ratio of between-means variance to within-group variance. A second discriminant 
function is derived from the residual variances and covariances among variables in 
much the same way that a second principal component is obtained. It serves as the 
second-best explainer of variance. Additional discriminant functions are obtained 
analogously. There will be as many possible discriminant functions as the lesser of (1) 
the number of variables or (2) 1 less than the number of groups. The resulting family 
oflinear discriminant functions is 

Yl = alX I + Cl2X" + ... + a"X" 
Y2 = b\Xt + b2X2 + ... + b"X" 
Y3 = CtX\ + C2X2 + ... + c"X" 

(even though we have previously used the symbol b to denote unstandardized regres
sion weights, which the above are, it is simpler to use different letters and a single sub
script here than to use double subscripts). The weights provide a discriminant score for 
each person on each discriminant function. Discriminant scores on any two functions 
(e.g., Yl and Y2) are uncorrelated with one another (orthogonal) over all subjects. 
However, these discriminant scores are usually correlated within a particular group. 
Note that the numbers we are using for the various discriminant functions correspond 
notationally to the Roman numerals we previously used to define the various factors. 
The computational procedures underlying MDA are discussed in detail in works con
cerned with multivariate analysis cited in the Suggested Additional Readings. The 
mathematical procedures involve a special type of eigenanalysis based upon a matrix 
we will designate A, rather than a correlation matrix. The same measures must be ap
plied to all subjects. There need not be the same number of individuals in ,each group. 

Whereas subjects were not classified into a priori groups in the data matrix X de
picted in Table 11-1, they are in discriminant analysis, as indicated in Table 14-3. The 
symbols G[, G21 • . ., Gh denote the various groups. It is conceptually helpful to as
sume that each variable has been standardized over all subjects. Each measure will 
therefore sum to zero over groups, but the group averages need not be zero. Similarly, 
the average variance of a given measure weighted by group size will be 1. but it may 
be more or less in a given group (although this is the most common way to scandardizt: 
data, it is not the only way, and different computer programs may standardize data dif
ferently). Only the general element (tij) is shown for each group on each measure. 

We will symbolize the first discriminant function Yl. again using the same symbol 
to denote the linear function and the scores it produces. The resulting scores maximize 
the proportion of variance explained. The set of V weights fonns a vector of weights, 
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DATA MATRIX PARTITIONED FOR DISCRIMINANT ANALYSIS 

Measures (variables) 

Person (objects) z, Za 23 Zk 

Group 1 21\ Z,a 2'3 Z(k 

Group 2 22' 222 223 Z2k 

Groups 231 232 233 231< 

Group h Zhl Zh2 Zh3 Zhk 

and the first such vector VI is mathematically equivalent to the first eigenvector of a 
PrC analysis. The calculation is extremely similar to the way trial vectors were accu
mulatively multiplied into correlation matrices in Chapter 11 to derive PrCs. 

Again paraUeling the ANOVA, applying "VI to the scores produces linear combina
tions that maltimize the previously discussed ratio of the sums of squares between 
group means to the pooled sums of squares within groups. Whereas it is customary to 
compute sums of squares directly from lists of scores in the ANOVA, we have shown 
in Chapter 5 and elsewhere that variances of sums and weighted sums can be obtained 
from covariance matrices. The analysis employs the covariance matrix between group 
means, denoted B, and the pooled covariance within groups, denoted W. The .8 matrix 
uses sums of squares and cross products based upon group means, and the W matrix 
uses sums of squares and cross products obtained within each group and added over 
groups. One therefore seeks VI to maximize the corresponding ratio of variances: 

BVl . -- = a maxImum 
WVl 

The actual calculation involves an analogy to what may be done in ordinary scalar di
vision-multiplying the numerator of a ratio by the inverse (reciprocal) of the denomi
nator (computing alb as ab- I ). Here B is multiplied by the inverse of W, symbolized in 
matrix algebra terminology as W- l • Unfortunately, W-I does noe bear a simple relation
ship to W. It is flot obtained by any simple process like taking the reciprocal of each ele
ment in W. Rather, any inverse such as W-I is a specially computed matrix which pro
duces what is called an identity matrix when it is multiplied by the original matrix. An 
identity matrix. is a symmetric matrix with unities on the diagonals and zeros off the di
agonal. Thus, the inverse of a matrix is the analog of the inverse of any variable in ordi
nary algebra. Given W- I, the normalized vector of weights for Y1 can be stated as 

W-1Bvl = a maximum 

AVI == a maximum 

In other words, A is the product of W- I and B, and the problem is of exactly the same 
foem as PtC analysis (A, unlike a correlation matrix, R. is normally noe symmetric, but 
this difference is only important computationally). One can derive VI iteratively by 
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applying essentially the same computational routine to A us was done to R in PrC 
analysis. The process produces the first eigenvalue (A"I) unci the first vector of discrimi
nant weighl~ (VI) based upon the first eigenvector. This eigenvalue describes the 
amount of total variance explained by r l • Each variable will have a weight in v" al
though some weights may be near zero. Accumulatively mUltiplying these weights by 
the scores produces the discriminant axis (Yd. Additional results include the mean and 
standard deviation of the discriminam scores for each group and a test of significance 
on whether the groups differ on DFI • 

Obtaining YI allows computation of a residual matrix (AI)' Performing the iterative 
process upon AI produces a second normalized vector of weights (V2) and an associat
ed discriminant function (Y2)' One can continue to derive discriminant functions until 
they (1) are not statistically significant, (2) explain only tiny portions of the original 
variance, even though this arndunt may be significant, or (3) are not of theoretical or 
practical importance. By definition, each discriminant function must explain less vari
ance than any of its predecessors. 

Placement concerns the assignment of new individuals to a group when their member
ship is unknown. This might be an Air Force recruit who is to be assigned to a techni
cal specialty or a student who is seeking career counseling. Placements are usually 
made by comparing the target person's profile with the average profiles for people 
known to belong to the various groups. One potential difficulty is that one must first 
know the group membership of a representative group of persons to make valid place
ment decisions. If these average group profiles are not different from one another, 
placement is hopeless-flipping coins would do as well. Placements may employ ei
ther the observed or discriminant scores. Cooley and Lohnes (1971) and Bernstein 
(1988) compare various suggested approaches and provide an overall discussion of the 
logic and methods of placement. 

Assume that MDA has provided discriminant scores for all the people in the vari
ous groups and each group centroid. Most applications assume that these discriminant 
scores are normally distributed within each group'. This allows one to compute con
tours of equal density about the centroid for each group. Since these are contours 
about the group centroid, they are often referred to as centours (Cooley & Lohnes, 
l~n 1). It is easiest to visualize such centours in the plane provided by two discriminant 
functions, but the logic applies to any number of discriminant functions. In this 2-
space, the scatter of group members about the group centroid can be piotured as a se
ries of ellipses reflecting various proportions of the group. These are in effect confi
dence intervals and are portrayed in Fig. 14-9. 

As mentioned earlier, discriminant scores are usually correlated within a particular 
group even though they are uncorrelated over all groups. The higher this correlation, 
the more elliptical the centaur, as is true of any scatter plot. These centaurs indicate 
the percentages of people farther in and farther out relative to the centroid. 

The centour score for an individual estimates the percentage of persons in a group 
that are further from the centroid than that individual. For example, a centour score of 
75 means that the individual is closer to the centroid than 75 percent of the members 
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FIGURE 14-9 Centaur ellipses around the centroid 
for one group on two discriminant 
functions. First discriminunt axis, Y1 

of the group, regnrdless of direction. Individuals are placed in the group for which 
their centaur score is highest. An individual with respective centaur scores of 75,25, 
and 10 for three groups would be assigned to the first grOll-p. 

Centaur scores need not add up to 100 percent for anyone subject and may vary 
among subjects. One person could have high centaur scores for a number of groups, 
and another person could have very low centaur scores for all groups. The extent to 
which centour scores successfully place a person is directly related to the variability of 
that person's centaur scores. If these scores are highly similar to one another. classifi
cation will probably not be successful. If this is the case for most of the subjects, the 
variables used for placement have been ill-chosen. 

Evaluation of Discriminant Analysis 

In spite of the differences in purpose of factor analysis and discriminant analysis, they 
are closely related mathematically. MDA is based on linear combinations of variables 
so that a discriminant function is also a factor. We have also noted that linear discrimi
nant functions are obtained by Pre factoring of a special matrix describing discrimina
tion among versus within groups. Discriminant functions, then, are special types of 
factors that discriminate among a priori groups of subjects even though it is highly un
likely that discriminant functions derived from a set of variables corresponded to their 
PrC factors. MDA is both conceptually and mathematically a powerful tool which has 
not been employed nearly as much as it should have been in the behavioral sciences, 
although Hake (e.g .• Hake, Faust, McIntyre, & Murray, 1967; Radwan & Hake, 1964) 
pioneered its application in ex:perimental psychology. Still. the main use of MDA in 
basic research has been in the form of the ?vlANOVA. Unfortunatel.y, this is simply a 
way to obtain an overall (omnibus) test of the significance of group differences. This 
use ignores the much greater descriptive role of ?vlDA in understanding the structure 
of the variables. A particularly useful question is whether the measures that discrimi-
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nate among groups all relate to a single attribute (factor), in which case the grollp 
mean differences are said to be concentrated. For example, groups A. B, unci C muy 
have the same rank order on all measures. In contrast, some measures may order the 
groups as A, B, and C, but others may order them B, C, and A. In this case the group 
mean differences are said to be diffuse. No single attribute underlies group differences 
in a diffuse structure. 

MDA was introduced into psychology through applied testing programs for person
nel selection and placement. Early applications employed ability tests rather than 
noncognitive measures such as personality traits, interests, and values. These early ap
plications were intended to provide an effective strategy to assign people to jobs or 
training programs. Unfortunately, these early applications were rather unsuccessful, and 
the close association of the methods with these speCialized problems in personnel selec
tion tended to hide the methodology from the broader field of psychology. NIDA is poten
tially useful in many applied problems. However, some logical issues must be confronted. 

1 How should the groups be defined before the analysis. Some problems dictate 
this in an obvious, reliable manner (e.g., in comparing males and females or members 
of different professions), but group definition is less obvious in other cases. As one ex
ample, if MDA is applied in studying psychiatric classifications, some classifications 
are so unreliable as to preclude clear results. A practical issue in this case might be 
whether to treat people suffering from major depression and bipolar (manic-depres
sive) disorders as separate groups or to pool their data. Obtaining a random sample o( 
subjects in the various groups is vital but often difficult. 

2 If abilities tests are used, a decision must be made whether to include (a) all sub
jects who were tested, (b) people who meet at least a minimum level of competence, 
or (c) only outstanding individuals. 

3 Discriminant analysis is needed with ability tests only when there is a curvilinear 
or no relationship between test scores and the desirability of placing an individual in a 
particular group. If this relation is linear, one could simply place the individual in the 
highest group for which his or her scores are minimally acceptable. 

4 Placement based upon centaurs provides a related problem. An individual who is 
far removed from the centroid in any direction would be declared not fit for the group. 
This could lead to anomalies like a person being too smart to be a nuclear physicist or 
too psychotic to be schizophrenic. However, this problem does not exist in all methods 
of classification and is discussed in Cooley and Lohnes (1971) and Bernstein (1988). 
Centours might be much more fruitfully applied to noncognitive attributes such as in
terests, personality traits, attitudes, and values. The assumption of "just the right 
amount" of such traits to detennine group compatibility makes more sense than with 
abilities in these cases. 

5 It is often inappropriate to assume that people who currently are members of de
finable groups, especially occupations, should be in these groups. Actually, people fre
quently become members of occupational groups partly because of prior errors in clas
sification, including racial and gender discrimination. Methods like MDA may 
actually serve to perpetuate rather than eliminate misclassifications. 

MDA has proven more helpful in understanding the structure of group centroid dif
ferences than it has in classification because of the large amount of scatter abollt the 
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group centroids (within-group variance) relative to distances among centroids. In our. 
words, discriminant functions frequently do not explain a large amount of variancer 

There may be significant group differences, but the within-group variance may be se. 
large that classification is difficult. Nonetheless, iVIDA may help understand who 

groups differ and thus guide future test development. Y 

PATTERN ANALYSIS 

What has been spoken of as profile analysis is called pattern analysis by some. We find 
it useful to distinguish between the two based upon the data employed in each. We will 
use the term "profile analysis" when the variables are continuous, the tenn "pattern 
analysis" when the variables are discrete (categorical). Chapter 10 has already dealt 
with one highly sophisticated form of pattern analysis, item response theory. 

A "pattern" is simply any complete set of responses to a collection of items, e.g., 
agree, agree, disagree to three attitudinal items. It may refer to the actual responses of 
a particular individual, the most popular responses in a group of people, or even a hy. 
pothetical set of responses. Even though two people obtain the same total test Scores, 
they rarely make the same errors. As we saw in Chapter 10. some feel that analyzing 
patterns of response might offer better measures than those obtained from the linear 
model. 

As in our prior discussion of continuous measures, pr~blems relating to pattern 
analysis fall into the two categories of discovering latent groups and discriminating 
among existing groups. 

Discovering Latent Groups 

Numerous trial-and-error methods have been proposed to cluster people on the basis 
of their response patterns (see Tryon & Bailey, 1970; Lorr, 1983). One proper ap
proach. however, is to employ cross-products analysis, just as was used with continu
ous measures. The first step in the analysis is to compute an index of response agree
ment over items for each pair of individuals. If two individuals respond in the same 
way to an item, regardless of what that response is, that is counted as an agreement. 
The two types of responses on ability tests are correct and incorrect and are often 
agreement and disagreement on nonability tests. 

If the responses are dichotomous, one index of agreement is the mean cross product 
of scores, treating one response category as +1 and the other as -1 (any other distinct 
pair of numbers will be mathematically equivalent). Thus if two people both pass or 
both fail an ability item, their item cross product is 1; but if one person passes the item 
and the other fails the item, their item cross product is -1. Similarly, if two people 
both agree or both disagree with a nonability item, their cross product is 1; but if they 
give different re~ponses, their cross product is -1. Sums of such cross products over 
items are then ·divided by the number of items. Any of the methods of factor analysis 
previously considered can be used with these mean sums of cross products. An ap
proach based upon factor analysis has certain advantages. Each person's structure ele· 
ment on the first initial factqr is an index of his or her agreement with the consensus of 
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all subjects. The factor structure denotes groupings of individuals, as is true of other 
factor analytic applications described in this chapter. However, the cautions about fac
toring categorical data discussed in Chapter 13 need to be kept in mind. In particular. 
differences among individuals in their tendency to choose the more probable alterna
tive can account for a substantial portion of the discrepancy between two individuals. 

Discriminating among Exfsting Groups 

Discriminant analysis can be applied to sets of dichotomous scores (patterns) in a 
manner analogous to the application of discriminant methods to continuous scores 
(profiles, see Maxwell, 1961). For example, one might diagnosis psychiatric illness in 
patients on the basis of their sympt?m pattern, where a symptom is scored 1 when pre
sent and 0 when a.bsent. Overall and Klett (1971) have also presented some interesting 
possibilities. However, the item response theory methods of Chapter 10 are uniquely 
suited to this issue. In particular, the same methods used to study differential item 
functioning can be used even though the interpretation is different. Most of the ques
tions one would ask can be phrased in terms of group differences in difficulty or dis
crimination parameters. 

Evaluation of Pattern Analysis 

In spite of its interesting possibilities, pattern analysis suffers from a crippling flaw: [t 
takes individual items too seriously, a concern we also have about item response theo
ry. As noted previously, individual items are usually heavily loaded with unique error: 
pure measurement error plus reliable variance specific to individual items. We have 
stressed that test items usually correlate poor~y with one another; correlations above 
.30 are the exception. In other words, most of the variance in each item is trivial, and 
pattern analysis seeks to find important infonna.tion in that trivia. It has not worked. 
Studies in which pattern analysis has been employed either failed to obtain clear re
sults or, when they apparently did, the results did not hold up in subsequent samples 
(which explains the dearth of published results). Pattern analysis of test items is unfor
tunately ideal for taking advantage of chance because (I) each item has a large mea
surement error component; (2) there is usually a relatively large number of items, 
which gives more room to take advantage of chance; and (3) methods of analysis, such 
as MDA, capitalize on chance. Perhaps better results might be obtained by using data 
that are more reliable than ordinary test items, such as the presence or absence of well
defined symptoms. Some categorical measures, of course, are reliable. 

MULTIDIMENSIONAL SCALING 

We will use the term "multidimensional scaling" (MDS) to focus on the scaling of 
stimuli rather than the scaling of people. As is implicit in the name, we assume that 
the stimuli may vary complexly among themselves in such psychological attributes 
as pleasantness, liberal versus conservative, etc. Although NfDS employs the same 
mathematical models as factor analysis and discriminant analysis, it is normally used 
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for a different purpose. However, it does overlap with the forms of factor analysis 
con;;idered in this chapter. NIDS can be used to study individual differences amOnD" 
people, but (1) studies of individual differences are adequately handled by the mUlti~ 
variate procedures discussed previously in this book and (2) the procedures which 
will be discussed are mainly important for scaling stimuli. iVlDS is an extension of 
the unidimensional scaling methods discussed in Chapter 2, which noted that unidi
mensional scaling methods should be applied only when there is good reason to be
lieve that the data vary along one dimension. Good unidimensional scaling requires 
the experimenter to minimize extraneous differences among the stimUli. to prevent 
them from influencing judgments or preferences. In unidimensional scaling, the in
vestigator must know the psychological dimension on which responses are to be 
made in advance of the study. 

Suppose, for example, one wishes to study perceived weight, which, under proper 
conditions could be viewed as a single dimension. ~e weights should all be the same 
shape, color, and, ideally, size. The most important facet of the study is the control ob
tained by instructions to subjectS. Each sUbject must be carefully instructed to make 
judgments or preferences with regard to the dimension of interest and be warned about 
letting other variables influence the responses. 

In MDS, subjects are usually not instructed to respond with respect to a particular 
dimension; rather, they are asked to respond only in terms of overall similarities and 
differences among the stimuli, e.g., to judge whether stimulus a is more similar to 
stimulus b or to stimulus c. MDS is used in two related types of studies. In qne type, 
the investigator does not know what dimensions people typically use in responding to 
a class of stimuli, and the purpose of such investigations is to learn the dimensions. 
For example, subjects might judge the similarity of well-known political figures. 
These similarity judgments might require only one dimension (probably like versus 
dislike), or they might require several dimensions reflecting positions on various social 
issues such as abortion. The purpose of the study would be to learn about the "natural" 
dimensions that people employ in their judgments. 

The second type of study in which MDS is employed concerns judgments rather 
than sentiments. Although the major physical dimensions that differentiate the stimuli 
might be known, it might not be clear how these dimensions affect the psychological 
processes undei'lying judgments. For example, suppose one obtains Similarity judg
ments for a set of red chips that vary systematically along the physical dimensions of 
saturation (pureness) and reflectance (proportion of light reflected or physical intensi
ty). The results might indicate that subjects actually employ only one subjective di
mension 'even' though there are two physical dimensions of variation: Saturation and 
intensity combine into a single dimension of "vividness." Alternatively, subjects might 
employ the two physical dimensions in their judgments, but one is much more influen
tial than the other; e.g., they are more sensitive to variation in saturation than re
flectance, or vice versa. Still another possibility is that more than two dimensions are 
needed to explain the data because of the way the physical dimensions interact. 

!vIDS has become a very popular tool because (1) many behavioral scientists are 
sufficiently sophisticated in mathematics and statistics to understand the complex 
methods involved, (2) computers are now readily available to penonn the analyses, 
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and (3) the outcomes have proven useful to the behavioral sciences. The most compre
hensive recent sources on the topic are listed in the Suggested Additional Reudings. 
Davison (1983) is an excellent source. 

Spatial Conceptions of MDS 

Spatial models are extremely important in MOS, even more so than In factor and pro
file analysis. The terms used to refer to the experiments and methods of analysis are 
spatial in nature, e.g" "dimension," "proximity," "origin," and "rotation." lndeed, one 
of its most prominent de,velopers has noted (Shepard, in Shepard, Romney, & Nerlove, 
1972) that one of MDS' most attractive features is that it allows one to summarize 
complex relations among numerous stimuli in terms of simple two-ctimensional repre
sentations showing pairs of relations in three or four dimensions. 

MDS essentially requires subjects' responses to be converted to a spatial represen
tation, either directly or by the use of assumptions about the data. Perhaps more sim
ply, it is quite natural to think of similar stimuli as falling "nearer" one another than 
more dissimilar stimuli. Indeed, the analogy is so compelling (even for many who are 
not mathematically oriented) that we often have to think twice to realize that it is only 
an analogy. 

Euclidian space is by far the most frequently employed spatial geometric model for 
1'IDS. A Euclidian space is basically the geometry of flat surlaces in which the gener
alized Pythagorean theorem of Eq. 14-2 holds. This is the space that we observe in the 
world around us, and so it is also referred to as real space. Thus, while sitting in a 
room, one is literally in a Euclidian 3-space. All the geometric properties of the room 
could be computed from familiar theorems of geometry; e.g. the area of a wall equals 
its width times its height. One of the most important properties of a Euclidian space is 
the triangle (Cauchy-Schwarz) inequality which states that the distance from one point 
a to a second point b (Dab) measured directly cannot be greater than the sum of their 
distances through a third point c (Due + Deb)' It is called the triangle inequality because 
it implies that one side of a triangle cannot be longer than the sum of the other two 
sides. In particular, both Eq. 14-2 and the triangle inequality dictate that Dab = Dac + Deb 
in a one-dimensional space, e.g., the distance from First Street to Fourth Street along 
First Avenue is the sum of the distance from First Street to Third Street and the dis
tance from Third Street to Fourth Street (in this one-dimensional case, several models 
produce the same distance). Finally, we will assume that distances are positive num
bers and therefore not directed: Dab = Dba, although distances are considered directed 
(signed) in some applications so that Dab = -Dba' 

Technically, distances between cities can differ from those based upon Eq. 14-2 
since they are measured on the surface of a globe and not on a flat surface. Interconti
nental distances between cities therefore follow a non-Euclidian distance model, but 
the error in measuring distances within a smaller area, say the United States or, better, 
within a given state, can be neglected. It is very useful to conceptualize MDS and 
other forms of multivariate analysis in terms of Euclictian spatial models because very 
powerful systems of mathematics can be adopted, e.g., those in factor analysis and dis
criminant analysis. 
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Various non-Euclidian models have been considet'ed in MDS (see Coombs, 1980' 
Coombs, Dawes, & Tversky, 1970; Shepard, Romney, & Nerlove, 1972; Torgerson: 
1958). Perhaps the simplest one is the city block model in which distances are mea
sured in terms of how one gets from one comer of a city block (say first Street and 
First Avenue) to another (say Second Street and Second Avenue), One could walk one 
to First Street and Second Avenue (Second Street and First Avenue would work just as 
well), turn, and walk another block for a total of two blocks. The shortest distance in 
Euclidian space is to walk strai.g~thrOugh the buildings from one corner to the oppos
ing comer. This is 1.4+ blocks, 12 + f!, but it is has limited applicability since one 
ordinarily cannot walk through buildings as if they were an empty field. Euclidian and 
city block distance measures are part of a broader class of measures referred to as 
lvIinkowski r metrics which are important in the next chapter. MDS also considers 
nonrnetric spaces derived from rank orders rather than assumptions about distances. 
Theoretically at least, one should contrast classical methods, which assume that data 
are at least interval and perhaps, though not necessarily, Euclidian, with ordinal meth
ods, which are used to infer a metric. Much of the output of these two classes of analy
ses will be similar, as it concerns the structure of the stimuli, but the logic of ordinal 
methods is far more complex. Most of our discussion will assume the Euclidian model 
since it is by far the simplest. We will discuss some more formal properties of distance 
in the next chapter and consider an approach to scaling that employs non-Euclidian 
distance measures at that point. 

Once points are located in (mapped into) a Euclidian space, powerful methods of 
analysis can dimensionalize the space, place it in a coordinate system, and locate each 
stimulus with respect to the resulting coordinate axes. The logic is the same as that 
used with the D measure and raw-score factor analysis. This logic grew out of a his
toric paper by Young and Householder (1938) and has been manifested subsequently 
in numerous mathematical methods for handling multivariate problems in factor 
analysis, clustering, iYIDA, and MDS. The primary experimental and analytic problem 
in MDS is therefore to obtain data that can be mapped into a Euclidian space. 

An Overview of Alternative Approaches to MDS 

One situation-specific issue is whether to gather data from a large sample of people, as 
in market research. or to study a single individual in detail, as in a case study. This dis
tinction between nomothetic and ideographic measurement has long been made in the 
psychology literature. It has some important methodological implications. For example, 
observations made by two different people are independent, whereas observations made 
at two different times by the same person are obviously not. This may raise a problem 
for inferential tests, but a well-designed ideographic study that minimizes the correlated 
error in subjects' responses (e.g., by providing breaks to keep them from developing a 
set to respond in the same way on a block of ratings) can mitigate the problem. 

Two broad, interrelated issues involved in choosing an MDS model are (1) the em
pirical (psychophysical) aspect of data gathering and (2) the mathematical aspect that 
deals with the assumed properties of the data and the choice of the specific MDS 
model used to analyze these data. At the empirical level, Chapter 2 contrasted direct 
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and indirect methods. Direct methods assume that subjects C,m provide data which can 
be analyzed a.c; obtained; e.g .. subjects can report intervals through magnitude estima
tion. This section considers two types of direct methods: similarity and attribute rat
ings. The method of paired comparison, also discussed in Chapter 2. is the simplest 
way to obtain similarity ratings. For example, the goal of the study might be to scale 
10 well-known U.S. senators. They would be arranged in 45 [( I 0)(912)] pairs, and sub
jects would be asked to judge the similarity of the members of each pair, perhaps on a 
10-point scale (subjects are not asked which senator they prefer, as that would gener
ate the dominance data considered in the last major section of this chapter). Certain 
lVIDS programs require subjects to judge dissimilarity or difference rather than similar
ity, but this is not a major complication, Conversely, attribute ratings require subjects 
to judge each stimulus with respect to a series of attributes, e.g" to rate indi vidual sen
ators with regard to specific pollcy issues. 

Chapter 2 also discussed indirect methods. which require that judgments of stimuli 
be confused and that different responses be made to the same stimulus over trials. 
They are predicated on the probabilistic nature of judgments: The more similar stimuli 
are, the more often they are confused. For example, subjects might be offered cola 
drinks a, b, c, . . ., and asked to identify a given sample by name. The results may be 
portrayed in a confusion matrix containing the joint frequencies of identifying actual 
cola i as colaj. The basic idea is that if cola a is more similar to cola b than cola c, the 
probability of judging cola a as cola b will be higher than the probability of jUdging 
cola a as cola c. Indirect methods depend upon 'errors of judgment. The Fullerton
Cattell law, upon which these are based, states that one cannot directly compare two 
stimuli which are never confused with one another (although each' may be compared to 
a third stimulus). The subjects never compare the colas directly. Not aU indirect meth
ods use confusion; some use correlations to index similarity, as will be described 
below. Whereas direct methods are most clearly suited to normal subjects judging 
stimuli that they are familiar with and are interested in judging, indirect methods have 
the advantage of being more usable with impaired popUlations or with animals. 

The most important, but not the only, mathematical consideration is the level of 
measurement assumed to underlie the data. For example, one investigator might treat 
similarity ratings as ratio data and adopt a model that assumes that a similarity rating 
of 4 literally means twice the similarity cif a rating of 2. Another investigator may de
cide that it is better to treat the measures as interval rather than ratio data. That investi
gator assumes that a rating of 4 is midway between a rating of 2 and 6 but not neces
sarily twice that of 2. Finally, a third investigator may simply consider the data as 
ordinal so that a 3 simply denotes greater similarity than a 2. 

Most applications of MDS reduce the data to a symmetric V x V matrix of dissimi
larities, where V is the 'number of stimuli. Data from individual subjectS are usually 
lost in the process of aggregation. An alternative is individual differences scaling (Car
roll & Chang, 1970; Carroll, 1972) which corrtpares subjects or groups of subjects. A 
family of methods, which include individual differences algorithms, that has dominat
ed the MDS literature uses what is known as the alternating least-squares estimation 
algorithm (Takane, Young, & de Leeuw, 1977; Young, Takane, & Lewyckyj, 1978). ft 
forms the basis of the ALSCAL program which will be discussed in a later section. 
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As we consider the various MDS methods or, for that matter, any other methods 
discussed in this book, keep in mind the adage that one "cannot make silk a purse out 
of a sow's ear." Applying complex methods to poorly gathered data, either in the sense 
of ill-conceived sets of variables or poody controlled observations, is most unlikely to 
lead to meaningful discoveries. There are obvious advantages and disadvantages in 
employing strong psychophysical scaling methods and strong methods of "NIDS, where 
"strength" is defined in tenns of the assumptions made. Unfonunately, the stronger the 
assumptions, the more likely it is that they will be inapplicable and produce spurious 
results. Nearly all methods have ways to test the validity of the assumptions, and these 
are important. MDS is capable of producing quite valuable results when properly ap
plied, as are, of course, the methods considered elsewhere. 

When subjects provide proximity information, as when they produce 4istances be
tween stimuli directly, one may seek MDS methods that make strong mathematical as
sumptions. If subjects can actually produce good proximity information, much infor
mation would be lost using a method of MDS that does not utilize all this potential 
information. Even though there is less danger when using weaker psychophysical 
andlor MDS methods, the results are more limited. These strong methods allow a great 
deal of information to be obtained rather easily if one is willing to make a variety of 
assumptions about the data-gathering process and methods of analysis. However. there 
is a risk of producing spurious results because the assumptions are faulty. Conversely, 
the eKperimenter can require subjects to supply only weak psychophysical infonna
tion, such as rank orderings, and apply methods of MDS that m~e few assumptions 
about the spatial representation of the stimuli. In" so doing, the experimenter may lose 
potential information. He or she must know both the options and the situation to make 
an infonned choice. It is usually reasonable to employ stronger methods with trained 
subjects who make decisions about familiar, distinctive, and salient stimuli. Similarly, 
it is quite risky to use these methods with groups like psychiatric patients when the 
stimuli are not interesting to the subjects andlor are not clearly differentiated. 

Psychophysical Methods Based upon Similarivj 

Most methods of MDS use some form of overall perceived similarity judgment rather 
than judgments of specific, predefined attributes. Several are adaptations of tasks origi
nally discussed in Chapter 2. The first four of these generally involve some form of 
paired comparison. 

1 Direct magnitude estimation (Stevens, 1956, 1958) involves having the subject 
numerically estimate the perceived similarity or dissimilruity of stimulus pairs. Nor
mally, one pair is chosen as a referent and given a desired scale value. If, fOT example, 
subjects are asked to judge the similality of senators, they might be instructed to rate 
Senator Smith and Senator Hong as 10. If they feel that Senators Brown and Gomez 
are twice as dissimilar when compared to one another as Senators Smith and Hong are 
when compared to one another, the appropriate response will be 20. Although it is not 
Flecessary to !:reat the resulting data as ratio measurement, the assumption is more jus
tified here than with any of the alternatives. A variant is to have subjects draw a line 
whose length equals the relative magnitude of the rating. 
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2 Category ratings employ a format like the following. 
How similar are Senators Smith and Hong? (circle one) 

2 3 4 5 6 7 8 9 
Very similar Very dissimilar 

Variants upon this procedure include sorting the pairs into categories, e.g., placing 
cards with the names of the stimulus pairs into stacks corresponding to the categories. 
Categorization typically is nonlinear in the sense that the distance from category I to 
category 2 usually cannot be ~sumed to be the same as the distance from category 4 
to category 5. Ratio measurement that is sometimes possible with magnitude estima
tion is therefore not appropriate to categorization. 

3 The principle is the same in ranking as it is in rating except that subjects rank: 
order the pairs in terms of their similarity. Generally, ranlcings require more complex 
methods than ratings to form the proximity matrix. 

4 Forced categorization, in which there are designated numbers of stimuli to be 
placed in each category, is essentially a compromise between ranking and rating. 

S It is a particularly useful procedure to have the subject make free sorts of the 
stimuli into categories based upon their apparent similarity. The subject is often given 
complete freedom to define "similarity," and often the number of categories. However, 
it is more typical for the experimenter to define an upper and lower limit to the number 
of categories. The data matrix reflects the number of times that subjects place mem
bers of a given pair of stimuli in the same category. This is perhaps the most popular 
method when the number of stimuli is too large to allow paired comparisons and one 
seeks only ordinal data. 

6 In the method of triads, subjects are shown ,all possible groups of three stimuli 
(e.g., Senators Smith, Hong, and Khoury) and asked to pick the most dissimilar of the 
three. These data produce the proportions of times that one stimulus is judged more 
similar to a second stimulus than to a third stimulus. Thus, .. Pb" denotes the proportion 
of subjects that say stimulus a is more similar to stimulus b than to stimulus c. Al
though there are usually more triads, V(V - l)(V - 2)/6, than there are pairs, V(V - 1)/2, 
each triad is usually simpler to judge than each pair. It is also possible to obtain metric 
infonnation directly from the subject when the number of triads is not great. 

7 Bisection is another method adapted from Stevens. In unidimensional scaling. the 
subject sees two stimuli, such as'lights varying in luminance, and adjusts a third to ap
pear halfway between them. In multidimensional scaling, the task is much more com
plex since it involves choosing a pair of stimuli whose distance is half that of two other 
pairs of stimuli. The experimenter shows subjects stimulus pair ab and stimulus pair cd. 
The subject chooses stimuli ef so that their distance is midway between the distances of 
ab and cd. This method has several drawbacks: it is likely to be confusing, it cannot be 
easily used in scaling a fixed set of stimuli, and it produces only an interval scale of dis
tance. Ratio estimation methods are more understandable to subjects and produce ratio 
scales with less effort. Interval methods make more sense in unidimensional scaling. 
They are included for completeness since MDS methods predicated upon interval mea
surement exist and will be discussed below. Variants on bisection include trisection and 
interval estimation, where the subject rates the distance of one pair of stimuli relative to 
two other pairs. These variants have the same liabilities as bisection. 
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The distinction between the way bisection is used in unidimensional !lcaling and 
MDS points up an important general difference between the two. [n unidimensional 
scaling, response proportions describe how often one stimulus is judged greater than 
another stimulus with respect to a specified attribute such us loudness. However, in 
MDS these proportions describe how often the distance (Le., difference) between two 
stimull is judged greater than the distance between two other stimuli. Unidimensional 
methods produce scales with respect to an attribute; MDS produces scales reflecting 
distances among stimuli. The attribute(s) that produce these distances are inferred later 
in the analysis. 

The following is an illustrative interval scale of distances between three pairs of 
stimuli. Assume that it is an interval scale rather than a ratio scale, and so the zero 
point is irrelevant. 

Smaller ab be cd Larger 
d· ~~~--+I-----4I--------------------~1 ----~. d' lstances lstances 

The distance between pairs ab and be is much smaller than the distance between pairs 
bc and cd. Mathematical models transform proportions, which are not linearly related 
to distances and are therefore ordinal, to relative distances. These methods therefore 
provide an interval scaling of all possible distances between stimuli in a set from these 
(ordinal) proportions. The next step is to transform interval data to ratio data. The ends 
of the line are anchored only by "Smaller distances" and "Larger distances." However, 
the ratios of the three intervals depicted are meaningful (e.g., the interval be-cd is sev
eral times larger than the interval ab-bc) and therefore provide a ratio scale. 

There are several methodological problems with paired comparisons. For example, 
we have assumed V(V - 1)/2 trials because stimuli are usually presented in only a sin
gle order. [f subjects are asked "How similar is Senator Smith to Senator Hong?" they 
are normally not asked "How similar is Senator Hong to Senator Smith?" If in fact 
both pairs are presented, requiring V(V - 1) trials, it would not be surprising to find a 
difference over subjects because of space biases (also known as position or order ef
fects). If so, the prol<imity matril< will not be symmetric when rows represent the first 
stimulus and columns represent the second stimulus (or the reverse). MDS methods 
normally require symmetric proximity matrices, and so the two numbers are typically 
averaged. This is not a problem if the position biases are small, but if they are large, 
subjects may not be taking the rating task as seriously as they should. 

A subject's judgmental criteria typically vary over the list of pairs, so that if a given 
pair is repeated at different points on the list, the ratings may also vary. This may be 
random, or it may be systematic. Systematic error might arise if a given pair is rated as 
more similar when it follows a highly dissimilar pair ea contrast effect) or, conversely, 
when it follows a highly similar pair (an assimilation effect). Randomizing orders both 
by choosing which member of the pair goes first and by placing the pair unsystemati
caUy in the li.st is one way to overcome these problems. A more elegant solution is the 
Ross ordering [Ross (1934); Cohen & Davison (1973) provide a computer program], 
which balances order and time effects. A third possibility discussed by Davison (1983) 
is to use a rotating standard. In our senator rating example, Senator Smith would be 
compared to the remaining V-I senators in tum. Next, Senator Hong would be com-
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pared to the remaining V - 2 senators in turn; Senator Herrera would be compared to 
the remaining V - 3 senators, etc. This tends to provide a clearer standard for each 
pair, especially early in the list, but we agree with Davison's preference for either Ross 
or random ordering. When V is very large, so that it is impractical to have a subject 
rate all possible pairs, present randomly selected subsets, chosen with the constraint 
that each pair must appear equally often over subjects (MacCallum, 1979; Spence & 
Domoney, 1974) or use free sorting. 

Perhaps the most important advice we can give is to view the task from the stand
point of the subject. Consider the effort required of them and how motivated they are 
likely to be. One general question that is very often asked is "How many observa
tions?" Davison (1983) suggests that this equal 40FI(V - 1), where F is the expected 
number of dimensions and V is the number of stimuli. Of course, the number of di
mensions is often at issue, so prepare for the worst case (the largest number of inter
pretable dimensions). It normally requires at least two and preferably three salients to 
define a given dimension, as in factor analysis. Consequently it is usually fruitless to 
attempt to interpret, say, a four-dimensional solution with fewer than 12 stimuli. It is 
probably better to assume that flaws are present in either the problem or the data
gathering process, redo the study, or consider a different problem. 

Guilford's (1954) Psychometric Methods has long been regarded as the "bible" of 
rating scale methodology. Although too much can be made of issues like whetht:r to 
have the scales vertical or horizontal, the issue of the number of ratings that have to be 
made is very important. Keep in mind that the number of stimulus pairs increases 
roughly as the square of V. Subjects will nearly always provide data (i.e., respond 
r~ther than stalk out of the experiment), but they may not provide meaningful data. 

Psychophysical Methods Based upon Attribute Ratings 

Indirect Methods 

Some experimenters have a specific set of attributes in mind to be judged. For exam
ple, the Senate may be considering a tax plan, foreign aid appropriations, support for 
the arts, etc., and the experimenter may wish to focus on these specific issues. Like
wise, prior research may have defined attributes along which colas may vary (sweet
ness, sharpness, intensity of flavor). In each case, stimulus ratings provide data for 
which methods of profile analysis are applicable. The usual, but not the only, way to 
analyze these data is to compute distance (D) measures from the profiles. This D ma
trix may then be transformed in various ways discussed below to permit an 'NIDS 
analysis or to employ raw-score factor analysis. Attribute ratings are commonly gath
ered even though the main analysis uses similarity ratings. 

A proximity matrix may be formed in several ways using indirect methods, depending 
upon the problem at hand. These matrices usually require much larger numbers of ob
servations than matrices obtained from direct methods to ensure the resulting data are 
stable. The particular method is usually dictated by the nature of the problem, and the 
following are perhaps the three most common forms of data. 
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1 Confusion matrices. As previously noted, a confusion matrix describes the prob~ 
ability that the subject will chose category j in response to stimulus i. We will assume 
that the stimuli appear in the columns of the matrix and that the responses appear in 
the rows. Consequently the matrix will be square and the di.agonal entries (which typi
cally play no role in MDS analysis) will represent the probability of a correct choice. 
The probabilities are often made conditional upon the stimulus and therefore add to l 
within columns. Element Xl2 will therefore be the probability that response 2 was cho
sen given that stimulus 1 was presented. Students of perception deal with such matri
ces routinely. Confusion matrices need not be symmetric; i.e., the probability of 
choosing response j to stimulus i may be quite different from the probability of choos~ 
ing response i to stimulus j because of response biases in choosing categories and 
other reasons. Although it is common to average the two values to provide the symme
try needed in most methods, this is inappropriate when the disparities are large. Later, 
we will present a distance measure derived by Shepard (1957, 1958, also see Luce, 
1963) that does not require averaging. 

2 Joint (CO-OcCLtrrence) probability matrices. Joint or co-occurrence matrices de
scribe the probability that two events will both be present. For example, consider the 
following symptoms of depression: (1) sleep difficulties, (2) difficulty in concentrat
ing, (3) religious preoccupation, and (4) retardation of behavior. A given patient may 
have none, some, or all of these symptoms. If a given patient has symptoms 1 and 2, a 
count is added to elements 11, 12,21. and 22 of the matrix. Consequently the diagonal 
elements of this m,atrix. contain the frequencies with which the individual symptoms 
occur, and the off-diagonal elements contain their joint frequencies. The frequencies 
are divided by the number of subjects to obtain joint probabilities. This matrix is in
herently symmetric and uses much, but not all, of the data; e.g., it does not use the in
formation about which triads of symptoms occur. 

3 Transition matrices. Transition matrices describe the probability that a subject 
will change preference from one stimulus to another. For example, matrix element ij 
describes the probability tbat a person who originally chose cola brand i changed to 
cola brandj. Although this method involves preferences, it is a similarity method be~ 
cause it aSSumes that a person changes preference to the most similar stimulus. Like a 
confusion matrix, this matrix. can be quite asymmetric, and averaging element ij and)i 
may not always be appropriate. Also, if preferences are highly stable, the elements off 
the diagonal will be quite small compared to the elements on the diagonal, which de
scribe consistent choices. 

Having explored some of the alternative psychophysical methods, we will now tum 
,to the mathematical procedures used to analyze the resulting data. 

Vector-Space Ratio Methods 

The strongest assumption possible in MDS is that subjects directly produce a vector 
space containing h;cosijhj for all pairs of stimuli. This normally requires direct sirni
.larity ratings as obtained through magnitude estimation. Even so, many investigators 
may not choose to assume that the data have interval properties. Vector product MDS 
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is one ex.ample of this general approach. Assume that subjects have judged the similar
ity of pairs of stimuli on a continuum running from 0 (total dissimilurity) throuuh I 
(identity or zero dissimilarity). The first author had subjects scale adjectives describin IT 

emotions in order to derive a set of factored rating scales in an unpublished stud; 
Nine adjectives were investigated, and three adjectives were hypothesized to define 
each of three underlying factors, The adjectives "happy," "contented," and "pleasant" 
(group A); "vigorous," "healthy," and "strong" (group B); and "loving," "romantic," 
and "warm" (group C). 

Subjects rated the similarity of meaning for each of 36 [(9)(812)] pairs in terms or 
the proportion of stimulus contexts in which one word could be substituted for the 
other without altering the meaning of a sentence, Since all nine adjectives had positive 
connotations, the scale was unipolar rather than bipolar. The responses of 34 college 
students were used to form a symmetric matrix of proportions. The highest proportion 
(maximum similarity) was .80 ("happy" and "contented"), and the lowest proportion 
(maximum dissimilarity) was .30 ("pleasant" and "strong"). These data can be con
verted directly to vector products. Averaging the data over subjects describes the 
group proportions or, alternatively, the proportions produced by a modal individual. 
The square roots of each average, e.g., .89 = Y.'8O for "happy" and "contented" and 
.55 = \/To for "pleasant" and "strong," define the vector product in a proportion 
square root CPS) analysis. 

If one can assume that the underlying data are ratio-Level measurements, these 
square roots meet all the requirements for a vector product space, and so they can be 
factored. Each vector (adjective in the example) was assumed to be of unit length, so 
unities were placed in the diagonals. Alternatively, a common factor model could have 
been employed using communality estimates. The number of important factors defines 
the dimensionality of the space, exactly as in factor analysis. The structure consists of 
the projections of the adjectives on the underlying factors. The squared structure ele
ments define the proportion of variance in the adjective explained by the factor, and 
correlations among oblique factors describe how the dimensions relate. 

The first step in this case was to employ confirmatory multiple group analysis. 
Three group centroids were simultaneously (obliquely) placed in groups A, B, and C, 
each defined by the three aforementioned adjectives. Whereas the results generally 
confirmed the hypotheses, there were some systematic departures. The group A and C 
centroids were highly correlated, and some of the words did not behave exactly as ex
pected: "pleasant" and "wann" did not correlate as highly with their h.ypothesized fac
tors as had been anticipated. They shared enough meaning to form a fourth factor of 
their own. The matrix of PS coefficients was also subjected to a Pre analysis. Four 
factors were extracted and rotated to a varirnax criterion. The results of this analysis, 
shown in Table 14-4, were generally similar to the results of the multiple group analy
sis. Boxes have been drawn around the structure elements of the three variables that 
were intended to represent each of the three factors. These results show how the origi
nal hypotheses were largely confirmed, but an unexpected result was also obtained. 

This pilot work suggested that the original hypotheses were generally along the 
right lines, indicated improved groupings of words, and provided a starting point fOT 

much more extensive investigations of emotion-related words. Most important for the 
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VARIMAX ROTATED VECTOR PRODUCT PRC 
FACTORS FOR EMOTION-RELATED WORDS 

Factor 

Word II III IV 

Happy .66 .39 .45 .42 
Contented .70 .34 .49 .26 
Pleasant .53 .26 .35 .69 
Vigorous .15 .84 .24 .36 
Healthy .55 .74 .20 .15 
Strong .22 .87 .33 .10 
Loving .45 .29 .75 .31 
Romantic .28 .31 .85 .21 
Warm .19 .32 .64 .62 

present discussion is that the study exemplifies vector product MDS using PS analysis. 
Factor analysis can be applied in a straightforward manner whenever such vector 
products are obtainable from the subjects' responses. Even if you employ a more elab~ 
orate commercial MDS program as discussed below, you should compare its results 
with a direct approach like this one to get a feel for the unity of the scaling. 

PS analysis can be applied to bipolar rating scales ranging from complete agree
ment through complete disagreement, inciuding a zero indifference point. Attach neg
ative signs to disagreements; e.g., proportional disagreements of .25 and .64 become 
PS coefficients of -.50 and -.80. 

Vector product MDS can be applied to a wide variety of classes of stimuli, particu
larly when individuals judge pairs of familiar stimuli. Of course, it runs the risk of re
quiring subjects to do more than they are capable of doing if they cannot produce a 
vector space directly. One necessary criterion is that a Euclidian space is appropriate. 
This assumption is violated in vector product IVIDS if there are any large negative 
eigenValues, since that indicates that the matrix does not have the Gramian properties 
necessary for factoring. None of the nine possible eigenvalues shown in Table 14-4 
were negative, but this problem may arise in other applications. More complex forms 
of MDS, such as ALSCAL, prevent this from occuning. 

Euclidian Distance Ratio Methods 

Some approaches to psychophysical scaling provide distance estimates between stim
uli directly, as in magnitude estimation, or indirectly, as when attribute ratings are con
verted to distances by means of the D measure. In contrast, formal scaling models con
vert indirect measures to distances. Shepard (1957, 1958; also see Luce, 1963) has 
provided one widely used distance measure that can be applied to confusion and tran
sition probability data. Let Pu and Pjj represent the probabilities of correctly identifying 

. stimuli i and j and Pij and Pji describe the respective probabilities of rnisclassifying 
stimulus i as j and vice versa. Equation 14-5 describes the inferred distance between i 
and j (Dij) based upon these four probabilities: 
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Dij = (14-5) 

Luce's (1959a, 1963) choice theory, as described in Chapter 2, shows how the IOITll

rithm of a probability, as in a co-occurrence matrix, may be used to define distan~e. 
Thus, if two behaviors always occur together, so that the probability of event j is 1 

given event i, the distance between them is In 1 or 0 (natural logarithms typically de
fine the metric). More use is made of this transformation in choice theory analysis of 
dominance relations. 

Only ratios between distances are important in a Euclidian model because the di
mensionality and configuration are not influenced when all distances are multiplied by 
a constant, as when one shifts from the English and American foot to the more nearly 
universal meter. Thus, all one needs to know are the distances up to a constant of pro
portionality. That is, it must be possible to say, for example, that the distance between 
points a and b is twice the distance between points band c. Since a ratio scale must 
have a rational origin, it must also be possible for two stimuli to have zero distance be
tween them (be coincident). Chapter 1 noted that a ratio scale is invariant only over 
transformations of the type bX. Any rado scale X can be multiplied or di.vided by an 
arbitrary constant a, and the resulting scale X' will also be a ratio scale. Thus, MDS 
distances are determined only up to a constant of proportionality. 

Since ratio scales are not invariant under the more general class of linear transfor
mations, bX + a, distances will not be preserved when a constant is added to all dis
tances. Adding an arbitrary constant might change the shape of the triangle connecting 
three points or the number of dimensions required to represent half a dozen poims. 
The space might become non-Euclidian: i.e., the generalized Pythagorean theorem of 
Eq. 14-2 may oat hold. However, the changes produced by adding a constant may be 
exploited to transform interval measures into a ratio scale that produces Euclidian dis
tances, as we will show in the next section. 

As mentioned previously, a careful distinction must be made between ratio esti
mates of distances, as discussed here, and ratio estimates of scale values, as discussed 
in Chapter 2. The latter, for ex.ample, requires subjects to estimate the ratio of the 
brightness of one light to that of another. The analogous ratio estimation of distance 
requires the subjects to judge the ratio of differences in the brightness of lights a and b 
verSUS band c, MDS tasks concern judgments about the relative size of differences be
tween the stimuli rather than about the absolute amount of an attribute possessed by 
stimuli. Unfortunately, knowing the distances of points (stimuli) from each other does 
not imply knowing the distance of each point from an origin. Knowing distances from 
an origin allows them to be converted directly to vector products which can then be 
factored. Assume that these di.stances are determined by some appropriate method so 
that the issue becomes ooe of applying MDS to these distances. Figure 14-10 shows 
hypothetical distances between six senators. The example is simplified because most 
studies scale considerably more than six stimuli and more than two dimensions would 
probably be required. 

Lines could have been drawn in Fig. 14-10 between all pairs of stimuli to denote dis
tances, but we did not do that to simplify the illustration. The question is how to dimen
sionalize these distances. If the points tit as neatly in a plane as illustrated, there would 
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Senator 6 ___ 

SenatorS_ 

Senator 4-

_Senator I 

FIGURE 14-10 Space of distances of six senators. 

a-.-Senator ] 

-Senator 2 

be no problem. One could simply pencil in two dimensions with a ruler. but the exact 
placement would be a matter of choice, as is the rotation of factors in factor analysis. 
The dimensions could be scaled arbitrarily. For example. '14 inch could equal a score of 
1. so that 1;2 inch would equal a score of 2, etc. The senators' scores would allow the di
mensions to be interpreted as liberal-conservative, isolationist-international activist, 
etc., and investigated in subsequent studies. However, methods must be developed to 
handle all cases since it unlikely that real stimuli can be represented exactly in a 2-space. 

The distances in Fig. 14-10 provide no hint about an origin, and so none has been 
provided. There are a number of ways to place an origin in the space. One is to make 
one of the points the origin and represent all other points as vectors extending from it. 
This is not satisfactory because (1) there will be some error in establishing the point 
and (2) even if that were not the case. the results of subsequent analyses would depend 
very much on the point which was chosen. A better choice of origin is the centroid or 
average of the points. This is done in a 2-space of points by putting an arbitrary pair of 
orthogonal coordinates in the space and computing the average scores of all pointS on 
these coordinates. Figure 14-11 represents the points in Fig. 14-10 as vectors extend
ing from this centroid. 

FIGURE 14-11 Space of points for six senators with an origin at the centroid. 

Senator 6 
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TABLE 14-5 THE FAOTOR STRUOTURE OF SIX 
SENATORS ON TWO ROTATED FACTORS 

Factor 

Senator II 

1 .02 -.31 
2 .26 -.05 
3 .74 .07 
4 -.16 -.13 
5 -.37 .03 
6 -.42 .35 

In the more usual case in which the points cannot be exactly represented in a 2-
space, calculating the distance of each point from the centroid of the space is still 
straightforward. The matrix of distances of stimuli from one another contains all the 
necessary information, and simple formulas can be used to calculate the distance of 
each stimulus from the centroid of these differences (see Torgerson, 1958, Chap. 1 L). 
The resulting matrix of distances between stimuli can be converted to a factorable ma
trix of vector products. Table 14-5 and Fig. 14-12 show tho results of a Pre factoring 
of the vectors shown in Fig. 14-11. The structure is expressed in the same units as 
those used to define the distances of points from one another and from the centroid of 
the space. Further information might suggest that the factors denote, respectively, 
liberalism-conservatism and whether the United States should be active or restrained 
in world a.:ffairs. 

FIGURE 14-12 The structure elements for six senators on two centroid factors. 
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The limitation~ of psychophysical methods designed to directly produce interval data 
for MDS (e.g .• bisection) were noted above. Logiculty, one could obtain data usin" 

o 
ratio methods and treat the data as interval. This has us many problems as the use of 
interval psychophysical methods. If one mistrusts the mtio nature of slich scales, the 
data should be analyzed as ordinal, and jf one trllst.<; the ratio nature, ratio methods of 
analysis are suitable. At the same time, the importance of obtaining a unit of measure
ment from ordinal data cannot be overestimated since much scaling is a two-step 
process which first transforms ordinal data into interval scale measures and then trans
fonns the resulting measures into relative differences in distance. (Some models, such 
,lS Eq. 14-5, and methods of data collection accomplish both in a single step.) We will 
now consider the most common way to transform interval data to ratio data, the addi
tive constant. 

In the present case, the principle of the additive constant is to add or subtract a 
number from the measures to make them obey Euclidian (or other. such as the city 
block) assumptions in a minimum number of dimensions. The goal is to make the data 
obey such Euclidian theorems as the generalized Pythagorean theorem, Eq. 14~2. and 
the triangle inequality. For example, assume that three values On an interval scale are 
5, 6, and 7. If we subtract a number larger than 5 (add a number Jess than -5) from any 
of them. ut least one value will become negative and produce a negative distance. If 
we subtract 5 from each (add -5), which is permissible since they are measured on an 
interval scale, the resulting values (0. 1. and 2) will not qualify as distances along a 
ratio scale because they violate several Euclidian (as well as non-Euclidian) distance 
assumptions. Most obviously, the first two points will fall at the same place in space 
(be coincident) since there is zero distance between them. However, their distances to 
a third point will be different (I versus 2). 

However, if we subtract 1 (add -2) from each of the original measures, the result
ing values will be 3,4, and 5. Since }2 + 42 = 52, the three points will form the vertices 
of a right triangle in 2~space. They will therefore qualify as distance measures. How
ever, if we were to subtract 4 from each measure (add -4), the resulting measures 
would be I, 2. and 3. These fall in a one-dimensional space as fonows: a--b-c, 
where - represents L unit. Since a one-dimensional space is simpler than a two
dimensional space, 4 would be the best additive constant. 

A suitable additive constant allows any three measures to be converted to distaI.1ces 
in a two-dimensional space. In general, any V measures can be described in a hyper
space of V-I dimensions. The problems posed by subtracting 5 arise whenever the 
constant makes the values too small. Conversely, any constant that is far removed 
from all the values in either the positive or negative direction will allow the resulting 
distances to faIL in V - I dimensions. A large value is therefore "safe" for the same 
reason that putting unities in the diagonal of a correlation matrix (component factor
ing) is safe. However. too Large a constant will enhance measurement error. The best 
additive constant allows the palticu1ar stimuli to be scaled in the smallest, most paesi-

• monious space. MDS therefore seeks to make the constant large enough to provide 
Euclidian distances but small enough to minimize the dimensionality. 

Although it is always possible to choose a constant that will allow V measures to be 
scaled in V-I dimensions, no constant will generally allow a large set of measures to 
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achieve a dimensionality of I or even V - 2. Measurement errors ulso usually prevent 
the dam from falling in a space of less than V - I dimensions. However, u suituble con
stant can uSllan~ make th~ r.esulting values c~ose to fulfilling the dtstance requirements 
of a space that IS (1) Euclidian and (2) con tams fewer than V-I dimensions lIsina in
dices described below. Proponents of non-Euclidian models (e.g., the city block m;del) 
would drop the first requirement if they could achieve the second. For example, they 
would properly argue that the city block model is more parsimonious if D. set of dutn 
would require two dimensions in a city block metric but five in a Euclidian metric. 

There is no direct way to determine an additive constant that will produce a ratio 
scale in the fewest dimensions. Torgerson (1958) has described iterative methods for 
doing this that are widely used in MDS. One way to estimate the additive constant is 
as follows. More complex algorithms used in programs such as ALSCAL are slightly 
different but employ the same basic logic, 

1 Choose a trial value, typically the average of all interval measures (centroid). 
2 Use this constant to convert the interval measures to approximate distances. 
3 Determine the distance of each point from the centroid of the points by previous

ly discussed methods. 
4 Convert the distances to vector products by methods which have been also dis

cussed previously. 
5 Perform a PrC analysis upon the matrix of vector products. 
6 If the PrC analysis provides large, negative roots, the space is non-Euclidian, and 

so a larger additive constant must be chosen and the analysis repeated from step 2. 

This iterative approach is employed until the smallest additive constant consistent 
with a Euclidian space is obtained. Because error in the data will prevent an exact fit to 
Euclidian requirements, the iterations cease when the fit is within some criterial value 
that depends upon such factors as the particular model being used. Torgerson (1958) and 
Messick and Abelson ( 1956) describe this process in detail. It is typicaUy not difficult to 
achieve a good fit with a limited number of iterations. This is obviously well suited to 
computer algorithms. The final additive constant simultaneously provides the desired 
scaling. The number of factors defines the dimensionality of the space, and the factor 
structure indicates the amount of each attribute (dimension) possessed by each stimulus. 

Ordinal Methods and ALSCAL 

We have seen that use of the additive constant allows interval measures to be trans
formed into ratio distances, but the key problem is to convert ordinal data, as might be 
obtained from free sorting or triad methods, to interval measures, Some procedure is 
therefore needed to obtain a unit of measurement. In a sense, this involves "bootstrap
ping" since the subject was not required to use an interval in making judgments, and 
so one is therefore not obvious in the data. It is a demand placed upon on the scaling 
model. In some cases, equations like Eq. 14-5 are applicable, but we will now consider 
a more general algorithm, ALSCAL (Young & Lewyckyj, 1980; also see Kruskal, 
1964; Kruska! & Wish, 1978; Takane, Young, & de Leeuw, 1977, Young, Takane, & 
Lewyckyj, 1978). Material in this section is derived from Chapter 6 of Young and 
Lewyckyj (1980), although their discussion deals with a more complex MDS model. 
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ALSCAL may be thought of m\ both a specific computer program and a mathemati
cui model. It actually combines and is therefore a "superset" of several other MDS and 
dominance scaling programs. Although we will focus on ordinary nonmetric MDS, we 
will illustrate some of its other options. In ALSCAL parlance the data are referred to 
as two-way, one-mode because the data input is in the form of a two-dimensional table 
of dissimilarities, but both dimensions of the table consist of the stimuli (objects) to be 
scaled. ALSCAL is an acronym for altemating least-squares scaling. This name is de
rived from the presence of two types of parameters that the program estimates, optimal 
scaling parameters and model parameters. The program alternates between tentative 
least-squares estimates of the two until they each converge to their respective values. 
The distinction between the two types of parameters may be better understood by con
sidering four basic matrices: (1) the raw data (e.g., similarity ratings). which are in tbe 
form of a symmetric V x V matrix. of dissimilarities (a program option can convert 
similarities Into dissimilarities), where V is the number of stimuli that are at least of 
ordinal level; (2) disparities, which are an optimal rescaling of the raw data and are 
contained in a second V x V matrix; (3) distances, in the form of a third V x V matrix 
but which are derived from model parameters (coordinate values, i.e., loadings) using 
Eq. 14-2; and (4) the model parameters themselves. which are in the form of a V x F 
matrix, where F is the number of dimensions specified in the analysis. 

ALSCAL's goal is to make the disparity and distance matrices as similar as possi
ble. Two critical differences between these matrices are that (1) the disparity matrix is 
at least monotonically related to the data (depending upon whether ordinal, interval, or 
ratio models are chosen), whereas the distances are ratio-level functions of the model 
parameters; and (2) the disparity matrix is typically of full rank (all V of its rows and 
columns are linearly independent); the distance matrix is of rank F (has F linearly in
dependent columns or rows) since it is determined by the matrix. of model parameters. 
The algorithm is called conditional least-squares estimation because scaling parame
ters are conditional upon model parameters, and vice versa. 

An outline of the operation of ALSCAL is as follows, ignoring various normalizing 
operations. 

1 An additive constant transforms the raw data into approximate distances On a 
ratio scale. The approximate distances are made to obey the triangle inequality and be 
positive. 

2 A scalar product matrix: is obtained from the data matrix. The values in this ma
trix are doubJy centered in that the mean score for each subject is zero and the mean 
score for each variable is also zero. Ordinary factor analysis uses singly centered data 
in which variable means are zero but subject means are not. We described single and 
double standardizing in Chapter 12 when we were concerned with adjusting both 
means and standard deviations. Here we are concerned only with adjusting means. 

3 The principal components of the scalar matrix define the initial model parame
ters, and the number of components is determined by the number of dimensions select-
ed by the user. . 

4 Equation 14-2 is applied to the model parameters to provide the matrix of 
distances. 
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5 Optimal scaling then produces the disparities and is the one novel ingredi~nt of 
ALSCAL compared to what we haNe discussed. The disparities are rank-ordered and 
placed in a vector. Assume that observation X l3 consist~ of the two stimuli that are 
judged similar most often. Its value appears as the first element in this Vector. The dis
tances are placed in a second vector based upon this same ordering. Consequently the 
first element of this second vector is the distance betwee~ points I and 3 in the model. 
This need not be the smallest distance, and so the second set of distances need not be 
in rank order. When two or more values in the vector of distances are OLlt of order, 
they are replaced with their mean. These values become tbe new disparities. Ultimate
ly, the data and disparities will be at least ordinally related. rnterval scaling further re
quires that the disparities and distances be linearly related, and ratio scaling further re
quires that they be related by a multiplicative constant. 

6 The disparities are normalized, and a measure of fit called SSTRESS (squared 
stress) presented in Kruskal (1964) is computed by means of Eq. 14-6. Alternative 
SSTRESS formulas are used for different types of matrices; we report the one known 
as formula 1: 

J I(d2 ;p) 
SSTRESS = 

,.' i.d 4 
(14-6) 

SSTRESS describes misfit in terms of the difference between the squared distances 
(d2) and the squared disparities (J2). Double subscripts describing the stimulus row 
and column have been omitted. The smaller this value, the better the fit. 

7 The iterative process minimizes SSTRESS. If SSTRESS is sufficiently small on 
the first cycle or if it changes by less than a criterial amount over iterations, the 
process ends. If it changes by more than the criterial amount, the disparity matrix is 
refactored, and so the program loops back to step 3. 

8 When SSTRESS has stabilized, the coordinate values are individually chosen to 
minimize the rate of change in SSTRESS with regard to a given coordinate. This 
is done for each coordinate and each point in turn and repeated until all coordinates 
stabilize. 

The output may include some or all of the following results. 

1 The iteration history of changes in SSTRESS. In general, better data and a proper 
choice of transformation tend to produce more rapid convergence, but only in a gener
al way. A failure to converge certainly is a sign that the data do not fit the chosen 
model andlor number of dimensions. 

2 The STRESS (again, formula 1; see Kruskal, (964). STRESS is like Eq. 14-6 ex
cept that it uses d and a instead of at and a2, It should also be as small as possible. If it 
is large, consider adding another dimension if there are enough stimuli to interpret the 
results (at least two and preferably three salient stimuli per dimension) or relax:lng the 
constraints on the transformation; e.g" use ordinal·instead of interval scaling. Remem
ber thac adding a dimension will usually improve fit simply because you have added 
more free parameters, although adding dimensions can actually make the fit worse 
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(this is very strong evidence that the added dimension is not necessary when -it hap
pens). Relax.ing the scaling consrraints will also improve the fit on ground,') that are 
partially spurious. If you both increase the number of parameters and reduce the scal
ing constraints, look for error messages telling yOll that you may be trying to estimate 
too many parameters with too little data (numbers of observation pairs). 

3 The squared correlation between the disparities and the distances. RSQ. This is 
the ratio of the variance accounted for by the model to the variance in the data. Similar 
considerations apply here as is the case with STRESS and SSTRESS, although larger 
values of RSQ imply a better fit. Since three indices describe the fit of the data to the 
proposed space, avoid being too optimistic by selecting the most favorable one. 

4 The coordinate vaLLles. These are scaled so that the mean of each dimension is 
zero. As a result, all dimensions must be bipolar, unlike in classical factor analysis. 
The average variance of coordinate values will be l.O, but, like the principal compo
nents they are, the values on the first dimension will vary more than the values on the 
second dimension, etc. 

5 Optionally, a graphical representation of these coordinates, two dimensions at a 
time, This can generate a lot of paper when you are scaling stimuli in many dimensions. 

6 Optionally, a plot of linear fit. This describes the relation between the disparities 
and -the distances. The amount of scatter in this plot describes overall lack of fit. These 
data underlie SSTRESS, STRESS, and, most directly, RSQ. 

7 Optionally (with ordinal transformations), a plot of transformation. This de
scribes the relation between the disparities and the observations. For example, if it is 
necessary for MDS to compress the data (e.g., if X is a ratio scale but the data m'e of 
the form X\ the function will be concave downward. Conversely, if it is necessary for 
MDS to expand the data (e.g., if X is a ratio scale but the data m'e of the form v'X), the 
function will be concave upward. The precise form of the transformation used to ob
tain disparities from data is not mathematically important, but it is psychologically de
sirable that the transformation be at least somewhat meaningful. 

8 Optionally (wi.th ordinal transformations), a plot of nonlinear fit. This describes 
the relation between the distances and the observations. This plot combines, and thel'e
fore confounds, the information in results 6 and 7. 

Dimensions are interpreted by contrasting the properties of salient stimuli which 
faU at the poles of a given dimension. This is similar to the interpretation of explorato
ry factors. Interpretation may be facilitated by regressing the dimensional values for 
the stimuli upon individual attribute ratings or similar data. Since the dimensions are 
orthogonal, the beta weights are the correlations between the dimensions and the par
ticular attribute and may be used as cosines to incorporate the attribute ratings along 
with the stimuli into the graphical depiction. A given dimension is therefore also de
scribable by the attributes with which it correlates most highly. 

Some Empirical Properties of Alternative MDS Solutions 

The second author conducted a simple computer simulation which you may wish to re
peat in order to learn more about MDS. Define an arbitrary set of V (say a dozen) 
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points (stimuli) in a 2-space by choosing two random numbers for each. YOLI cuuld use 
a I-space by choosing a single random number or a more complex. Spuce by ehuosill" 
several random numbers, but a I-space is restricted as to what it will demonstrate, and 
a larger space is unnecessarily complicated. Standardize these SCOres so that the two 
means are 0 and the two standard deviations are I. These constitute true data. Next, 
obtain a matrix. of D}. values using Eq. 14-2 and take the square root of euch resulting 
value to obtain (ratio) distances. Submit these distances to an MDS program lik~ 
ALSCAL. First, choose the ratio option and two dimensions since these are correct for 
the data; then look at alternative solutions. 

The correct solution should converge rapidly and fit well; the ALSCAL indicators 
SSTRESS and STRESS will be nearly zero, and RSQ will be nearly 1.0, as they 
should. Note, however, that the scale values generated by the program will not be the 
same as the true values for two reasons. One is that ALSCAL produces scale values 
that are principal components: Values on the first dimensions vary maximaUy, and val
ues on the second dimension vary minimally since the data falls exactly in 2-space. 
The original data were not expressed as principal components. Cliff's algorithm, dis
cussed in the previous chapter (1966, see Harman, 1976. pp. 347-352), can rotate the 
two sets of coordinates to maximum congruence and eliminate this artifactual differ
ence. A matrix language like SAS' PROC llVIL allows Cliff's procedure to be em
ployed directly, but the two solutions may be compared by simply plotting them on 
separate pieces of graph paper and rotating one manually until they appear to be as 
similar as possible. Even after this is done, the two solutions wiH not coincide. 
ALSCAL provides a marhematically acceptable solution, but it need not agree with the 
true data. This is not due to etTOr in the scaled distances because there is none. 

Next, add an arbitrarily chosen constant to each of the distances. This destroys their 
ratio properties but preserves the interval of measurement. The fit of the transformed 
data using the ratio option with the transformed data wili be poorer than the fit of the 
true data with the ratio option. Now, use the interval option to find the additive con
stant. It should produce the same good fit in both data sets. The fit of the interval data 
under the ratio option may also be quite good in an absolute sense since the original 
data were error-free. Consequently, a good fit under the ratio option does not guarantee 
that the underlying data fulfill ratio assumptions. 

Now, distort the interval measures to the ordinal level. One way to do this is to raise 
all the values to a power; e.g., square each number. Neither the ratio nor the interval 
option will provide as good a fit as the ordinal solution. Look at the transformation 
plot, if available. It should complement the distortion. 

MDS of Correlation Matrices 

Since MDS may be applied to any similarity (prox:imity) matrix., it may be applied to a 
correlation matrix. It is therefore useful to consider its pros and conS relative to a PrC 
analysis of the same data. Davison (1985) summarizes the rather substantial literature. 
His presentation is quite well balanced in describing the pros and cons of each ap
proach. His points are applicable to both the component and common factor approach
es, since dimensionality is typically dete011ined from a preliminary component soll!-
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tion, e.g., the number of eigenvalues ~l. We will further assume that the component 
analysis is performed upon correlations rather than covariances or mean sums of prod
ucts, which will not affect any conclusions. 

Although both MDS and factor analysis involve eigenanalysis, the data being ana
lyzed are not the same. Component analysis uses singly centered data that adjust vari
able means to equality (0). However, MDS uses doubly centered data that also adjust 
for subject differences. Consequently, 

1 wIDS will provide a space of one less dimension than a factor analytic solution. 
2 The origin of the space will be shifted to the centroid of the points in metric 

MDS. 
3 The MDS solution will essentially be the same as the factor analytic solution, ig

noring the first factor if the subject means are independent of the MDS scalar products or 
4 The i\lIDS and ov.erall factor solutions will be essentially the same if the average 

correlation between each variable and aU other variables is nearly zero, as when each 
has a mixture of positive and negative correlations. 

Some researchers have suggested that MDS is preferable to factor analysis because 
it reduces the dimensionality of the space-a nonmetric MDS solution often leads to a 
solution that has several and not just one fewer dimensions than a factor analysis. Al
though we have argued that science's goal of parsimony makes a reduction of dimen
sionality advantageous, it may be an artifact of the process of double centering and the 
parameters needed to transform the data. It may also eliminate important data. We 
have seen that the artifice of choosing a suitably large additive constant can make any 
set of data unidimensionaL 

Davison (1985) appropriately stresses the importance of the context in which the 
analysis is performed. The first factor in abilities testing is typically extremely impor
tant as it describes general intelligence. However, the first factor obtained from prefer
ences is often trivial, as it represents differences among subjects in their overall bias 
toward high versus low ratings. Excluding it from the analysis (which can be done 
with ad-lib factoring as well as MDS) would be a useful simplification. In essence, the 
choice between whether or not to let a general factor remain in the solution is more 
important than the choice between factor analysis and MDS. 

Scaling of fndividual Differences 

The next step in complexity beyond evaluating the structure of a single proximity ma
trix is to compare two or more matrices. We have already touched upon this issue in 
showing how Cliff's (1966) matching procedure can be used to compare a set of true 
values with an MDS solution. Carroll and Chang's (1970; Carroll, 1972) individual 
differences scaling- (INDSCAL) model is a particularly attractive way to compare 
MDS solutions. Although the tenn "individuar' implies "person," the model is perhaps 
more useful in comparing groups, such as males versus females, rather than individu
als because the results are of mOre general interest. It also provides a form of three
mode factor analysis (see Chapter 12). We are usually more interested in seeing how 
groups differ than in how John and Mary differ, although applied measurement often 
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dictates the latter issue. The term "individual" will therefore denote both II 11roLip of 
people sharing II common attribute as well ~s a single person. The data are k~own as 
three-way, two modes because they can be viewed as a rectangular "solid" of similari
ty measures. Two of the dimensions (modes) are defined by the stimuli to be scaled. as 
in classical MDS, and the third dimension is individuals, and so there are three modes 
of data but only two types. 

INDSCAL assumes that individuals share the same dimensions. Group differences 
in similarity reflect group differences in the relative weights given these dimensions. 
Mathematically, an extension of the generalized distance measure, Eq. 4-2. <.:lllled the 
weighted (Euclidian) distance measure, is used: 

(14-7) 

Extending the previous notation, D!bi is the squared distance between stimuli a and b 
produced by individual i. The X subscript'! respectively denote the stimulus, dimension 
number, and individual, the key new concept is the weight applied to each dimension 
(wjD, denoting the dimension and individual. respectively. Simply think of Wji as defin
ing how much relative attention subject i pays to dimension j. 

As in ordinary MDS, the solution provides overall measures of fit and coordinates 
for each stimulus pooled over individuals. Unlike an ordinary MDS solution, which 
can be rotated, an INDSCAL solution cannot be rotated without loss of its essential 
properties. The solution also describes the fit of each individual similarity matrix. The 
other key data are the Wji values which are scaled to equal the RSQ values for that in
dividual. Consequently an individual who responds more randomly than average will 
have lower Wji values. The Wji values for different individuals can be used to provide 
an index of how similar the individuals are in tenus of how they weight (pay attention 
to) the dimensions. One caution is that the Wji values are vector coordinates. The ab
solute similari[), of Wji values is not important; the similarity of the orientation of these 
values is important. Other indices that may be provided describe how heavily a given 
individual w~jghts a particular dimension relative to the average individual. 

An Example of the Use of MDS 

We will describe a study by Garbin and Bernstein (1984) because it shows how the re
sults of MDS based upon global similarities may be complemented by attribute rat
ings. Many other appropriate and interesting examples of MDS also appear in the liter
ature. The stimuli scaled were 24 randomly generated three-dimensional "lumps." 
Subjects judged the shapes under visual conditions where they looked at but did not 
touch the stimuli and under haptic conditions where they made judgments purely by 
feel. Within each condition. they (1) sorted the forms into between four and nine 
groups and (2) rated each form on twelve 9-point bipolar scales using attributes like 
small versus large and narrow versus wide. The theoretical issue was the extent to 
which perceptual equivalence ofthe structures obtained in different sensory modalities 
exists and under what conditions it breaks down. A relevant example of lack of per-
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ceptual equivalence is when our tongue tells us that our tooth has a large cavity. but it.~ 
appearance is visually small. Perceptual equivalence means that the visual and haptic 
sortings can be rotated into one another. 

The structure of the attribute ratings was inferred from confirmatory (multiple group) 
factor analysis using three proposed factors (size, shape, and symmetry). These pr~ 
posed factors accounted for 85 percent of the variance in the visual condition as com
pared to 86 percent by the first three principal components and 60 percent by pseudofac_ 
tors (see Chapter 13). This indicates that the three proposed factors accounted for the 
major dimensions of variation. Similar results held in the haptic condition. Variables 
also correlated most highly with their assigned factors, and correlations between condi
tions for a given attribute typically were also high. However, the three proposed factors 
were at least moderately correlated in both conditions. For ex.ample, shape and symme
try correlaced .61 and .64 in the visual and haptic conditions, respectively. 

Classical MDS analyses on the overall data (ignoring conditions) indicated that the 
fit improved sizably in going from one co two dimensions but little gain thereaftet 
Consequently, two-dimensional solutions were retained for further investigation. As in 
factor analysis, the usual practice is to look for a "break" or "elbow" in the fit (scree) 
as the number of dimensions is increased. assuming that there are enough stimuli to in
terpret a higher-dimensional solution. The authors nex.t used INDSCAL (which re
quires at least a two-dimensional solution) to compare the visual and haptic condi
tions. The results were that corresponding stimuli were generally located near one 
another in me visual and haptic solutions, but a few stimu.li did change locations. 

The third step was to correlate the attribute ratings and the MDS solution coordi
nates over stimuli. Dimension I was basically a size factor, and dimension II was basi
cally a shape-symmetry factor in both conditions. In sum. the study noted substantial 
but not total equivalence between modalities. Garbin's (1988) subsequent work has at
tempted to specify these differences. 

Some Concluding Comments 

This chapter has thus far extended the analysis of similarity relationships from the fac
tor analysis of cross products of various torms (correlations, co variances, mean sums 
of products) in the previous chapters. Throughout this book. we have tried to avoid 
suggesting that a particular method of data analysis can be a "magic road to truth. It Al
though cerrain forms of data analysis can clearly lead you astray, two proper methods 
should lead you to similar conclusions once you make allowances for their idiosyn
crasies. such as MDS' elimination of a general factor. 

Before discussing the analysis of dominance (pr~ference) ratings. it is useful to 
briefly consider four points about MDS. 

1 The last edition of this book noted thut there were few applications of [vIDS to 
substantive areas in psychology. This is no longer true. Whereas earlier applications 
tended simply to scale stimuli. it is now virtually mandatory for the authors to demon
strate additional properties of the solution, as by correlating scale values with some 
external criterion. Confirmatory MDS models (Bentler & Weeks. 1978; Heiser & 
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Meuiman, 1983) have appeared, although they have Bot had the impact of confirmato_ 
ry factor analytic models. 

2 Subsequent work has supported the utility of the trial-and-error merhods present 
in alternating least-squares solutions. even rho ugh the previous edition expressed COn

cern about these methods. Indeed. ALSCAL has to be ranked among the most pro
found statistical contributions in the recent literature since using similarity ratings in 
factor analysis may yield nonsensical (non-Gram ian) results. However. we continue to 
advocate that investigators who use MDS also explore more direct factor analytic ap
proaches. at least as a didactic tool. 

3 One criticism of both factor analysis and MDS applications to scaling sti muli is 
that both treat the stimuli as equally variable in the space assumed to underlie the 
scale. Indeed., the observations are treated as points having no variance. An alternative 
view is that some stimuli are better defined, and thus have less variance, than others. 
Consequently, stimuli should be viewed as occupying regions of lesser or greater size. 
This alternative point of view will be considered in the next chapter in the form of 
Ashby and Townsend's (1984; Ashby & Penin, 1988) general recognition model. 

4 You may have a strong desire to scale the similarity of the U.S. presidents that 
may have arisen from your profound knowledge of U.S. history. You personally would 
not mind making the more than 800 paired comparisons involved in that method and 
devoting at least as much attention to the last as to the first comparison, However. 
don't assume that is also true of your subjects, especially when they are recruited from 
the usual introductory course subject pool. Consider the task from their standpoint. 
Ethically, they are free to leave the experiment at any time, but they are usually polite 
enough stay, especially when your judgments require what they perceive as the proper 
level of academic dryness. This does not mean that they are paying attention or re
sponding on some meaningful basis; they will nearly always provide data, but it may 
not be meaningful. The key is careful pretesting of the target population. 

DOMINANCE (PREFERENCE) SCALING 

We noted at the beginning of the chapter that proximities (similarities) are fundamen
tally different from dominance relations (preferences). One is the power of the correla
tion coefficient in analyzing at least some similarities. Unfortunately, there is no exact 
counterpart that can dimensionalize a space of dominance relations as conveniently as 
factor analysis or MDS, even though it is not based upon measures like the PM corre
lation. Specifically, one cannot take a V X V dominance matrix (V denoting- the number 
of stimUli) and perfonn operations that are exact counterparts of dirnensionalizing a 
correlation matrix. This does not mean that psychometric theory is bereft of ways to 
analyze dominance data. Multidimensional extensions of Thurstone scaling (see Chap
ter 2) are one possibility, which unfortunately is far less well developed than factor 
analysis. We will shortly consider an approach called unfolding which uses a different 
form of data. usually rank orderings of stimuli either by different people or by a single 
person on different attributes. 

If your goal is to perform the equivalent of a factor analysis with dominance-based 
data, you may wish to consider recasting the problem in terms of actual similarity 
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judgments. A common strategy is to include an ideal stimulus among those to be com
pared. For example, a marketing !ltudy of automobiles might include a hypothetical 
"dream car." In principle, the degree to which the ideal stimulus is preferred to an ac
tual stimulus, and therefore the extent to which an actual stimulus is preferred to an
other actual stimulus, is determinable by their similarities to the ideal stimulus, 

The idea that dominance relations maybe multidimensional is not very different 
from the idea that similarity may be multidimensional. For example, a person may 
judge the designs and performance of automobiles a, b, and c. The conclusion may be 
that automobile c is most dissimilar in design and automobile b is most dissimilar in 
performance. The same person may also prefer the deSign of automobile c and the per
formance of automobile b. Unfortunately, there may be a substantial jUdgmental dif
ference. Subjects readily grasp the idea of ranking stimuli in terms of preference; any 
indecision usually reflects inabilities to choose among certain stimuli. Indeed, they 
may ask "Similar in what respects?" when rold to classify them on the basis of overall 
similarity. Moreover. there is a tendency toward unidimensionality of preferences that 
is not present with similarity. This simplifies getting a unidimensional preference scale 
as a '(perhaps, linear) combination of physical attributes but complicates determining 
mUltiple dimensions of preference. In addition, not all dominance relations are prefer
ences in the ordinary sense, and subjects may also have difficulty describing domi
nance relations other than preferences. 

The Unfolding Concept 

Coombs' (1964, 1980) unfolding concept is currently the most highly developed ap
proach to the study of preference. It uses ordinal dominance relations to obtain interval 
scales. The thrust of Coombs' general efforts. especially here, is to show how much 
data are inherent in a rank ordering (alternating least squares also reflects this broad 
tradition). Chapter t of this book played down the representational tradition of mea
surement which stresses formal adherence to axioms of measurement. We did so be
cause of the number of counterproductive criticisms of the form. "You haven't shown 
that X is an interval scale. so you have no business doing an ANOYA on your data." 
However, we also acknowledged the contributions of this tradition. UnfoldIng is a 
major example. 

We will use rank orders of preferences among four candidates for political office as 
an example. Given enough subjects, all the 41 = (4)(3)(2)(1) = 24 possible orderings 
Will probably be obtained. This will be the case for at least two distinct reasons: (1) 
Raters respond on the basis of different dimensions (issues in this case) or combina
tions of dimensions-one. person may care only about senior citizens' issues, and an
other person may care only about abortion; and (2) even when two people agree on the 
importance of a dimension, they may differ as to where along the dimension they fall 
and therefore where, they prefer the candidate to fall. One person may favor more taxa
tion to benefit social programs; a second may favor less taxation; and a third may fall 
in between the other two. 

Assume for the moment that the potential voters agree upon the issue but vary as to 
where they stand on this issue. All differences in preference may be reduced to varia-



CHAPTER 14: PROFILE ANALYSIS. DISCRllvllNANT ANALYSIS. AND MULTIDIMENSIOIIIAL SCALING 647 

tions along a single dimension eX) that exists in principle as an interval scale. We will 
focus, as Coombs did, ~pon the data inherent in the simple preference orders. Specifi
cally, assume that candldates a, b, c, and d are located 7, 20, 31, and 47 units from an 
(arbiuary) origin on the underlying scale, where - denotes 1 unit. 

abed bacdlcabd dbacldcab I dcba 
--- -----a--- --- -- ----- -b --- -- ------c ---- ------------d _______ _ 

Consider a person whose relatively ex.treme views fall at the origin. This subject is 7 
units removed from a, 20 units from b, 31 units from c, and 47 units from d. If prefer
ence can be defined as the distance from an ideal point, that individual should prefer a 
to b, b to c, and e to d to produce a preference ordering of abed. Furthermore, any 
voter who falls at or below 13 on this scale will have this same rank ordering, as indi
cated in the diagram. The ordering for people who fall between 14 and 19 is baed 
since they fall closer to candidate b than candidate a. Using this same principle, it is 
possible to identify four other regions: (1) cabd from 20 to 27, (2) dabc from 28 to 33, 
(3) dcab from 34 to 39, and, finally (4) dcba above 40 (a and c are tied at 19, and a and 
d are tied at 27). Thus, whereas there are 24 ways to order four candidates in general, 
the underlying scale constrains these to 6. The alternating least-squares algorithm may 
be used here, as in tvIDS, to provide scale values. 

What happens if someone provides a different rank ordering, such as adbc? Assum
ing the rating is systematic, the rater must be using a different attribute or dimension 
to rate the stimuli, and the stimuli must rank order differently along this second dimen
sion. This provides the basis for a multidimensional analysis of preference. 

Multidimensional Unfolding and ALSCAL 

The simplest form of multidimensional unfolding (MDU) uses what is called two-way, 
two-mode data which are judgments of a series of stimuli on one or more attributes
the term "two-way" denoting that the table is two-dimensional and the term "two
mode" denoting that the dimensions are different from one another. The data may re
flect an individual subject or a group average. Conversely, "attributes" can also refer to 
different omnibus evaluations made by separate groups of subjects. Although we have 
concentrated upon unfolding as a technique to convert ordinal data to an interval scale, 
lvIDU may be used in ALSCAL and other programs with data that are already as
sumed to be interval or ratio. A joim Euclidian model is used to define distances. The 
model has the same form as Eq. 14-2. but it employs differences between a given stim
ulus and a given attribute over dimensions rather than differences between two stimuli. 
In addition to providing coordinates for the location of the stimuli in the F-dimension
al space, the attributes are also located in this same space, which is why the tena 
"joint" is used. A variant of this model provides individual difference scaling. The 
data are three-way, three-mode in that they are dominance judgments generated by a 
series of subjects on each of several attributes over stimuli. A weighted joint Euclidian 
model is used. It parallels Eq. 14-7 e:tcept that it lnvol yes differences between attribut
es and objects rather than between pairs of objects. These differences are weighted by 
a parameter that describes the relative attention paid co each attribute. 
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MDU has been used much less than MDS, Similar questions apply as have been 
raised above. but there is many fewer data that bear upon its practical use. Given the 
naturalness with which subjects make preference judgments. the technique certainly 
should be e1{piored more fully, 

This chapter was largely concerned with ways to study similarities. although the clos~ 
ing section dt!alt with the study of dominance relationships. There is a major differ~ 
ence between the two-similarity relationships are inherently symmetric, and domi~ 
nance relationships are inherently asymmetric. Consequently, different methods of 
analysis are needed. In particular, the PM correlation is not applicable to the stUdy of 
dominance relationships. 

Cluster analysis describes a variety of procedures for obtaining groupings. The gen~ 
eral idea is to form a nucleus of the two most similar objects (stimuli or people). Ob~ 
jects are added to this nucleus using a variety of techniques, including subjective ones. 
The term "profile analysis" is .o;f{en lIsed to describe cluster analysis of people. Profiles 
have three interdependent aspects: (1) level (how high or low the average element is). 
(2) dispersion (how much the highs and lows differ from each other), and (3) shape 
(which measures the highs and lows). Different measures of profile similarity incorpo~ 
rate or ignore these various aspects. One lIseful measure is the distance (D) measure. 
which is defined as the square root of the summed discrepancies between two people 
over the measures defining the profile. Most commonly. an individual profile is as~ 
signed to a single cluster. but clustering can be overlapping so that a given profile can 
be assigned to more than one cluster. Clustering can also be hierarchical in that higher
order clusters can be formed from lower-order clusters. 

One advantage of using D is that it can be converted to a sum-of-cross-pl'oducts 
measure and subjected to raw-score factor analysis, This uses values of LXY. which 
are the sum of cross-products between two individuals over their profile elements. 
These data can be factored just as a correlation matrix. is factored. The length of the 
vector describing each person is the square root of the sum of that individual's squared 
profile elements rather than 1.0, as in component analysis, or some fraction of 1.0, as 
in common factor analysis. Small values of D between individuals correspond to large 
values of :D<Y, which will lead to the individuals having a similar factor structure. 

Although it is possible to orthogonalize the profile elements, we suggested that this 
not be done unless they have extremely high correlations. The reason is that the origi~ 
nal measures are usually chosen on some meaningful basis and the correlational struc~ 
ture is part of that basis. Furthermore, the methods described in Chapter 12 can be 
used to adjust for level when that is an i.rrelevant part of the analysis. 

In contrast to other methods considered in the chapter which are concerned with the 
discovery of latent groupings, discriminant analysis is concerned with forming linear 
combinations of variables to best discriminate among existing groups. There are ba<;i
cally three separate issues: (1) determining whether multivariate group differences are 
significant, (2) combining predictors in an optimal manner, and (3) forming classifica~ 
tion rules to place unknown individuals into groups. The first of these is most impor-
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tant with small 5amples ,md is the multivariate analysis of variance (iVIANOVA). Geo
metrically. the issue of combining predictors is one of placing an <lxis in a hypcrspul:e. 
[ndividuals are points in the space. The better the grouping, the more tightly clustered 
groups are at different points in space. Specifically, the linear discriminant function is 
the axis (line) maximizing the variance between groups relative to the vuriance within 
groups. Discriminant scores are the linear combinations obtained from optimally 
weighting the predictors. When there are at least three groups and two predictors, it is 
possible to obtain multiple discriminant functions. The first function maximizes the 
discrimination possible in the observed scores. Additional functions maximize the dis
crimination possible in the residual data, partialling out earlier discriminant functions. 
The process is quite similar to successive (orthogonal) factoring. Mathematically. the 
problem of discriminant analysis involves an eigenanalysis of the product of two ma
trices. One is the covariance matrix between groups on the various predictors. The 
other is the inverse of the covariance matrix within groups, where an inverse is the 
matrix counterpart of a reciprocal. Placement may be accomplished in several ways. 
One is the use of centroid contours (centours) around a group, which are a form of 
confidence intervals about the multivariate average (centroid) of each group. A cen
taur score for an individl.ial is the percentage of indi vi duals in a group thm fall further 
from the centroid than that individual. 

Multiple discriminant analysis is particularly well suited to exploring the structure 
of group differences. In particular, it can be used to decide whether these differences 
are concentrated or diffuse. In a concentrated structure, one factor underlies group dif
ferences, and so the groups tend to rank-order similarly on all measures. In a diffuse 
structure, more than one factor underlies these group differences. and so groups may 
rank-order in one way with respect to some variables and in a different way with re
spect to others. Early applications of multiple discriminant analysis in applied situa
tions revealed several ambiguities and limitations: (1) It is not always clear how to de
fine the groups, (2) it is not always clear who should be placed in the group, (3) it is 
not needed when there is a strong relationship between test scores and the desirability 
of group membership, (4) placements based upon centour scores may lead to anom
alies such as an individual being too smart to be a nuclear physicist, and (5) not an 
people in a given group belong there, and so the analysis may serve to perpetuate past 
errors. Nonetheless, MDA is quite useful in understanding the structure of group 
differences. 

Pattern analysis describes the study of categorical (discrete) measures. As with con
tinuous measures, the problem may involve the discovery of latent groups of describ
ing differences among e;dsting groups. One approach to the discovery of latent groups 
is to classify responses between people as agreements versus disagreements, obtain a 
measure of relationship, and factor the result. Although this addresses the issue, the 
problems inherent in factoring categorical data discussed in Chapter 13 need be kept in 
mind. Even though discriminant analysis can be applied to categorical measures, a 
sounder approach is to use item response theory (Chapter 10). Specifically, the same 
methods used earlier to study differential item functioning can be used to study pattern 
differences, although the interpretation is different. An important caution in any pat
tern analysis is to keep the unreliability of such measures in mind. 
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Multidimensional scaling describes a class of procedures used to scale stimuli. It is 
an outgrowth of unidimensional scaling (Chapter 2), but responses concem relations 
among stimuli rather than stimuli themselves. The study may be concerned with dis
covering natural dimensions of similarity or how subjects combine known dimensions. 
Classical MDS assumes that the data are at least interval in character, but newer, ordi
nal methods produce distances from ordinal data. Several models of distance have 
been used, but the most popular is the Euclidian model for whicb the generalized 
Pythagorean distance theorem and triangle inequalities hold. The former states that the 
distance between two points is the square root of the distances along the individual di
mensions; the latter states that the distance along two sides of any triangle is at least as 
great as the distance along the third side. 

There are two components of an MDS study: (1) the empirical aspect of gathering 
the data, and (2) the mathematical aspect of deciding the properties of the data, specifi
cally the level of measurement it represents. The latter also includes whether to incor
porate individual differences into the analysis or not. One way to gather data is 
through extensions of the direct psychophysical tasks discussed in Chapter 2. One 
broad class of these methods provides measures of the overall similarity of the stimuli. 
These include (1) direct magnitude estimation, (2) category ratings, (3) rankings, (4) 
forced categorization, (5) free sortings, (6) the method of triads, and (7) bisection. 
Many of these are paired comparison methods. A second broad class of methods in
volve ratings of specified attributes. A third category llses indirect methods also dis
cussed in Chapter 2. These incJude matrices derived from (1) confusions, (2) joint (co-) 
.occurrences, and (3) transitions. 

Vector-space approaches to MDS obtain ratio-level data di.rectly from similarities, 
perhaps derived from magnitude estimations. A variant on this approach is vector 
product MDS in which the square root of similarity judgments is treated as a vector 
product, allowi.ng factor analysis to be employed. Unfoltunately, these methods do not 
guarantee a factorable (Gramian) matrix. An alternative Euclidian distance model pro
vides distances from confusion data. One popular measure is the square root of the 
ratio of the product of the probabilities of incorrect classifications of stimulus pairs to 
the product of correct classifications. 

One way to obtain ratio data from interval measures is to employ an additive con
stant which causes the measures to meet the Pythagorean distance and triangle as
sumptions. If the constant is large enough. the data will necessarily meet Euclidian as
sumptions but in the largest possible space. A smaller value will provide a space of 
fewer dimensions. There is an inherent similarity between this issue and the commu~ 
n~lity estimation problem in factor analysis. An iterative procedure is descIibed to 
compute the additive constant. 

The alternating least~squares p.lgorithm (ALSCAL) has dominated approaches to 
MDS that convert ordinal data to ratio scales. The name is derived from the fact that 
the procedure alternates between estimating optimal scaling and model parameters. 
Disparities. which are functions of the data, and distances, which are functions of the 
model parameters, are made as similar as possible. The fit of the model is derived from 
the similarity of these two types of data. The procedure is described and followed by 
simulation that explores ALSCAL's properties. 
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ft has been suggested that MDS be applied to correlation matrices. MDS will in fact 
provide a solution with one fewer dimension than a factor analytic solution, but that is 
in effect an artifact. Other relations between the two are that the origin of the MDS so
lution will be shifted to the group centroid and the MDS solution will be essentially 
the same as the MDS solution, ignoring the first factor, if the subject means are inde
pendent of the MDS scalar products. Conversely, the lVIDS and overall factor solutions 
will be essentially the same if the average correlation between each variable and all 
other variables is nearly zero, as when each has a mil{ture of positive and negative COf

relations. The difference between MDS and factor analysis is less important than the 
decision .about whether to let a general factor remain in the data or not. This general 
factor is important to the study of abilities but not to the study of preferences. 

Individual differences scaling was considered next. It employs a weighted Euclidi
an model. Individuals (which can be groups) are all assumed to respond to the same 
dimensions but may pay attention to these dimensions differentially. An example of its 
application was provided, The general discussion of MDS then concluded. One impor
tant point is that the all MDS models view stimuli as points in space. As SUch, they are 
assumed to be equally well-defined. Alternative models that treat Less well-defined 
stimuli as being more spread out in space are considered in the next chapter. 

We then considered methods based upon dominance measures. Despite the long 
history of Thurstone scaling, there are no methods for dimensionaIizing a matrix of 
dominance measures that have the degree of acceptance that factor analysis and MDS 
do with similarity measures. One approach is to convert a dominance problem to a 
similarity problem by including a subject's ideal stimulus as an object to be scaled. 
Similarity models can then be applied to the data. The most important modern domi
nance scaling procedure is unfolding, The basic idea is that a preferential ordering re
flects distnnces from the subject's ideal point to the various alternatives. Consequently, 
even though V stimuli can be rank-ordered VI ways, this number is severely con
strained when the underlying mechanism is an unfolding. ALSCAL provides a multi
dimensional extension of the model using the joint Euclidian distance model in wIDch 
distance is based upon the difference between a stimulus and an attribute over dimen
sions. This has been extended to the individual difference case where subjects may 
pay differential attention to the various dimensions. 
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CHAPTER OVERVIEW 

CHAPTER 15 
THE ANALYSIS OF 

CATEGORICAL DATA, 
BINARY CLASSIFICATION, 

AND ALTERNATIVES 
TO GEOMETRIC 

REPRESENTATIONS 

The opening paragraph of this book defined "measurement" to include both scaling 
and classification. However, nearly aU discussion has thus far been concerned with 
scaling. This is because most of our concern with discrete varia6les (in the sense of 
Chapter 4, not the mathematical sense) has been directed toward aggregating items 
into scales. This is certainly a proper and major focus since responses to "I get many 
headaches" or "The mean equals ___ divided by the number of observations" are 
properly viewed as too laden with error to be of much value on their own. Conse
quently they are aggregated, and most interest lies in the composite measure. This is 
not an inherent property of discrete variables. Even though there may be some ambi· 
guity associated with classifying individuals by religion, ethnicity, etc., each of these 
variables may be of interest in its own right and enter into strong relations with other 
variables. This is particularly true of experimental manipulations which are inherently 
categorical. 

Categorical modeling describes a rich variety of methods that can be used with dis
crete variables. Some of them are applicable to nominal measures in the sense of 
Chapter 1, others to ordinal measures, and still others relate one or more interval mea
sures to discrete criteria. Even though the Pearson chi-square, Eq. 4-32, used to test 
model fit dates back very far (pearson, 1900), methods paralleling the sophistication of 
those available for continuous variables, such as multiple regression, are very recent in 
origin. The authors' ex.perience has been that students in psychology tend to get much 
less ex.posure to these methods than students in some other areas, such as sociology. 
Yet, we feel they are very useful in psychology, and so at least an introduction is nec
essary in a telCt such as this one. In particular, categorical modeling will be shown to 
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offer a way of aggregating predictors that hall advantages over mUltiple re~7rt!ssjon 
(Chapter 5) and discriminant analysis (Chapter l4) when the critelion is discl~ete. We 
will therefore compare the three methods later in the chapter. 

The simplest problem in categorical modeling involves stimuli and responses thut 
each occur at only two levels. In fact, categorical modeling can be applied to any of 
the following problems, regardless of the number of levels that are involved. 

1 Assume you have two or more nominal or ordinal variables and you wish to 
study relations (associations) among them. Further assume that there is no clear dis
tinction between which are predictors (independent variables) and which are criteria 
(dependent variables). Various questions may be pose!;! about the associations among 
these variables, e.g., whether there is a relation between ethnicity and income, correct
ing for differences in level of education. 

2 Now assume that some variables are clearly predictors and others are clearly cri
teria. One may wish to know which predictors relate to the criteria and their weight
ings, as in ordinary (continuous variable) multiple regression. For example, you may 
wish to see how well choice of different brands of a product relates to demographic 
variables. 

3 [n one important special case of problem 2, logistic regression, one or more pre
dictors is quantitative. This is no different from the fanner problem in a general sense, 
but variables like age need to be specified differently from variables like ethnicity in 
the analysis and there is a complication in analyzing the outcome. 

4 In yet other special cases of problem 2, one is interested both in the individual 
and combined Goint) properties of the various predictors and criteria. This situation is 
the categorical (discrete) analog of the analysis of variance (ANOVA) and the multi
variate analysis of variance (MANOVA). 

5 You may wish to test specific properties of a two-dimensional matrix. For ex:am
ple, you may want to determine if the distributions of psychiatric diagnoses are the 
same among ethnic groups. The null hypothesis that the distributions are the same is 
called marginal homogeneity. Another question is whether a matrix is symmetrical 
within sampling error, as when classifications of two individuals are compared with 
each other. 

The simple case of two stimuli with their associated responses involves binary classi
fication. The theory of signal detection, introduced in Chapter 2, is an important way to 
study binary classification. The task discussed at that point was jUdging whether a par
ticular stimulus event had occurred or not. It was noted that there is a problem in sepa
rating a subject's accuracy in making judgments from bias or differential use of the re
sponse categories reflecting judgmental criteria. Two important aspects of signal 
detection theory are (I) it was initially an outgrowth of Thurstone scaling and (2) later 
applications, particularly by Wickens and Olzak, (1989), showed how categorical mod
eling could be used to address fundamental issues, e.g., separating accuracy from bias. 

Signal detection theory is also important because vector-based methods we have 
considered, such as factor analysis and MDS, define stimuli as points in space. By def
inition, mathematical points have no size, and so they differ only in location. Although 
we did not exploit the fact in Chapter 2 in order to simplify the later description of 



654 PART 5: ADDITIONAL STATISTICAL MODELS, CONCEPTS, AND ISSUES 

these vector-based methods, classical Thurstone scaling really considers stimuli as re
gions in a one-dimensional space defined by their discriminal dispersions, When we 
did consider stimuli as regions in the discussion of discriminant analysis, it was also 
simpler to consider the case in which the regions were of the same shape and size. 
Later in this chapter, we will consider alternative nongeometric models in which simi
larity is not defined in spatial terms and non-Euclidian models in which similarity is 
defined spatially but some alternative to the Pythagorean theorem, Egs, 14-1 and 14-2, 
defines distance. rn particular, we will discuss the following. 

1 General recognition theory (Ashby & Townsend, 1984), which ex.tends signal 
detection theory and Thurstone scaling to dual judgment tasks. Stimuli are viewed as 
producing bivariate distributions which mayor may not have the same size and shape 
and, as in the theory of signal detection, the forms of the decision criteria are impor
tant [0 consider, Ashby and Townsend also derive consequences of vieWing stimuli as 
points in Euclidian space and show that these do not necessarily hold empirically. 
They propose that similarity be defined in terms of distributional overlap. 

2 Tree representations, as employed ill Tversky and Hutchinson's (1986) nearest
neighbor analysis. Tree representations provide a very different way to define similari
ty and may be especially useful in scaling constructs, as opposed to physical objects. 

3 Non-Euclidian distance measures, as reflected in SchvaneveLdt's (1990) 
Pathfinder model. This model provides one measurement foundation for neural net
works used in connectionist approaches to cognition. rt defines distance through a gen
eralization of the Pythagorean theory, Minkowski r metrics, introduced in Chapter 14. 

CATEGORICAL MODELING 

Most forms of categorical modeling take advantage of the facts that 

1 The joint probability of two independent events, PI and Pl' is the product of their 
individual probabilities, Pij ::: PiPj, 

2 The natural Logarithm of this product (In) equals the sum of the natural logs, 
In(PIPj) ::: In PI + In Pl' and 

3 Natural logarithms have useful mathematical properties. 

Crucial aspects of these methods hold using common (base 10) logs, but natural 
logs are more convenient. Point 2 allows for linear methods that parallel continuous 
variable statistics. Because these models deal with linear functions of logarithms of 
probabilities, they are called log linear. Much credit for the development of these 
methods is due to Leo Goodman (cf. Goodman, 1978). Two additional areas of statisti
cal research contributed to our ability to address these issues. One is represented by 
the work of Bishop, Fienberg. and Holland (197S), and the other by the work of Griz
zle, Stanner, and Koch (1969; Koch, Landis, Freeman, Freeman, & Lehnen, 1977). 
When these traditions originally emerged, a major issue was Bishop et al,'s use of 
ma,,<imum likelihood (NIL) estimation versus Grizzle et al.'s use of generalized least
squares (GLS) estimation. However. the major difference from our perspective is the 
applicability of Goodman's (1978) work and Bishop et al.'s (1975) work when there is 
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no clear distinction between independent and dependent variables and the applicability 
of Grizzle et al.'s (l969) and others' work when there is a clear distinction. The term 
"log linear" will apply to the Goodman-Bishop et al. approach, and the term "predictor
criterion model" wUl describe Grizzle et aI. 's approach. Moreover, there are additional 
models which are not log linear in nature, but these will not be considered here (see 
the above references). Over the years, both ML and GLS estimation have been made 
available as options for categorical problems (as noted previously, GLS solutions are 
also often used as preliminary ML estimates, and the two converge upon One another 
in very large samples). One general algorithm can handle most categorical modelincr 

'" problems. We will assume ML estimation, as it is by far the most common. 
Several categorical modeling programs are widely available. We will make special 

reference to S~' PRoe CATMOD in discussion because of its flexibility. BMDP's 
B'MDP4F and SPSSX's LOGLINEAR are also useful. None of these, especially 
PROe CATMOD, is easy to use, and we do not recommend reporting results based 
upon anyone of these procedures until you have become extremely familiar with it. 
For one thing, parameters are defined differently than in the more widely used SAS re
gression and ANOYA procedures. Second, it must be invoked repeatedly (at least in 
the current releases of SAS) to obtain an important class of results from hierarchical 
models in the sense of Chapters 4, 10, and 13. 

In this introductory section, we will assume that there are two variables and that 
each has two levels. The next major section will consider more-complex, higher-order 
designs that exploit the power of categorical modeling. To make the discussion tangi
ble, suppose that one wishes to study the association between two dichotomous vari
ables, e.g., male and female voters (X) are asked which of two candidates, A or B, 
they prefer (Y) to look for what has been called the gender gap. Although it is com
mon to poll equal numbers of males and females, suppose interviewees are sampled 
from a list of eligible voters. Random sampling will yield a disparity in X that is pro
portional to the district (population) disparity rather than equality. If the district con
tains a high proportion of the elderly, females may well outnumber males. Further as
sume that candidate A is generally prefeued to candidate B. Consider two possible 
outcomes presented in Table 15-1. In one, gender and candidate preference are inde
pendent (the proportionS of females and males preferring each candidate are the same), 

TABLE 15-1 TWO POSSIBLE OUTCOMES REFLECTING THE RELATION BETWEEN VOTER GENDER 
AND CANDIDATE PREFERENCE 

Outcome I Outcome II 
voter gender, X voter gender, X 

Preferred candidate, Y Female Male Total Female Male Total 

A 420 280 700 500 200 700 
8 180 120 300 100 200 300 
Total 600 400 1000 600 400 1000 

Nots: Outcome I reflects independence of voter gender and candidate preference, and outcome II reflects 
association (nonlndependence). 
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and in the other they are associated (nonindependent). The outcomes were constructed 
so that the marginal frequencies in rows (700 and 300) and columns (600 and 400) are 
the same. 

The magnitude of a possible gender gap may be described in several possible 
ways. In an inferential sense, the respective evidence for independence and associa
tion can be derived by using Eq. 4-32 to obtain the respective Pearson t values of 0 
and 126.98 (ns and P < .001 with 1 d/). However, describing effect magnitudes is a 
problem when an association is present. You might note that 70 percent of females 
and 70 percent of males prefer candidate A to B under outcome r for a disparity of 0 
percent, whereas 83 percent of females and 50 percent of males prefer candidate A 
to B under outcome II for a disparity of 33 percent. An alternative is to repOlt the 
phi coefficients (<p) between gender and preference (Chapter 4), which are, respec
tively, 0.0 and 0.36. Unfortunately. both disparities and values of q, are influenced by 
the marginal proportions. Different marginals. as in a district with more nearly equal 
proportions of genders, will provide a different disparity in proportion and value of 
<P even when the underlying strength of association can be shown to remain the 
same in terms of a formal model. Log-liIlear models provide better ways to describe 
strength of association. 

Two-Way Independence 

We have noted that independence (lack of association) implies that Pij -= PiP} and that 
In PiP) = In Pi + In Pj' It is useful to describe the latter in tenns of frequencies, (/;;), 
where i andj denote the outcomes of events 1 and 2. This frequency equals Npij' Con
sequently Eq. 15-1 describes independence. 

ftJ = Npij 
= NpiP} 

In(flJ) = In(Npi Pi) 

= In N + In Pi + In Pi (15- l) 

Applying Eq. 15-1 and letting the first subscript denote the row (candidate) and the 
second subscript denote the column (voter gender), 

Infll = In LOOO + In(70011000) + 1n(600/1oo0) 
= 6.91 - 0.36 - 0.5 1 
='6.04 

The natural log of 420, the actual number of females preferring candidate A under out
come I (independence of gender and preference), is also 6.04. Likewise, 

lnfl2 = In 1000 + In(70011000) + In(40011000) 
= 6.91 - 0.36 - 0.92 

= 5.63 
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In/ll = In 1000 + In(300/1000) + In(600flOOO) 
= 6.91 - 1.20 - 0.51 

=5.20 

Jn/n = In 1000 + In(300/1000) + In(400flOOO) 
= 6.91 - 1.20 - 0.92 

=4.79 

You may verify that these sums also equal the natural log of the observed frequencies 
for the three remaining cells, a direct consequence of the independence of row and col
umn effects. Under these conditions, the disparity in log frequencies between the first 
and second rows is the same in each column and equals the marginal disparity in log 
frequencies: In 420 -In 180 = In 280 -In 120 = In 700 In 300 = .85. The same is true 
of the columns: In 420 In 280 = In 180 - In 120 = In 600 -In 400 = 0.40. These rela
tions also hold if the frequencies are divided by N to produce probabilities. 

These are very similar to the relationships that hold in an ordinary (continuous-vari
able) 2 x 2 ANOVA with equal sample sizes when there is no interaction, i.e., when 
row and column effects are additive. Consult a source like Hays (l988) if you are un
familiar with or rusty on the ANOYA. Equation 15-2 describes the resulting ANOYA 
model (a more complelC statement of the ANaYA modells necessary to describe the 
individual observations and the associated variability within groups). 

(15-2) 

We will use the symbol ~ to draw attention to certain similarities between regression 
effects and effects in categorical modeling; ..t is an alternative symbol in wide use. 
This equation states that each mean (Xi) equals the grand mean ().l) plus a treatment . 
effect associated with the row (~i) plus a treatment effect associated with the column 
(~j). A constraint normally introduced onto the various ~ values is that 1:~i = L~j = O. 
This can be accomplished for ~i by expressing each row mean as a deviation from 
the grand mean and can be accomplished for ~l by expressing each column mean as a 
deviation from the grand mean. Alternatively, each ~j can be deaned as plus and minus 
half the difference between the two coLumn means. For example, if the means for the 
first row are 2 and 4 and the means for the second row are 6 and 8, the row means will 
be 3 and 7, the column means will be 4 and 6, and the grand mean will be 5. Conse
quently the ~i values are -2 and +2 [either because 7 - 5 = 2 and 3 - 5 = -2 or because 
±112 of -2 - (+2) = ±2), and the ~j values are -1 and + 1. The entry in the first row and 
column (2) therefore can be expressed as 5 - 2 - I = 2. 

In a like manner, the log-linear model can be written as 

(15-3) 

This time,l;} is the mean of the logs of the cell frequencies which in tum is the log 
of the geometric mean of the frequencies (the Kth root of the product of the K fre
quencies, where K is the number of cells, four in the present case). This equals 5.41 
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for the sample data. [n order to estimate the ~i values, compute the mean of the two 
log frequencies in the first row, {In 420 + In 280)/2, minus the Olean of the two log 
frequencies in the second row, (In 180 + In 120)/2 or 0.85. Because of the indepen
dence of rows and columns, this will also equal the disparity between the logs of the 
row sums, In 700 - [n 300 and therefore the log of their ratio which we have noted 
to be 0.85. 

This log ratio is called the logit or log-odds ratio (LOR) of the effect. It is called the 
latter because it equals the log of the odds favoring the first outcome over the second 
since In(700/300) = In 700 - In 300. Plus and minus half this value (±OA2) provide the 
desired values of ~i' Likewise, the difference between the logs foc the two columns 
sums is (In 420 + In L80)l2 - (In 280 + In 120)/2 or 0.20. This again equals the differ
ence between the logs of the marginal frequencies and therefore the logic, so that the 
two desired values of ~J are 0.20 and -0.20. In this model, therefore, 

SAl + 0.42 + 0.20:::: 6.03 = lnjil (within rounding error) 

5.41- 0.42 + 0.20:::: 5.19:::: Lnfll 

SAL + 0.42 - 0.20 = 5.63 = Infiz 
5.41 - 0.42 - 0.20 = 4.79 = Ln/ll 

The grand mean thus provides one parameter estimate. the row effect prevides a sec
ond (although there are two values of ~i' only one is free to vary since their sum must 
be zero). and the column effect provides a third. Equation 4-22 can be applied to the 
disparity between the observed and predicted values, providing a like[ihood ratio chi
square. G2 = 2 Lo In(o/e) to test the departure from independence for significance. It 
would be based upon 1 dl-the number of entries in the table (4 In the present case) 
minus the number of estimated parameters (3 in the present case). 

Association (Nonindependence) 

A large value of 0 2 implies that a model based upon only the grand mean, row effect, 
and column effect fails (i.e., there is association of rows and columns), which may be 
illustrated using nonindependence outcome II. The log frequency of III under outcome 
II is 6.21. The difference between observed and obtained log frequencies of 0.17 re
flects the association between gender and preference. The remaining differences for 
112.ii,. andf22, are -0.33, -0.58, and 0.51. respectively. These log disparities do not 
add to zero (as in the ANOYA), but the disparities themselves do. A more complex 
model that contains an additional parameter, Eq. 15-4, is needed. 

Inlu = IJ. + ~i + ~j + ~u (15-4) 

These data are like an ANOYA with unequal sample sizes. As before, one parameter 
of the model is the mean of the ceU means (log geometric mean of the observations) or 
5.36. Although we cannot use the log ratio Df the marginal frequencies to estimate the 
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row effect (~D, we can use plus and minus half the difference between the averages of 
the two log cell frequencies over columns: 

In 500 + 1n 200 
2 

In 100 + In 200 6.21 + 5.30 4.61 + 5.30 
2 = 2 - 2 or ±0.40. 

We can do the same for columns to obtain the two values of ~j, which are ±O.06. The 
final parameters are obtained from the two pairs of diagonal entries as 

In/ll + InA!" 
2 

!n/21 + In/12 
2 

In 500 ;: In 200 
2 

6.21 + 5.30 4.61 + 5.30 = 2 2 

In 100 + In 200 
2 

These parameters are ±o.40, just like ~j in this case, but this is purely a coincidence. 
The sign of a given term is positive if ~r and ~J have the same sign, which is true of III 
and/n (their parameters are, respectively, both positive and both negative), and nega
tive if they have different signs, which is true of it 2, and 121' Consequently Eq. 15-4 
provides the following four equations: 

5.36 + DAD + 0.06 + 0.40 = 6.22 = !nlll (within rounding error) 

5.36 - DAD + 0.06 - 0.40 = 4.62 = 1nf:!1 
5.36 + 0040 - 0.06 - 0.40 = 5.30 = 1n112 
5.36 - 0.40 - 0.06 + 0.40 = 5.30 = lnh:! 

This saturated model reconstructs the logs of the original frequencies in terms of a row 
effect, a column effect, and an association term, which is like an interaction in the 
ANOYA. However, we have gained little since we have estimated four quantities to 
explain four known quantities. This exhausts the degrees of freedom and thus pre
cludes the model from being tested. However, the model furnishes one useful item
the association parameter (Pu) of DAD describes the gender gap, adjusting for the rows 
and column marginal totals. ~if reflects both association and random error but, as is 
generally true, the contribution of random error declines as the sample size increases. 

Equation 15-3 can be used to test ~utcome II. Since the marginal frequencies are 
the same under both outcomes, the 13; and I3j estimates will be the same, ±o,42 and 
±o.20, as is the average of the four log frequencies, 5.36. The differences (residuals, as 
in ordinary regression analysis) between observed and predicted values are 0.23 and 
-0.97 for the first row and 0.16 and 0.56 for the second row. The observed values, 0 

(SOD, lOa, 200, and 200), and expected values, e (400, 180. 280, and 120), provide a 
G1. value of 126.54. This is very close to the value obtained from Eq. 4-32 for the 
Pearson i (126.98). Equation 15-4 can be applied to outcome I; the estimate of PI} is 
zero. 
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Alternative Models for the 2 x 2 Case 

We have thus far considered two models. One defined the joint probabilities as the 
sum of the row and column effects, Eq. IS-3, and the other incorporated an additional 
associative parameter, Eq. 15-4. Equation 15-3 is a special case of Eq. 15-4 in which 
~ij ;;: 0 (Le., a nested model in the sense previously described in Chapters 4, 10, and 
13), and so Eq. l5-4 is therefore a generalization of Eq. l5-3 in which a parameter is 
added. Equations IS-Sa, 15-5b, and 15-6 define some additional models: ' 

Infu::: 11 + ~j 
lnfi] ::: 11 + ~j 
lofij;;: 11 

(IS-Sa) 

(l5-5b) 

(15-6) 

Equations IS-Sa and 1S-Sb each contain only one effect-rows but not columns in Eq. 
IS-Sa, and columns but not rows in Eq. 15-Sb. Both have meaning-the two genders 
could be of unequal size but prefer the two candidates equally, i.e., there is no gender 
gap. Likewise, the gendet·s could be of equal size, but each group could prefer One 
candidate Over the other by the same margin. Both models have 2 df Fi.nally, if the 
population contained equal numbers of males and females. if there was equal candi
date preference, and if there was no gender gap, Eq. 15-6 would hold. It has L dfthat 
reflects the overall sample size. [t is called a homogeneity model because it defines all 
cell frequencies as equal. Comparable parameter estimates for Eqs. 15-5 are the same 
as in the independence model, Eq. 15-3. Specifically, ~i is 0.42 in Eq. IS-Sa and ~J is 
0.20 in Eq. IS-5b because the marginal totals are the same. In contrast, the parameters 
for the associative model, Eq. 15-4, are based upon cell rather than marginal frequeo
cies. and so they differ in the two outcomes. Note that Eqs. 15-5 are generalizations of 
Eq. 15-6 and restrictions of Eqs. 15-3 and 15-4 but that they are not generalizations of 
one another. The parameter for the homogeneity model, Eq. 15-6, is simply N divided 
by the number of ceUs (4 in the present case). 

So far, the models we have considered do not exhaust all possibilities. Equations 
15-7 illustrate two others: 

Inlij::: ~ + ~i + ~u 
Infu::: ~ + ~J + ~ij 

(1S-7a) 

(lS-7b) 

Equation 15-7a describes an overall difference ill candidate preference and a gender 
gap but assumes the number of males and females sampled are the same. This could 
be the outcome of a study which chose equal numbers of males and females by intent. 
However, that study would likely consider gender as an independent variable and can
didate preference as a dependent variable. Consequently it would be tested with Griz
zle et al. (predictor-criterion) models, consi.dered below, rather than the Goodman
Bishop et at. log-linear models presently considered which make no such distinction. 
The log-linear model implies that no constraints were put on sampling by gender, so 
that the outcome reflects equal numbers of males and females in the population. per
haps an unlikely outcome. Equation 15-Th has simBar properties: It states that overall 
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candidate preference is split equally ~lt 50-50, but that there is an overall difference in 
numbers of males and females and a gender gap. Perhaps 400 males and 350 female:; 
preferred candidate A and 100 females and 650 males preferred ~andidate B. It too is 
unHkely. Both models have 2 df 

One final model is 

(15-8) 

This states that there are equal numbers of males and females and equal preference for 
the two candidates, but that there is a gender gap. This is perhaps even less plausible 
than Eqs. 15-7. The preference for one candidate would have to be exactly as strong 
among males as the preference for the other candidate among females. This is the ana. 
log of what 1s called a complete crossover interaction in the continuous-variable case. 
This model also has 2 df 

Equations 15-3 through 15-6 are hierarchical, and Eqs. 15-7a through 15-8 are non
hierarchical. Any association term (~!I in the present case) in a bierarchical model 
must contain its lower-order constituents, ~, and ~j. Lower-order tenns may exist in ei
ther type without their association, as can be seen in Eq. 15-3. Early algorithms re
quired the model tested to be hierarchical, but this is no longer the case. 

There is at present considerable debate over the use of nonhierarchical models 
(Rindskopf, 1990; Wickens, 1989). The second author has never been impressed with 
one argument against them-that it is unlikely that an association could occur in the 
absence of a lower-order effect, e.g., that a gender gap could occur when there are ex
actly the same number of males and females. In fact, any null hypothesis is unlikely; if 
we had access to the population data, we probably would always find a difference. 
However, null hypothesis testing has been a useful heuristic. A better argument is that 
higher-order terms are best computed as deviations from lower-order terms and used 
only when simpler models fail. 

Wickens (1989) and Bishop et al. (L975) both note that restricting discussion to hi· 
erarchical models has little practical effect because nonhierarchical models can usually 
be translated into hierarchical models by redefining variables. Suppose candidate A 
actively endorses issues supported by women and candidate B actively opposes these 
issues. We could define X as gender, as before, but define Yas whether or not voters 
select the candidate that is consistent with their gender. The ~!I then measures relative 
candidate preference. Defining variables in this way causes testing differences in 
numbers of males and females without testing overall preference to be hierarchical and 
testing overall preference without testing differences in numbers of males and females 
to be nonhierarchical. 

Measures of Association in the 2 x 2 Design 

The ~ii' its logit (twice the absolute value of ~ii)' and the odds ratio itself (without taking 
logs) are equivalent ways to describe the strength of an association. Although the odds 
ratio has the advantage of not requiring users to think. in terms of logs, it has the disad
vantage of not being symmetric. Cross·product ratios range from 1 to OQ when p =.5 but 
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range only from 0 to 1 when p 5: 1 .5. It is therefore difficult to compare cases in which 
p is above .5 versus below .5. In contrast, ~iJ and the logit merely change sign. [t is 
moderately desirable for measures to be bounded by -l and + l or by 0 and + 1 (be co
efficients). We have already discussed cP, which is certainly popular despite its depen
dence upon the marginal totals. Yule (1900, 1912; see Bishop et aI., 1975) proposed 
two coefficients. First let a. be the odds ratio: 

PlIP'll a.=-
PI2Pll 

(15-9) 

Note that Shepard's distance measure, Eq. 14-5, is the square root of the reciprocal of a. 
Yule's (1900) measure of association (Q) is 

a-I 
Q= a+ 1 

Yule's (1912) measure of colligation (1') is 

OS-IDa) 

(IS-lOb) 

These measure!! are most useful when levels of both variables have the same meaning. 
For example, we might interview male-female couples about their choice of candi
dates. One variable in the 2 x 2 table is the male's choice of candidate, and the other 
variable is the female's choice. The Q measure equals the conditional probability that 
they will choose the same candidate minus the conditional probability that they will 
choose different candidates. It will be positive when there is a preponderance of agree
ments, negative when there is a preponderance of disagreements, and zero when the 
two are equal. Moreover, it cannot exceed 1 in absolute value. The Y measure is gener
ally similar, but it is designed to address the issue of what would be the case if the row 
and column marginal probabilities were equally split, e.g., if the proportions of males 
and the proportions of females favoring each candidate were both .5. However, both Q 
and Yare sensitive to differences in marginal totals (S wets, 1986a). 

One additional way to correct for differences in marginal frequency is to compute 
the tetrachoric correlation (see Chapter 4). However, the criticisms made of it at that 
point (e.g., its large sampling error) are still applicable. We suggest that the associative 
effect (13ij) or the LOR be used to define strength of association, especially when there 
is also interest in the marginal probabilities, which can be defined as 131 and ~j or their 
corresponding Iogits. These measures allow marginal probabilities and associative ef
fect to be expressed in the same metric and have the useful property of symmetry. 

We have already noted how Eq. 4-22 may be used to compare obtained and expected 
(predicted) frequencies to obtain G2 values. These are residual values describing the 
model's lack of fit. Two other G2 values may be obtained: 
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1 A difference 0 2 may be obtained between two models us in Chapter 10. The 
residual C2 for Eq. I S-5a must be larger than the residual 0 2 for Eq. 15-3. The differ
ence C2 between them has I dfand tests the significance of adding ~J to the model. 

2 An effect G2 is obtained by squaring the ratio of a given effect to its standard 
error (which is computed by a relatively complex algorithm described in such sources 
as the SAS manual). This tests the significance of its presence in the model, i.e., 
whether it can be assumed to differ from Zero. 

Although difference and effect 0 2 values are often numerically similar, their inter
pretations are different. Both also depend upon what other variables have been includ
ed in the model. 

We will illustrate the computation of these various terms using outcome II. Table 
15-2 lists the observed proportions, the expected proportions for each of several mod
els, and the residual G2. We will use association notation to describe these models by 
placing quantities that are assumed to be associated in brackets. Thus. [Xy] denotes 
the saturated model of Eq. 15-4, [X][y] denotes the independence model of Eq. 15-3, 
and [X] denotes the model of Eq. 15-Sa in which only row effects are present. The 
symbol - denotes the homogeneity model of Eq. IS-6, and NH foUowed by the para
meters denotes the nonhierarchical models of Eqs. 15-7a, 15-7b, and 15-8. 

Application of Eq. 4-22 provides a residual G? of 2 (500 [10(500/250)] + 
200[ln(2001250)] + 200 [In(20/250)] + 100 [1nelOO/250m = 2(346.57 - 44.63 - 44.63 
- 9l.63) = 331.36 for the homogeneity model. The difference C2 for X (G~) equals the 
homogeneity residual G2 (331.36) minus the [X] residual G? (291.10) = 40.26, and the 
difference 0 2 for Y (C~) equals the homogeneity residual Cl (331.36) minus the [Y] 
residual G2 (166.81) == 164.45. The G~ is larger than the C}. and the residual C2 for Y 
is smaller than the residual G1. for X because the disparity in Y proportions (0.7 versus 
0.3) is greater than the disparity in X proportions (0.6 versus 0.4). 

The model [X] residual G2 - the model [X][Y] residual G2 (291.10 - 126.54) pro
duces the difference G2 for Y correcting for X (Ck) of 164.56. Likewise, the model 
[Y] G2 minus the model [X][y] G2 (166.81 - 126.54) produces the X difference 02 

correcting for Y (Ck) of 40.27. These are identical to their uncorrected counterparts 
G} and G}, but this need not be the case with more complex models. Finally, the inde
pendence [X][Y] residual G2 minus the associative [XY] residual 0 2 (126.54 - 0) pro-

OBSERVED PROPORTIONS. EXPECTED PROPORTIONS, AND RESIDUAL G2 

FOR ALTERNATIVE MODELS 

Model parameters ',1 '12 '21' '22 G2 

Homogeneity. 11 0.25 0.25 0.25 0.25 331.36 
(XI, 11, ~, 0.30 0.20 0.30 0.20 291.10 

I VI. 11, ~I 0.35 0.35 0.15 0.15 166.81 

(XlIV1. 11. ~, ~I 0.42 0.28 0.18 0.12 126.54 

(XV]. 11, ~'I ~/' ~q 0.50 0.20 0.10 0.20 0.0 
Observed 0.50 0.20 0.10 0.20 
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duces the association difference G? (G~y) of 126.54. All effects are significant Well be 
yond the .0 I level. Note that the initial 0 2 - G~ - O~IX - G~y (331.36 - 164.56 ~ 
49.27 - 126.54) = 0, as does the initial G2 - G~ - G~IX - O~y. This additivity is like 
the additivity of sums of squares in the ANOYA. The effect G2 values are generally 
similar to the difference 0 2 values though numerically distinct; e.g., the effect 0 2 for X 
is 150.76 in [X][YJ and in [X]. 

Which 0 2 should be used-difference or effect? In general, these address different 
questions. The difference 0 2 defines the reduction in uncertainty or variance in the 
contingency table as a particular effect is considered. It defines the effect adjusting for 
effects previously included in the model but ignoring effects incorporated at a later 
stage. rts value is in demonstrating that effecrs like X, Y, or its association add to previ
ous effects. Although the effect G2 can be used to this same end by evaluating it at the 
time of entry, its primary value lies in describing the unique contribution of an effect 
in the model that is ultimately selected, adjusting for all other variables in that model. 

If you are familiar with the notation SAS uses for its regression and ANOYA pro
grams, there is an analogy between the difference 0 2 and the type I (sequential or hier
archical) sums of squares and between the effect 0 2 in the final model as the type II 
(simultaneous) sums of squares. Statistical theorists tend to emphasize selection of a 
particular model out of alternatives. These alternatives grow at a geometric rate with 
the number of variables. In contrast. most empirical investigations are more directed 
toward identifying particular contingencies. 

The Generalized Logit Variant 

We have defined the logit of a particular event as In[p/l - p)] = In(p/q) = In p -In q, 
where p is the probability of a given event and q is its complement when there are two 
events. By extension, the generalized logits of a series of probabilities that add to 1.0 
are obtained by taking the log of the ratio of all bur one to the remaining event or base
line. Any event may serve as the baseline. although the last event in the series is a 
common default choice. Recall that under outcome II, the four cell frequencies,fu,f21. 
112. nodfn, are 420, 180,280. and 120. It does not matter whether we divide these by 
N (1000) because N will be eliminated in the process of forming the generalized logits. 
The generalized logits are therefore In(4201120) = 1.25, In(180/120) = 0.41, and 
In(2801120) or 0.85. These are all positive because 122. the baseline. is the smallest 
frequency. When it is not, some generalized logits may be negative. Note that the 
fourth possible logit, In(120/120), is O. This will always be the case, and so it may be 
ignored. 

Several log-linear modeling programs use generalized logits instead of the original 
frequencies. The result reduces the number of observed quantities by I and eliminates 
the parameter 1-1-. which is not of interest, from the model. The various parameter esti
mates and 0 2 values remain the same. 

Structural and Random Zeros . 
A random zero in a table states that an event could have occurred but did not. This 
may imply a sample was too small to obtain a relatively rare event. Many random 
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zeros in a table indicate problems in the analysis, especially when they are found at the 
same level across a given variable. This problem may be handled by collapsinC7 levels 
(relevant assumptions will be considered later in the chapter). In contrast, a st~llctural 
zero arises from the intent of the study. Chapter 14 dealt with transition matrices 
where one dimension reflected a classification at one point in time and the second di
mension reflected a later classification. If the analysis considers only those who 
change preftlrence, the diagonal entries wUl be structural zeros; e.g., if a study in
volves change of academic majors, students are ex:cluded if their major remains the 
same. Another common situation providing structural zeros is when individuals are 
given a list of stimuli, say pOlitical candidates or vegetables, and asked to name their 
top two choices. By definition, a given stimulus cannot be both a first and second 
choice, and so the diagonal positions of the matrix must contain zeros. Models with 
structural zeros are a bit more difficult to work with than ordinary models, but not ex
tremely so (see Wickens, 1989). 

Multiple Levels on a Variable 

Chapter 1 introduced the important point that any nominal variable at K levels can be 
represented as K - 1 separate variables such as dummy codes, each with 1 df Chapter 
5 showed how this could be applied to ordinary (continuous variable) regression. Ex
actly this same principle applies to categorical modeling. Effect G2 values, difference 
G2 values, and residual G2 values can be obtained for the separate variables. In addi
tion, difference and residual (but not effect) 0 2 values can be obtained for the effect as 
a whole. As in ordinary regression, there are an infinite number of ways to define the 
individual variables, but only a few are likely to be of practical interest. For example, 
schizophrenia, bipolar disorder, and major depression are three common psychiatric 
diagnoses. Assume that patients in all three groups are classified as having shown im
provement or not in response [0 therapy. Response to therapy has 1 df, but diagnostic 
category and the association of diagnostic category with response to therapy each have 
2 df One way to define the diagnostic category effect is to compare two groups sepa
rately with a third (baseline) group. This is analogous to dummy coding in multiple re
gression and is a common default procedure. However, it ma¥ be more useful to divide 
the 2 df into comparing (1) schizophrenics versus the two mood disorder groups and 
(2) the two mood disorder groups with each other, ignoring SChizophrenics. The asso
ciation with response to therapy may be defined analogously. 

Individual comparisons may be nonsignificant, but the overall effect may be signifi
cant for two reasons: 

1 Two groups being compared against a baseline group may differ from one anoth
er but not from the baseline group. 

2 The G2 needed fOT significance with K degrees of freedom is not K times that re
quired with the 1 dfinvolved in comparing two groups; the overaU effect is not addi
tive with respect to its component individual effects. 

One important issue is how to describe the overall effect magnitude. Chapter 9 of 
Wickens (1989; also see Wickens & Otzak, 1989) presents some alternative measures. 
One is the information transmitted or O.72135/N times the difference G2 associated 
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with the set of variables. The general logic of this measure is discussed in Garner and 
Morton (1969). Unfortunately, it is nof independent of K. 

Higher-Order Designs 

More models become possible as variables are added, most of which require open
fonn (iterative) estimation. For example, a model may have three variables, three first
order associations of the fonn ~ij' a~d a second-order association of the fonn ~ijk' 
Models of this form may be used to explore Simpson's paradox. (see Chapters 5 and 9) 
where there may be no association between X and Y at each level of a third variable 
(2) but X and Yare associated when Z is ignored. It is also possible for the direction of 
association to change when a third variable is controlled as opposed to ignored, as we 
will show. In general, a problem with three variables produces five types of models 
that we have previously considered: 

1 A homogeneity model in which all cells have equal frequency in the population 
and there are no associations: -

2 Three one-way independence models in which two variables have equal frequen
cy and there are no associations: (X], [Yl, and [Z] 

3 Three two-way independence models in which one variable has equal frequency 
and there are no associations: [X](y], (X][Z], and [Y][Zl 

4 A three-way independence model: [X][Y][Z] 
5 A saturated model: [XYZ]. 

In addition, there are three new types of models: 
6 Three one-factor independence models in which two variables are associated, 

but both are independent of a third: (XY][Z]. [XZ][Y]. and [YZUX] 
7 Three conditional independence models in which one variable is associated with 

the two other, but the two are independent of each other: [XY][XZ], [Xy][Yl], and 
[XZ][YZ] 

8 A homogeneous association model in which all pairs of variables are related, but 
there is no three-way association: [XY](XZ][YZ]. 

There are also several nonhierarchical models that we will ignore for simplicity. Be
cause there are so many possible models, it is important that the order of variable entry 
be well formulated in advance, as effect magnitudes are order-dependent. One prob
lem encountered is that this ordering may be arbitrary. As effects may be highly corre
lated, it is wise to look at alternative orderings. More specific models may be tested in 
special circumstances (see the section titled "More Specific Categorical Models" 
below). 

We simulated a homogeneous association model in which all two-way (first-order) 
associations are present but there is no three-way association to saturate the model: 

InJii!:::;: 6 + ~, + ~j + ~k + ~ii + ~ik + ~jlc (15-11) 

The number 6 defines the sample size as the geometric mean of each group. Assume 
that fue study COncerns 5-year survival after treatment for cancer. 
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lOne variable (f) is the year of treatment (1950 or 1990), and the associated val
ues of ~i are -0.2 and +0.2. Making the first value negative causes the overall rate to 
increase. 

2 A second variable (J) describes the overall outcomes, and the associated vulues 
of ~j are +0.8 for success and -0.8 for failure, i.e., people generally survived. 

3 A third variable (K) reflects the type of cancer (A, B, or C); the three values of ~. 
are +0.3, -0.2, and -0. I, and so there is a predominance of type A cancer. k 

" The parameters reflecting the association of year ancl outcome were ~ II :::: ~12 == 
- 0.1 and ~ 12 :::: ~11 = +0.1. reflecting higher survi val rates in 1990 thun in 1950 due to 
medical advances. 

5 The parameters reflecting the association of year and type were ~ik :::: -0.60, 
+0.05, and +0.55 for the three types in 1950 and ~ik :;; +0.60, -0.05. and -0.55 for 
1990. These represent the change in distribution of the three forms of cancer over 
time. 

6 Finally, the associations between outcome and type of cancer were ~jk :;; -0.50, 
-0.03, and +0.53, and so the associations for nonsurvival were ~Jk:::: +0.50, +0.03. and 
-0.53. These mean that type A cancer is most life-threatening and type C cancer is 
least life~threatening. 

The observed quantities generated by these parameters are given in Table 15-3. It 
will be useful if you verify the analysis. The proportion surviving is simply the num
ber surviving over the total for that yeaI' and type, e.g., 298 people survived type A 
cancer in 1950,200 did not, and 298/(298 + 200)= 0.60. The parameter estimates dif
fered trivially from the actual parameters because of rounding error. Consistent with 
the lack of three-way association, the residual G2 for the homogeneous association 
model was exactly 0 with 2 df The residual 0 2 values for the year by outcome, year 
by type, and outcome by type associations were 32.61, 1493.63, and 2216.36, respec
tively. All three temlS are clearly significant, and so the simpler conditional indepen
dence models can properly be rejected. Note what has happened though. The survival 
rates for the individual forms of cancer all incl'eased and the percentage change was 
greatest for the most difficult form of cancer to treat. type A. There is a positive asso
ciation between year and probability of survival within types. However, in 1950, 2625 
individuals (298 + 555 + 1772) survived and 496 (200 + 145 + 151) did not survive. 
Consequently the survival rate that year was 2625/(2625 + 496) or 0.84. The corre-

SIMULATED SURVIVAL FIGURES For1 THREE TYPES OF CANCER IN 1950 AND 1990 

1950 1990 
survival rate survival rate 

---- -----
Type Yes No p(surv) Yes No p(surv) 

A 298 200 .60 1808 812 .69 
B 555 145 .79 915 160 .85 
C 1n2 151 .92 1074 61 .95 

NotfT. p(surv) is the probability 01 surviving or number surviving divided by the tolal for that type and year. 
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sponding figure in L990 was 0.79, and so there is a decline in overall survival. This is 
an artifact of the changing distribution of type of cancer, i.e., Simpson's paradox:. Log- . 
lineal' modeling is a powerful way to investigate phenomena such as these which of~en 
give rise to the paradox. 

Predictor-Criterion Models 

Models have thus far not distinguished between predictors and criteria. but one might 
wen argue that it would be more natural to ask how candidate preference depends 
upon gender and how cancer survival depends upon year. type, and their associations 
in the above examples. These involve predictor-criterion models. Various methods 
exist to tit such mOdels, including those that model the criterion response probabilities 
directly. This is especially useful for ordinal criteria such as whether a patient got 
worse, remained tlie same. or responded positively to therapy or interval criteria. We 
will model the generalized logits of the criteria for the voting example. When the crite
rion is a dichotomy, there is one respom~e function (e.g., the relative preference for 
candidate A over candidate B) that is modeled as a function of the predictor(s). 

Equations 15-12 describe four models that may be applied to the voting data in 
Tables 15-1 and 15-2: 

logit Y = 0 

logit y= ~o 
logit y= ~i 
logit Y = ~o + ~{ 

(15-12u) 

(15-12b) 

(15-12c) 

( 15-12d) 

1 Equation 15-12a treats all four probabilities as homogeneous. so that the result
ing three logits are all zero. It has 3 dfbecause one of the four cells (hz in the present 
case) provides the baseline aguinst which. three observed (ogits are obtained. It states 
that the two outcomes are (a) equally probable (preferences are divided 50-50) and (b) 
unrelated to the predictor (gender). 

2 Equation lS-12b states that the two olltcomes are not equaJly probable, arid j3n 
describes the log of their ratio. However. 130 is independent of the predictor (gender) 
and is the intercept of a regression equation with a slope of zero. This intercept plays a 
role similar to that of J.l in log-linear models, but it describes the natural log of the rela
tive preference rather than the absolute frequency. 

3 Equation 15-12c states that the preference is related to the predictor, but the 
overall ratio of preference for candidate A over candidate B is t, und so the log ratio is 
zero. Females prefer candidate A by a given amount, and males prefer candidate B by 
that same amount. The ~i parameter is basically a slope parameter that relates the dif
ference in candidate preference to gender. 

4 Equation 15-12d holds when the predictor (gender) is related to the criterion 
(candidate preference) and there is an overall candidate preference. 

In more complex models, individual effects are designated ~J' ~kt • • .; two-way 
(first-order) associations among predictors are designated ~lj, ~Ik" • • • 
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The residual 0 2 values for these four models under outcome [j were 166.81: 
126.54, 2.24, and O. The last-mentioned arises by necessity because Eq. 15-hd i~: a 
saturated model. The intercept is fitted before the slope because the interc~p.t is the 
simpler concept; the intercept depends only L1pon the criterion. but the slope is- a j9int 
function of the predictor and the criterion. Consequently, the difference 0 2 for the in
tercept term is 166.81 - 126.54 or 40.27, and the slope adjusting for the intercept is 
126.54 - 0 or 126.54, both of which are significant. The first of these 0 2 values estab
Ushes an overall preference, but the point of greater interest is that the OZ for the slope 
is identical to its value in the log-linear modeL However, the slope effect in the satu
rated model (the gender gap, ~;) is 0.80 or twice what it was in the log-linear model. 
This is because predictor-criterion models describe ratios of outcomes, whereas log
linear models describe how individual outcomes differ from 0.5. In a dichotomy, 
In(p/q) will be twice In(pIO.S), and so it will also be twice In(q/0.5), but the corre
sponding 0 2 values will be identical since both log(p/O.5) and log(qIO.5) contribute to 
the 0 2 value in a predictor-criterion model. 

Predictor-criterion models have fewer terms than their log-linear counterpartS be
cause they use only those terms that relate to the criterion. This model ignores any 
overall disparity between males and females. If the ratio of females to males were to 
change but their relative preferences were to remain the same, ~i (0.80) would not 
change. 

Multiple Response Categories in Predictor-Criterion Models 

In order to consider what happens when there are more than two response categories, 
it is necessary to consider three major cases: 

1 Multiple nominal levels of a single attribute, e.g., political party a:ffiliation, in
cluding independents 

.2 Multiple quantitative levels ot' a single dimension, e.g., got worse, remained the 
same, or improved in therapy 

3 Combinations of two or more attributes; e.g., an subject might be asked whether 
faint tones were presented to the left ear, tight ear, both ears, or neither. Gamer and 
Morton (1969) and Wickens and Olzak: (1989) have studied judgments of this form. 
We will briefly describe the kind of analysis Wickens and 01zak: performed. A later 
section will consider Ashby and Townsend's contributions, e.g., Ashby and Townsend 
(1986). 

In aU cases, the multiple levels are analyzed by combining a hypothesis matrix 
(also called a design matrix) representing the desired response effects with a hypothe
sis matrix representing the stimulus effects into an overall effect matrix. The same op
tions exist for multiple response levels as exist for multiple stimulus levels (see the 
section "Multiple Levels on a Variable"). If the dependent variable is a composite of 
two separate responses, as in the example of the tones presented to the two ears, one 
may model each separate response plus the association of the two responses, which 
denotes whether the two responses are the same or different. In particular, the four re
sponse categories may be arranged as tone in (1) both ears, (2) left ear alone, (3) right 
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ear alone, and (4) neither ear. The contrast of (I) + (2) versus (3) + (4) represents re
sponses to the left-ear stimulus; the contrast of (I) + (3) versus (2) + (4) represents re
sponses to the right-ear stimulus; and the contrast of (I) + (4) versus (2) + (3) (associa_ 
tion) represents whether the two responses were the same or different. 

Logically, response and stimulus associations are no different, and so the four stim
uli may be partitioned in the same way. The data matri;, contains 16 c~ns (4 stimuli by 
4 responses). In the present case, the experimenter defines the frequencies of each of 
the 4 stimulus combinations, usually as equal. but these quantities may vary freely in 
nonexperimental settings. There are 12 remaining degrees of freedom. Three effects, 
each with 1 df. represent the intercepts or marginal effects, which are biases in using 
the response categories. For example, the subject may tend to say the left-ear stimulus 
was presented more often than it really occurred or favor same rather than different 
response combinations. The remaining 9 df represent combinations of three stimulus 
effects and three response effects. 

The direct relations between the left-ear stimulus and its response and between the 
right-ear stimulus and its response will probably be the strongest contingencies in 
terms of both ~ and G2• Once these effects and two separate response biases (but not 
their association) are included in the model, any other effects represent judgmental 
nonindependence. For example, whether or not a stimulus is presented to the left-ear 
may affect the accuracy of judging the right-ear stimulus. A tendency to use the same 
or different response categories (an association between the two marginal biases) also 
denotes lack of independence. 

Some Important Assumptions 

Wickens (1989) describes three assumptions critical to the use of both "l and G2• 

These also apply to descriptive measures. 

1 The observations must be operationally independent of one another. 
2 The observations must have the same distribution. 
3 There must be a large number of observations. 

Operational independence means that classifying one variable has no built-in influ
ence on classifying the other even though the results may be empirically related. For
example. patients given therapy A versus therapy B may either improve or not im
prove. It is assumed that the same standards are used to classify improvement in the 
two therapy groups, preferably by a blind method. Of course, the goal of the study is 
to see if there is a difference in Improvemem between the groups. As obvious as the 
requirement of operational independence Is, it is often violated in practice. Violations 
can arise in many ways. For example, if the political poll illustrated Table 15-1 were to 
be conducted by having unbiased interviewers call up people. each call could be 
viewed as independent of the other caUs. However, if interviewer biases affected their 
interviewing strategy, subjects interviewed by one interviewer might have something 
in common that subjects interviewed by another interviewer might not (one possibility 
in this case would be to include interviewers as a variable). Likewise, if people were 
interviewed in a group-so that their answers could be overheard, there might be a ten
dency toward conformity. 
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The independence rule is often interpreted as requiring the observations to come 
from different individuals. This would eliminate many applicationll in which individ_ 
ual subjects are observed on many trials. For example, traditional psychophysics Uses 
a small number of subjects, each of whom makes many judgments. Clearly, one Would 
not wish to run N individuals for one trial each. However, a composite duta matrix will 
contain two sources of variability-between and within subjects. One possibility is to 
estimate parameters from individual subjects, average the estimates, and add the G~ 
values. Although there are often clear departures from independence in a subject's re
peated observations (e.g., their tendency to want to balance out responses), parameters 
obtained from individual subjects do not contain any between-subject variation and do 
not seem to do statistical "harm." The composite 0 2 will have N degrees of freedom. 
This approach is more conservative than simply using the aggregate data. Moreover, 
the variability in the parameter estimates descdbes the consistency of the effect over 
subjects: It makes a great deal of difference in interpretation whether a mean value of 
~ij of 0.1, for example, represents individual values ranging from 0.05 to 0.15, which 
would denote very high stability, versus from -0.05 to +0.35, in which case the com
posite would be of lesser value. If the number of parameters (K) is small and N is 
large, the 0 2 test itself can be bypassed in favor of parametric tests on the parameter. 
For example, an ordinary single-group t test can evaluate the null hypothesis that the 
mean ~ij is zero. Simply divide the obtained mean by the standard error of the mean 
(the standard deviation of the estimates divided by N). Mixing between- and within
subject errors also relates to assumption 2 since the two sources are probably of differ
ent magnitudes. Individual estimation does not really solve this problem completely if 
there are latent groups. For example, if the data in Table 15-1 was derived from a mix
ture of people with more versus less traditional values, any effect might hold differen
tially in the two groups. This is basically the problem of specification as in ordinary 
multiple regression (see Chapter 5). 

Estimating parameters from individual subjects in more complex designs may be 
difficult when the number of parameters is large compared to the number of observa
tions per subject. The second author suggests forming "supersubjects" by randomly 
pooling subjects. For example, Bernstein, Bissonnette, and Welch (1990) used a com
plex design involving 32 parameters with 50 subjects based upon 80 responses per 
subject. They could not estimate each subject's parameters. Five supersubject groups 
of 10 subjects each were formed. The standard deviations of each set of parameters 
were multiplied by v'W to estimate their variability over individual subjects, using the 
central limit theorem in reverse. One possible extension is to form groups on the basis 
of some external characteristic of interest to study the relation between this character
istic and relevant parameters. The logic parallels that of forming pseudofactors. 

Finally, assumption 3 deals with the point that Eqs. 4-22 and 4-32 hold only in 
large samples-G2 = 2 LO [In(o/e)] is asymptotically distributed as chi-square. It is ex:
tremely difficult to say how many total obserVations are needed. The traditional caveat 
is five expected observations per cell. Thus, if one variable 1S at three levels, another is 
at four, and observations are equally divided among levels of both variables, the rule 
would dictate a minimum of (3)(4)(5) or 60 observations. However, Wickens' (1989, 
p. 29) suggests that this is too strict. Size becomes more important when there is an 
sharp imbalance in marginal frequencies. The appropriate strategy is to pool categories 
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when there are too many categories for the number of observations. Two important 
considerations are that (I) the combined categories should make sense and (2) pooling 
with respect to one variable be done independently of the other variables in the analy
sis. For example, if one variable is levels of agreement with regard to an attitudinal 
item, it might make sense to pool "agree" and "strongly agree," but whether these two 
categories or "disagree" and "strongly disagree" or both are pooled should not depend 
upon what this variable is being related to. 

As in other applications, unreliability of the classifications can attenuate relation
ships. This is particularly important to consider in predictor-criterion models for the 
same reason that it is important in ordinary regression: The model attributes error to 
the criterion rather than to the predictors, which may in fact be incorrect. This does not 
mean that one can ignore the issue in log-linear models. 

Log-linear Modeling and Item Response Theory 

The logistic distribution was introduced in Chapter 2, and we have previously noted 
that the one-parameter logistic (Rasch) model in Chapter to may be written as a log
linear model [see Thissen, Steinberg, & Wainer (1992) who provide additional refer
ences]. In particular, the log probability of the response profile (vector) is a linear 
function of the item difficulties. 

Let X denote a profile of responses such as "correct, correct, correct, incorrect, COl'

rect" on a five-item abilities test. It replaces the previous termA that was used to de
scribe a two-dimensional table because there are now as many subscripts (dimensions) 
as there are items. Equation 15-13 describes the relationship between the probability 
of achieving a given profile and the log-linear parameters of a single group. It is slight
ly simpler to model probabilities instead of frequencies. 

In[p(X)] = I:~;XI + ~D 

p(X) = probability of obtaining a given response profile 
In = natural logarithm function 
~I = diffiCUlty of item j 
Xi = response to the ith item (colrect vs. incorrect) 
~o = overall group ability 

(15-13) 

The units of measurement may be defined when there is only one group by fixing 
~ l and ~o at O. The remaining 131 values become the difficulties of the remaining items 
relative to the first item. 

Equation 15-14 allows the model to examine differential item functioning (DIF) in 
two groups by including association terms that reflect differences in item difficulty be
tween groups. 

(15-l4) 



CHAPTER 15: THE ANALYSIS OF CATEGORICAL DATA 673 

The quantity ~II represents the skill of one group relative to that 01' an()th" I . . . . "r ant con-
trols for group differences In overall ability. The '\.,. ",,' are group-by- 'Item '\~' . . 

• . •• t-'~ 0... L .,SOClmH)lls. 
It they are present, one or more Items vanes In relatIve difficulty across groups. If 
these ~gig.d terms are zero, Eq. IS-IS holds:. 

( 15-15) 

The difference in G2 between Eqs. 15-15 and 15-14 tests for DIP. Keep in mind thut 
this assumes that the items vary only in difficulty and not in discrimination and thut 
there is no guessing. More complex IRT models are not log linear in nature. If YOlir in
terest is in these complex models, consider a program specifically desianed for IR'T' 

b .1, 

such as :NillLTTI..OG (Thissen, 1988). However, the methods of Chapters 6 through 9 
will often tend to produce items whose discriminations are essentially the same. 

There are certain similarities between IRT and categorical modeling, but the differ
ences are equally important. In particular, IRT is latent variable modeling, categorical 
modeling 1S not, in general. However, there is much positive transfer in learning the 
two because of their joint use of log-linear relationships. 

More Specific Categorical Models 

There are several more specific models that appear in certain categorical modeling ap
plications. One such model is quasi-independence, which means that two variables are 
unrelated in the presence of structural zeros (Le .• fit Eq. 15-3 rather than the more gen
eral Eq. 15-4) but would be related if structural zeros were real, nonzero observations. 
For example, first and second choices among events may be independent when people 
cannot select the same stimulus twice, but they may be highly related when they are 
given this option. 

Several interesting models arise when the rows and columns of a two-dimensional 
table have the same levels, e.g., when people are asked whether or not they would con
sider buying each of two brands of automobiles. In this case, the levels of each dimen
sion (brand) are yes versus no. The cells contain the joint frequencies of the twO judg
ments, e.g., the number of people who would buy both brands. Another example is to 
ask two clinicians to diagnose a series of patients as schizophrenic or not. Yet another 
is to obtain a transition matrix of first and second preferences. The latter is complicat
ed. The diagonals of the matrix will probably contain structural zeros since a given 
stimulus cannot be both a first and a second choice, but these diagonals are relatively 
unimportant to the analysis. The tone detection experiment provides another example. 
The present discussion generalizes to more than two dimensions (e.g., to three or more 
brands of cars) and more than two levels, but we will limit discussion to dichotomous 
classifications at two levels. 

The strongest possible relationship is symmetry-the matrix remains the same 
within sampling error when rows and columns are reversed; e.g., two brands of auto
mobiles are judged equivalently, two clinicians perform equivalently, etc. This model 
formally scaCes that Pi! = Pji for all values of i andj. Given symmetry, the best estimate 
of the expected values of Pij and Pj; is their corresponding sample average. If each fae-
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tor has K levels, the complete table has Kl entries. However, the K diagonal values are 
unimportant to the model, and so there are K( K - I) observed quantities. Half of these 
are constrained to equal the other half. Consequently, there are K(K - \)/2 constraints, 
leaving K(K - 1)12 degrees of freedom to test the model. 

Deviations from symmetry call result from either differential association or lack of 
marginal homogeneity. Differential as.~oc.:intiorl means that the effect of i upon j Caij) 
differs from the effect 01) LIP'Hl i (~ii) indr.pendently l)r marginal (overall) preferences. 
POI' example, suppose people have to make a second choice of a vegetable from (l 

menu after being told that their lirst choice is unavailable. Differential association 
means that people are more likely to choose corn after initially choosing string beans, 
or vice versa, controlling for overall pre terence. [n contrast, marginal homogeneity im~ 
plies that the margjnal distributions are the same for rows and columns. Thus, two 
clinicians might use diagnostic categories with the same frequency, or the overall pref~ 
erence for two automobiles may be the same. Conversely, if one clinician is more Iilce~ 
ly to use a given diagnostic category than another or one automobile is more popUlar, 
the result will be marginal heterogeneity. Marginal homogeneity is rather unlikety in a 
transition matrix since something with a very high probability of being a first choice 
has a low chance of being a second choice. fn tbe extreme, a stimulus that is always 
the first choice will never be the second choice. This model bas K - 1 degrees of 
freedom. Data that do not fit a symmetry model because of marginal heterogeneity but 
do not have differential association fit a quasi-symmetry model which has (K - 2) 
{K - 1)/2 degrees of freedom. Testing for quasi~symmetry is relatively difficult to de
scribe. See Wickens {1989}. 

Logistic regression relates levels of a quantitative predictor to a categorical response. 
It began as a way to obtain dose-response curves relating drug dosage to a target re~ 
sponse such as symptom alleviation. Its only difference from previously considered 
predictor-criterion models is that numeric values of the predictor replace a series of 
contrasts. Consequently, the predictor employs 1 elf rather than K - l degrees of free
dom. Both are therefore part of the more general class of lineal' models. This predictor 
may also be combined with other predictors (quantitative or nominal) in the overall 
analysis. For ex.ample, one can study the joint effects of varying drug dosage and the 
presence or absence of psychotherapy upon symptom remission. The term "logistic re~ 
gresslon" describes the mathematical function fit to the relation between the continuous 
variables. This is the same logistic function introduced in Eq. 2-6 and discussed exten~ 
sively in Chaprer 10. ft may be written as Eq. t5- L6 in terms of the probability of X: 

l.'(+a 

p(X) = 1 bX+u 
+e 

( t5~16) 

As usual, e = 2.71828+. As in ordinary regression, b is a slope parameter and a is an 
intercept parameter. Indeed, some simple algebra will make this equation look just like 
a regression equation, Y:::: bX + a. 
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p(X)( I + iX+rt) = eb,y+</ 

p(X) + p(X)ebX+// = e"X I<J 

P(X) = !X+c/ _ p(X)ebX+a 

= iX+C/[ I - p(X) 1 
p(X') bX+cI 

=e l-p(X) 

Since the natural logarithm (In) is the inverse of the exponential transfonnation, 
In C:= eln(,l) = X and In{p(X)/[l - p(X)} = logit X, taking naruralloganthms of born 
sides produces the desired outcome, Bq. 15~17. 

lO[ 1 ~;X) J = logit X = bX + a (l5~17) 

In other words, the logit of X is a linear function of X. Figure 15~1 relates p(X) to logit 
X. Like many other functions used in curve fitting (e.g., the cumulative normal distri~ 
ution), it is linear over much of its range except at the extremes of p(X) where, unfor~ 
tunately, the data are least likely to be stable. 

The six points in the psychomettic function in Fig. 2~2 may be fit as an example 
using a program Like SAS PROC CATMOO. These paired values are (185, 0.08), 
(190, 0.15), (195, 0.28), (205,0.80), (210,0.85), and (215, 0.95). The resUlting esti~ 
mate is logit X = D.18X - 36.89. Various terms like the absolute threshold discussed in 
Chapter 2 may be derived from the parameter estimates. 

FIGURE 15-1 Logit Xas a function of p(x). 
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Comparing Groups with Logistic Regression 

Logistic regression is especially useful in comparing functions across groups. For eX.
ample, assume the dosage of a drug (X) has been varied to detennine its effectiveness 
e.g., whether or not patients improve. Denote the probability of a target response such 
as improvement as p. Although one might study a single new drug when the outcome 
of conventional treatment is well known, it is more common to compare a drug with a 
control (placebo) medication or another drug. The possible results of comparing the 
two drugs fonn a hierarchy of models: 

1 Logit X=: O. The regression lines for both drugs are independent of dosage and 
p::: .5. This model implies that (a) both drugs are ineffectual and (b) the baseline prob
ability of the target response is .5. 

2 Logit X = a, where a it O. The regression lines for both drugs are independent of 
dosage at a common p it .5. Both drugs are still ineffectual, but the target response has 
some probability other than .5. 

3 Logit X = bX + a. The regression lines for both drugs have identical nonzero 
slopes with dosages. This is unlikely when one of the drugs is a placebo, but it may 
arise from comparing two potentially active drugs. 

4 Logit X = bX + ago The intercepts (aR) differ for the drugs, but their slopes are the 
same, and so the regression lines are parallel. The drugs differ in threshold for the cri
terion response, but changes in dosage are equally effective. This too is more likely 
when both.drugs are potentially active. 

5 Logit X = bgX + ago Both the drug slopes (bs) and intercepts Cag) are different; the 
drugs differ in effectiveness. 

The outcomes are diagrammed in Fig. 15-2. 
Within each model, special cases may ex.ist of importance to specific applications. 

For example, given that the groups have a common slope and intercept (model 3), a 
test that a = 0 (p :::: .5) may be relevant. Second, if modelS holds, perhaps only one of 
the two drugs is effective, the case of interest when the other drug is a placebo. Like
wise, given different slopes (modelS), one may wish to test for equal intercepts and, 
perhaps, that this common value of a is O. Testing the five models and these additional 
cases uses principles derived from hierarchical evaluation of residual 0 2 values previ
ously discussed. 

An Illustrative Problem 

This section involves a somewhat more complex example using ,rea). data obtained 
from 300 male and female adolescents of African-American or Hispanic ethnicity. 
They were weighed; their height was measured, and they were asked whether or not 
they considered themselves overweight as part of an overall study of adolescent health 
care. The data were obtained by Prof. Judith Keith at a series of publicly supported 
clinics loca:ted in Dallas, Texas. Although there are perhaps better ways to define de
grees of over- or underweight. we used the simple ratio of weight (in kilograms) to 
height (in centimeters) along with gender and ethnicity to predict self-perception of 
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(Il) Logit(X) == 0 (b) Logit(X) = 'I (e) Logit(X) == /IX +11 

x x x 

(d) Logit(X)=: bX + ag (e) Logit(X) = b,x + Clg 

x x 
FIGURE 15-2 Five logistic regression models: (a) loglt X = 0 (homogeneity with P(X) :: .5); (b) logit X:: a 

(homogeneity with pIx) $ .5); (e) loglt X = bX + a (common slopes and Intercepts); (d) logit X = 
bX + ag (common slope. separate intercepts); and (e) Logit X = bgX i- all (separate slopes and 
intercepts). 

obesity. These ratios ranged from 1.19 to 4.18. The sample was 62 percent African 
American versus 38 percent Hispanic and 23 percent male versus 77 percent female. 
Table 15-4 lists the residual 0 2 values and the associated degrees of freedom arising 
from the successive models identified as A. B •.. '. I. 

The design e:<tracts an overall linear trend, gender differences, ethnicity differ
ences. and all possible associations. Each residual 0 2 value is subtracted from its pre
decessor to produce the difference 0 2 values in Table 15-5. Thus. the difference in 0 2 

for a model in which p is a free parameter (299.64) and the G1 value obtained when p 
is fixed at .5 (384.88) tests the hypothesis that half of the subjects consider themselves 
overweight and half consider themselves underweight, ignoring weightlheight ratio, 
gender. and ethnicity. This G2 (85.24) is highly significant with 1 dj, and so this 
hypothesis may be rejected. 

Model 1 (p == .5) is not of great interest since there is no reason to think that half 
the population considers themselves overweight. The associated value of ~ (-1.32) de
notes that 21 percent of the sample thought themselves overweight. However. this is 
simply the logit of the observed proportion in the null model. The slope effect (differ
ence G2 = 7.57) denotes that larger weight/height ratios are associated with highel' 
probabilities of self-reported overweight. an e:<pected outcome. The most interesting 
finding is the ethnici.ty effect: African Americans were more likely to consider them
selves obese than Hispanics at a given weightlheight ratio (difference 0 2 = 7.40, aU 
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TABLE 15-4 RESIDUAL G2 VALUES REFLECTING PERCEPTIONS OF BEING OVERWEIGHT AS A 
FUNCTION OF WEIGHT/HEIGHT RATIO, RACE. AND GENDER 

Adjustment G2 

A. None 384.88 
B. Intercept 299.64 
C. Slope (W/H ratio) 292.07 
D. Gender 291.39 
E. Ethniclty 283.68 
F. Gender by ethnicity 283.20 
G. Slope by gender 283.19 
H. Slope by ethniclty 282.70 
I. Slope by gender by ethnicity 282.68 

df 

272 
271 
270 
269 
268 
267 
266 
265 
264 

Note: Adlustments described are cumulative; e.g •• the slope adJustment alsa includes the intercept adJusl
ment. 

p c::; .01). It is also of interest to note that there was no effect of gender; adolescent 
males and females used the same criteria for obesity. The slope and ethnicity effects in 
the final model estimates were 0.97 and 0.86. The latter value of ~ denotes a fairly 
large group difference: At any given weight/height ratio, African Americans were 2.36 
times as likely to consider themselves obese as Hispanics. 

A Note on Residuals 

Although a goal of categorical modeling is to find a nonsaturated model in which the 
residual is nonsignificant, many applications of logistic regression pose a hazard if one 
relies too heavily upon this criterion. The number of degrees of freedom available to 
test alternatives models depends upon the number of cells and not the number of ob
servations. In previous categorical models, the number of cells was the product of the 
number of levels of each variable. Typically. the residual in a model with categorical 

TABLE 15-5 DIFFERENCE G2 VALUES CORRESPONDING TO THE 
ADJUSTMENTS OF TABLE 15.4 

Effect 

Intercept 
Slope (W/H ratiO) 
Gender (Gen.) 
Ethnicity (Eth.) 
Gen. byElh. 
Slope by Gen. 
Slope by Eth. 
Slope by Gen. by Eth. 

·p<.05 • 
•• p < .01 . 

••• p < .001. 

How computed 

A - B = (384.88 - 299.64) = 85.24'·· 
B - C= (299.64 - 292.07) = 7.57"· 
C - D = (292.Q7 - 291.38) = 0.69 
o - E = (291.39 - 283.68) = 7.40·
E - F = (283.68 - 283.20) = 0.48 
F - G= (283.20 - 283.19) = 0.01 
G- H= (283.19-282.70) = 0.49 
H - I = (282.70 - 282.68) = 0.02 
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predictors has relatively few degrees of freedom, perhaps six. or less. This may be the 
case in logistic regression if the continuous variable achieves a. relati vely smull num
ber of levels, as when drug dosage is manipulated by the experimenter. 

However, the number of distinct levels may be quite large when they Occur natural
ly. as was the case in our perceived obesity example. The 300 subjects produced 278 
distinct weightlheight ratios, and the various residual terms at different staaes had 
many (260+) degrees of freedom. This residual contains a mixture of random e~or und 
systematic effects, e.g .• nonlineariry. Suitable procedures exist for examining many of 
these systematic components. However, the critical point is that a residual may be 
nonsignificant yet bury an important influence, and so a nonsignificant residual may be 
relatively meaningless when it is based upon many degrees of freedom. 

Predicting Categorical Criteria 

We have now considered three ways to model a categorical criterion as a weighted lin
ear combination of predictors: (1) ordinary regression (Chapter 5), (2) discriminant 
analysis (Chapter 14), and (3) categorical modeling. Keeping in mind that there are 
several variations upon each procedure, it is useful to compare and contrast them. We 
begin by assuming that the criterion is dichotomous. We will denote these levels as 1 
and 0 and their associated probabilities as p and q. 

1 Ordinary regression and discriminant analyses typically employ unweighted 
least-squares estimation, whereas categorical modeling usually uses maximum likeli
hood or generalized least squares. The similarities and differences among them were 
discussed in Chapter 4. It is also important to mention regression based upon mini
mum chi-square (see Marascuillo & Levin, 1983). This has been specifically suggested 
for regressing predictors upon a dichotomous criterion. It overcomes the problem that 
the error variance will not be constant for different values of the predictor, as ordinary 
least-squares regression assumes. The actual errOr variance will in fact be binomial, 
equaling pq, reaching a maximum at p = q = .5 and decreasing as p, and therefore q, 
become more extreme. 

2 Ordinary regression and categorical modeling are both concerned with predic
tion, but they predict different quantities. Regression is concerned with predicting val
ues that correspond to group membership (0 versus 1), making a linear combination of 
the predictors (z;), fall as close to the obtained outcomes (Zy) as possible. Unfortunate
ly, when these predicted values are negative or eltceed + l, they are difficult to inter
pret. Different forms of categorical modeling allow different entities to be predicted, 
but it is most common to predict either the natural logarithm of the prooabiliry of 
target group membership or, equivalently, its logit. Consequently, the results are bound 
to meaningful values in all cases. Discriminant analysis, in contrast to both, is con
cerned with classification, Le., making the groups as homogeneous as possible with re
spect to the linear combination. Specifically, the algorithm maximizes the ratio of 
between-group variation to within-group variation. However, membership probabili
ties can be inferred in several different ways from discriminant data, as discussed in 
most multivariate analysis texts (see the Suggested Additional Readings for Chapter It). 
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Discriminant analysis programs also typically allow the user to incorporate BayeSian 
considerations (Chapter 4): (a) prior probabilities of group membership, (b) rewards 
for correct classification, and (c) penalties for misclassification. 

3 Even though ordinary regression and discriminant analyses employ different crite
ria to form linear combinations, their weightings will be equivulent. This does not mean 
identical, because regression produces a unique set of weights, and discriminant analysis 
does not. A given form of categorical modeling also produces a unique set of weights, 
but these will differ, in general, from ordinary regression and discriminant weights. 

4 The significance test for R2 in ordinary regression is equivalent to the overall Sig
nificance test in discriminant analysis but, again, both differ from the test used in cate
gorical modeling. 

5 Because it is oriented toward classification, commercial discriminant analysis 
programs provide ex.tensive output about its success. Categorical modeling programs 
like SAS PROC CATMOD also provide relevant information. However, programs for' 
ordinary regression do not. 

6 Discriminant analysis provides explicit ways of assessing and dealing with het
eroscedasticity. Both ordinary regression and categorical modeling ignore this issue. 
We will consider some of the substantive consequences in the nex.t major section. 

If there are more than two groups, ordinary regression is basically inappropriate. If 
the groups are defined nominally, the results will depend upon the order of the num
bers arbitrarily given them. Even if they fall along a continuum, regression wi.ll cap
ture the nature of the differences only when (1) differences are completely concentrat
ed (in the sense of Chapter 14) along a single dimension and (2) the groups are equally 
spaced along this dimension. In addition, there are several overall significance tests 
suggested for use in discriminant analysis that may lead to different results, but hy
pothesis testing in categorical modeling is somewhat less equivocaL In general, dis
criminant analysis and categorical modeling are both suited to diffuse and cOllcentrat
ed structures. Standard multivariate texts also describe how indices of concentration 
can be obtained from the data. 

In general, the choice breaks down to the use of discriminant analysis versus cate
gorical modeling. Obtaining similar results from both adds to the confidence that one 
would have in either alone. You will probably find one or the other is more convenient 
for your particular applications, but some familiarity with both is highly recommended. 
For example, logistic regression is the most appropriate way to compare intercepts and 
slopes over groups when the criterion is categorical. To repeat, discriminant analysis 
deals more directly with classification, and categorical modeling deals more directly 
with estimating the probability of group membership. However, either can be used for 
the other goal with some effort. 

BINARY CLASSIFICATION 

" 

Chapter 2 introduced the very common problem of binary classification in whi.ch a stim
ulus assumes two levels and subjects attempt to associate each level with its own, cor-
rect category. One p,articular form of this problem is to judge the presence versus ab
sence of some attribute. The original situation involved detecting a faint sensory event 
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such as a tone, but it was later applied to various judgments, including those made by 
presumed experts, such as diagnosing a particular condition. A major issue is to separate 
sensitivity or ability to make a correct choice from or differential use of response cate
gories by means of independent indices. Thus, suppose a subject makes the same discrim
ination under two conditions but is induced to report the attribute's presence when uncer
tain in one case but not in the other. The sensitivity index sho(lld not change, but the bias 
index should. The logic, known as the theory of si.gnal detection (TSD), emerged from 
auditory psychophysics (Chapter 2), statistical decision theory (Chapter 4), and Thur
stone scaling (see Chapter 2). Luce (1959a, 1963) developed an alternative model thut is 
empirically indistinguishable from those based upon Thurstone's. Macmillan and Creel
man (1991) present the most curren t treatment of this topic. 

The need to separate response bias from sensitivity arises in a variety of applied 
problems. For example, a consultant may suggest individuals not be hired because of 
their potential "dishonesty." An error is to assess the consultant's proficiency by sim
ply looking at the probability of correctly identifying an individual as dishonest. This 
makes no sense in isolation; it may be reduced to an absurdity if the consultant simply 
calls every job candidate dishonest. Every dishonest individual will be correctly iden
tified, but every honest individual will be incorrectly called dishonest, and nobody will 
be hired. We now turn to a consideration of this general issue. 

Classical Signal Detection 

Consider a yes-no task in which there are two possible events: 

1 A faint tone (signal) is embedded in noise on signal-plus-noise (8 + n) trials versus 
2 The signal is absent on noise (n) trials. 

The subject is asked to say yes on s + n trials and no on n trials. Table 15-6 de
scribes the four possible outcomes. Note its similarity to Table 9-2. Identical logic ap
plies to stimuli presented to other sensory modalities and to discriminations between 
two affinnative stimuli. It is also possible to apply the logic ofTSD to other judgmen
tal tasks. Two that are particular important are the following. 

1 Rating tasks in which the subject is allowed to express degrees of confidence 
about the judgment. 

2 Forced-choice tasks in which there are multiple observation intervals. The sub
ject is asked to say which one contains the signal. For example, a visual stimulus could 

TABLE 15·6 A 2 x 2 DECISION MATRIX FOR A YES-NO SIGNAL DETECTION TASK 

Stimulus 

Signal plus noise, s + n 
Noise, n 

Yes 

'11 (hit) 
'21 (false alarm) 

Response 

No 

{,2 (miss) 
f22 (correcl rejection) 

Note: The hit rate Is ',i(f,. + '.21. and the false alarm rate is '.,/{f., + f221. 
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be presented either above or below fixation und the subject a'lked where. Response bi
ases usually play less of a role in forced-choice tasks than in yes-no tasks. 

TSD stresses the hit rate and the false alarm rate, which are the conditional proba
bilities of saying yes on s + n trials and on n trials. respectively. The complementary 
miss rate and correct rejection rate of saying no are unnecessary because of their re
dundancy. Note the difference between TSD and categorical modeling, which uses cell 
and marginal probabi1ities rather than conditional probabilities. We will relate the two 
later in this section. 

Many models have been developed to provide the desired sensitivity and bias para
meters in the yes-no task in Table L5-6 from the hit rate and the false alarm rate. Chap
ter 2 considered Case V of Thurstone scaling. Its three main assumptions were: 

1 Stimuli varied along one dimension. 
2 Their discriminal dispersions were assumed independent of one another. 
3 Their discriminal dispersions were fmther assumed to be equal. 

We will first show how this feads to one TSD modeJ, the equal variance Gaussian. 
This is by far the simplest and most widely used model. We will then drop assumption 
3 to obtain the unequal variance Gaussian model, which is also important. In the equal 
variance Gaussian model, noise is assumed to be normany distributed on an interval 
intensity (strength) ax.is, X (many deductions require only that X be oL'dinal). Let the 
mean of the noise (n) distribution be 0 on this scale and let its standard deviation be 1 
to define one unit. Now assume that the signal increments the noise by a constant 
amount on each trial. Adding a constant to a random variable such as noise provides 
the signal plus noise (s + n) distdbution and shifts the distribution by that constant. 
However, it does not affect its variability. It is standard practice to denote this incre
ment as d'. The two distributions reflect the subjects' varied sensory ex.perience over 
trials in response to fixed stimuli. 

In order to convert these into "yes" and "no" responses, the subject establishes a 
criterion at some point along X as depicted in Fig. \5-3 (more speci fic forms of the 
model further predict the best location for this criterion based upon the probabilities of 
the two stimulus alternatives and the consequences of the responses). Call this locntion 
Xc. If a given observation (X;) falls at or to the right of the criterion (Xl ~ X,.), the sub
ject says yes, and if it falls to the left of the cliterion (XI < X,J, the subject says no. The 
hit rate is simply the area under the s + n distribution to the right of X~, and the false 
alarm rate is simply the area under the n distribution to the right of Xc. The miss rate is 
therefore the area under the s + I! distribution to the left of )(,. and the COlTect rejection 
rate is the area under the n distribution to the left of Xc. In the present case, d' is 1.0 
and Xc is at +.1. Because of the location of Xc, the subject's hit rate will be .82, and the 
false alarm rate wi!! be .46. This is derivable from normal curve statistiCS-Xl. is 0.9 l.~ 

score units below the mean of the s + n di1:tribution and 0.1 unit above the mean of the 
n distribution. If the two stimuli are equally probable, the subject will say yes (0.82 + 
0.46)12 == 64 percent of the time and nO 36 percent of the time. Note that the subject 
says yes less often as the crirenon moves to the right because Jess of each distribution 
falls to its right. Conversely, the subject will say yes more often as it moves to the left. 
You can verify these relationships yourself by working with the figure. 
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The location of a criterion (Xc) relative to a signal-plus-noise (s + n) and a noise (n) distribution In 
the equal variance Gaussian signal detection model. 

A receiver operating characteristic (ROC) curve describes the hit rate as a function 
of the false alarm rate for different criteria produced by having the subject say yes 
more or less often under different conditions. ROC curves are often more infonnative 
when hit and false alann rates are expressed as z scores because the relationship be
tween them becomes linear with a slope of +1 if there is equal variance. Because the 
slope is +1, the subject's sensitivity can be defined as d' = z(hit rate) - z(false alarm 
rate), regardless of where the criterion is located. 

An equally important consequence is that the ratio of the ordinate of the s + n distrib
ution (YHn ) to the ordinate of the n distribution (Yn) increases monotonically as Xc 
mOves to the right. This ratio describes the likelihood of signal relative to noise. The 
ratio is called beta (~), but it is not a regression weight. In other words, ~ and X are mo
notonically related-the more conservative the criterion for saying yes (the further it is 
to the right), the more probable it is that yes will be correct. Moreover, ~ is a standard 
measure of bias. Subjects, who need not even understand the concept of likelihood, can 
therefore choose according to the likelihood principle by responding in tenus of X. 

Figure 15-4 describes the equal variance ROC curve. Figure lS-4a employs proba
bilities, and Fig. 15-4b employs z transfonnations. The diagonal line in Fig. lS-4a de
notes chance performance (the hit rate equals the false alarm rate). The likelihood ratio 
at the criterion of 0.1 (~) is .27/.40 or .68. Large ratios imply that the criterion is to the 
right, where hit and false alarm rates will both be low. 

It is often more reasonable to assume that both sand n vary over trials, especially 
when s is not a single physical event but a member of a class of events. For example, 
recognition memory tasks involve exposing subjects to a list of words during a train
ing period. During a subsequent test phase, subjects are given a second list containing 
a mixture of words presented during the training phase (old words) and new words 
which they attempt to classify. Signal detection approaches to this task assume that the 
familiarity of a word can be defined along a strength continuum and that training in-
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FiGURE 15·4 Receiver operating characteristic (ROC) curves for the equal variance Gaussian signal detection 
model: (a) probabilities and (b) zlransformations. 

crements the strengths of old words. This assumption is reasonable, and some fonn of 
signal detection seems warranted to separate sensitivity about the discrimination from 
a bias in saying "old" versus "new". However, it is less reasonable to assume that each 
old word's familiarity is incremented by exactly the same amount. To the extent that the 
increment varies over words, an equal variance model will not hold. In general, the 
equal variance model is quite unlikeJy to hold whenever the stimuli are heterogeneous; 
the s + n distribution will be the more variable. One should check results, using methods 
discussed in works listed the Suggested Additional Readings, most specifically Macmil
lan and Creelman (1991), before using the d' measure, which evaluates only the mean 
difference and ignores any variance difference. Assuming an equal variance model 
when there is a large disparity in variance may seriously confound sensitivity and bias. 

Figure 15-5 illustrates the unequal variance Gaussian model when the variance of 
the signal-plus-noise distribution exceeds the variance of the noise distribution, and 
Fig. 15-6 shows the resulting ROC curves. The standard deviation of s + n in these fig
ures was made twice the standard deviation of n. This is unusually large but makes the 
results clearer. The important points are that (1) the ROC curve based upon probabili
ties dips below the chance diagonal and (2) the l-transfonned ROC curve slopes 
downward. The slope in fact equals the ratio of the standard deviation of the n distrib· 
ution to the standard deviation of the s + n distribution (0.5). This downward slope 
means that the particular value of d' computed from the difference in ~-transformed bit 
and false alarm rates varies with the critecion (Xc) generating it. 

A related consequence is that strength (X) and signal likelihood will no longer be 
monotonically related, as they were under equal variance. Signal is more likely at both 
low and high values of X (approximately -2.0 and 0.5 in the present case) so that a 
subject who employs a single value of Xc will be systematically in error. In order to 
make most effective use of the data, the subject must transform the data into some 
fonn of deviation from the point at which noise is most likely. 
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FIGURE 15-5 The location of a criterion (Xc) relaUve to a signal-plus-noise (s + n) and a noise (n) distribution In 
the unequal variance Gaussian signal detection model. 

Categorical Modeling Approaches to the Equal Variance Gaussian Model 

The effect magnitudes of a categorical model can be used to infer sensitivity and bias 
in the equal variance Gaussian case. This may be accomplished using either a log
linear or a predictor-criterion approach. We will illustrate the latter. The intercept para
meter predicting yes versus no from signal plus noise versus noise measures bias, and 
the association parameter measures sensitivity. One consideration is whether the in
dices should be hierarchical or simultaneous. Thus, one could (1) estimate the inter
cept, ignoring the slope. and then estimate the slope adjusting for the intercept; or 

FIGURE 15-6 Receiver operating characteristic (ROC) ClJrYes for the unequal variance Gaussian signal 
detection model: (a) probabilities and (b) ztransformations. 
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(2) estimate both parameters from the same modeL. Both are reasonable possibilities. 
Macmillan and Creelman (990) discuss this problem in detail. The data must at least 
approximately conform to an equal variance model. The second author has conducted 
computer simulations indicating that the larger the s + fI variance is relative to the n 
variance, the more the bias is underestimated and the sensitivity is overestimated. Cat
egorical modeling is especially useful when there are additional variables in the study 
(for an example, see Bernstein et al., 1990). 

General Recognition Theory 

Although we have not compared them explicitly, we have presented three general ap
proaches to scaling stimuli and people. 

1 Stimuli are represented as points in a mathematical space that is usually, but not 
necessarily, Euclidian. As mathematical points, they occupy flO space. This is a purely 
geometric and vector-based approach exemplified by factor analysis and MDS. 

2 Stimuli are represented as equal distributions. This was depicted multidimen
sionally in discriminant analysis (Fig. 14-6) and unidimensionally in the equal vari
ance Gaussian model (Fig. 15-3). Stimuli are therefore inherently ambiguous. but 
equally so. 

3 Stimuli are represemed as unequal distributions. This is depicted unidimension
ally in Fig. 15-5, but the possibility of a multidimensional representation was raised in 
passing in the discussion of discriminant analysis in Chapter 14. Stimuli are assumed 
to vary with respect to the clarity of their definition. "Equal" and "unequal" apply sim
ply to variance in the forms of TSD we have presented so far. However, the concept 
also applies to multidimensional differences in correlation magnitude. 

Treating stimuli (or people) as points has an important simplicity, but the resulting 
constancy may be questioned, as it was in TSD and other models. The possibility of 
variation that is explicit in the two latter representations has clear appeal. However, 
geometric and equal distribution representations make relatively similar predictions 
compared to unequal distribution representations. 

The consequences of treating distributions as unequal have been most explicitly 
considered as part of general recognition theory (Ashby, 1988, 1989; Ashby & Gott, 
1988; Ashby & Maddox, 1990; Ashby & Perrin, 1988; Ashby & Townsend, 1986, also 
see Eriksen, 1960; Gamer, 1974; Gamer & Morton, 1969; Hake, Faust, McIntyre, & 
Murray, 1967; Olzak & Wickens, 1983; Wickens & Olzalc. 1989). Information theory 
(Gamer, 1962; Miller, 1956) and, especially, Thurstone scaling are important precur
sors. The topic concerns the ability of subjects to judge stimuli that vary along two or 
mOre dimensions, e:g., to simultaneously judge heights and widths of rectangles that 
vary in each dimension or to judge workers' competence independently of their physi
cal attractiveness. These dimensions need not vary independently of one another, but 
this is ordinarily the case in experiments unless the experimenter wishes to study the 
effects of dimensional correlations (redundancy) upon judgments. We will use the 
term "dimension" in discussion, although many authors use the term "feature" or "at
tribute" when a property such as "wearing glasses" is presence or absence and so the 
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"dimension" is dichotomous. We will assume for purposes of discussion that a sUbject 
is shown a series of rectangles that vary in height and width and is asked to jUdge each 
dimension, a task that is similar to Ashby and Townsend's. We will assume that the 
issue is one of accuracy of judgment, although reaction time is also a commonly used 
measure. The following are common ways to obtain these judgments. In all cases, the 
physical differences in height and width might or might not be equal, but they must be 
chosen to preclude perfect discrimination. 

1 In a complete rating task, the number of responses per dimension exceeds the 
number of stimulus levels per dimension, and so the subject might be asked to judge 
each dimension to the nearest fraction of an inch on separate rating scales even though 
only a few levels are employed. 

2 In a complete identification task. the number of stimulus levels and response lev
els per dimension are equal. The most important of such tasks is the simplest-stimuli 
and responses are both dichotomies. Thus, there might be four rectangles (short
narrow, short-wide, tall-narrow, and tall-wide). 

3 In a categorization task, the number of stimulus levels per dimension exceeds the 
number of responses per dimension, so that the subject might be asked to dichotomize 
or trichotomize stimuli that vary over several levels. 

4 In a filtering task, subjects judge one dimension and ignore the other, but both 
vary randomly as in the above tasks. 

5 In a condensation task. subjects respond to a combination of the two as alterna
tive to these independent judgments. For example, they may be asked to place tall
narrow and shan-wide rectangles in one pile and short-narrow and tall-wide rectangles 
in a second pile. 

6 In control task, subjects judge each dimension when the other is held constant. 

Garner (cf. Garner, 1974) introduced an important distinction involving integral 
versus separable dimensions. Integral dimensions, such as hue (color) and lightness 
are perceived in an interdependent manner despite being varied independently. Con
densation is relatively easy, but filtering is difficult. Conversely, separable dimensions 
like size and shape can be readily separated, and so filtering is easy, but condensation 
is difficult. Integrality and separability are not distinct classes-a given pair of dimen
sions generally falls along a continuum. 

General recognition theory begins with the basic assumption of discriminal disper
sions as made in Thurstone scaling and TSD. We will let X and Y denote the two 
physical dimensions (Le., heights and widths) and x and y denote their internal 
(psychological) representations. Any given rectangle has a unique X and Y value (e.g., 
3 inches by 4 inches), but the x and y values it evokes are random variables over trials. 
It is further assumed that random variation in x and y has a bivariate normal distribu
tion, as discussed in the section titled "Discriminant Analysis" in Chapter 14 and in 
standard multivariate textbooks. The probability that a given stimulus (A) (e.g., the 
short-narrow rectangle) will fall at a given point in space is denotedfA(x, y), where/is 
the bivariate normal distribution. Each stimulus distribution has an x and a y location 
(mean), a x and a y standard deviation, and a covariance or correlation. Figure 15-7 il
lustrates two of the possible forms the elliptical scatter may assume for a given stimu-
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Ca) X and Yare Independent 

y 

x 

(b) X and Yare positively comlated 

y 

x 

FIGURE 1 ~7 elliptical scatter asaocIated with bivariate normal error. (a) Independent error but greater error 
along the x dimension. (b) Positively correlated error. 

Ius. Although the axes are labeled X and Y because the units are physical, the scatter 
occurs psychologically in x and y. Figure l5-7a illustrates independent error that is 
greater along the X dimension than the Y dimension. Figure IS-7 b illustrates positively 
correlated error between x and y (negative correlated eaor is also possible though not 
shown). The amount and direction of error correlation, if any, is extremely important 
and defines the perceptual component of the theory. 

By extension from signal detection theory, criteria are placed along the two di
mensions to provide response categories and define regions of the 2-space. Conse
quently, there ~ a short-narrow region, a short-wide region, a tall-nmow region, 
and a tall-wide region. These may or may not have equal areas. The properties of 
these criteria and their associated regions constitute the decisional portion of the 
model. 

Figure IS-Sa is an important special case of the .model. This outcome illustrates 
both perceptual and decisional independence: 

1 The major axis of the elliptical scatter in each stimulus is parallel to one of the 
• axes defining the physical dimensions, and the minor axis is parallel to the second 

axis. Consequently there is no within-group correlation between perceived dimen-
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(a) Perceptual independence 

(b) Negative within-group correlations 

x 

FIGURE 15-8 (a) Contours of equal probability under complete Independence. (b) lack 01 perceptual 
Independence (negatively correlated perceptual noise) with decisional independence. 

sions. In this case, the major axis is oriented vertically. but it could just as well be ori
ented horizontally or the scatter plot could be circular. The main point is that there is 
no covariation in the random error-perceived variation in height is independent of 
perceived variation in width. Figure l5-8b illustrates a violation of perceptual inde
pendence due to the correlation between perceived height and perceived width. 

2 The stimuli therefore all have the same shape. Le .• are homoscedastic. 
3 The scatter plot centroids have a rectangular pattern. Ashby and Townsend teon 

this rectangularity "dimensional independence." This outcome is a multidimensional 
extension of Thurstone's Case V. Both homoscedasticity and rectangularity are neces
sary because departures from decisional independence may arise from either het
eroscedasticity or nonrectangularity even though the correlations may be the same for 
all combinations (Fig. 15-9 illustrates these two effects). Three consequences follow if 
there is both perceptual and decisional independence: (a) "perceptual separability" 
means the perceptual effect of one dimension is independent of the level of the other 
dimension (varying height has the same perceptual effect on both wide and narrow 
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(a) Differences in correlation mugnitude 

(b) Dimensional interdependence with 
percepuuuinterdependence 

x 

FIGURE 15-9 (a) Lack of perceptualseparability-heteroscedastlclty (differences in the variance-covariance 
matrices produced by the stimuli). (b) lack of rectangularity due to dimensional interdependence 
with perceptual independence. 

rectangles); (b) "sampling independence" means the two accuracies are independent of 
one another-accuracy in judging the dimensions jointly is the product of their sepa
rate accuracies (the probability of correctly identifying a tall-narrow rectangle is the 
product of the probabilities of identifying it as tall and as narrow), and (c) "marginal 
response invariance" means that the accuracy in judging one dimension is the same for 
different levels of the second dimension (the accuracy in judging tall rectangles is the 
same for wide and narrow rectangles). Outcomes b and c, but not outcome a, involve 
the subject's decision criteria. 

4 The decision criteria for a given dimension are perpendicular to that dimension 
because of decisional separability. For example, assume that the locations of the tall 
and short stimulus means are at 1 and 0 along the subjective height dimension. The 
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criterion need not be placed at 0.5 along this axis-the subject may have a response 
bias-but it must be at the same point for both wide and narrow stimuli. Figure 15-10 
depicts lack of decisional separability when there is perceptual independence and per
ceptual separability. 

Perceptual independence applies to individual stimulus combinations, and it is quite 
possible for one stimulus combination to possess independence and another to possess 
a dependency or correlation. In contrast, both perceptual separability and decisional 
separability are properties of the collection of stimulus combinations and their associ
ated effects. 

The analysis of a classification task begins with a test for marginal response invari
ance. If the probability of correctly judging one dimension depends upon the other 
(e.g., if the accuracy of height judgments depends upon width. and vice versa). one 
cannot generally determine whether this arises from a lack of perceptual separability 
(different sensory effects for a given dimension across levels of a second dimension), a 
lack of decisional separability (nonindependent decision criteria). or both. The lack of 
a general algorithm to test for perceptual and decisional separability when marginal re
sponse invariance fails is a limitation of the Ashby-Townsend model, since it frequently 
does fail, but it is not a fatal flaw. Ashby (1988) illustrates some considerations in
volved in deciding whether effects are perceptual or decisional in nature. We will con
sider log-linear modeling to that end below. 

If maraJnal response invariance holds, one then tests for sampling independence. If 
it also nolds (i.e., if the accuracy in judging a combined dimension equals the proba
bilitie,s of the separate accuracies), there is perceptual independence (independent 
error). If it fails, there is perceptual and decisional separability but not perceptual inde
pendence. These do not exhaust the possible considemtions. If the accuracies in mak
ing judgments of a given dimension do not depend upon whether the other dimension 
is also judged, based upon a comparison to a control task, the subject exhibits perfor-

FIGURE 15-10 Lack 01 decisional separability with perceptual separability. 

" 
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manCe parity. Lack of parity often implies a limited capacity of the judgmental process 
and integrality of the dimensions. 

Application to Condensation Tasks 

Decisional separability is a rational strategy when subjects make separate judgments 
of two dimensions or in filtering tasks. Lack of decisional separability is consequent
ly of empirical interest. In contrast, optimal condensation demands decisional depen
dence. For example. a tennis player must possess both strength and control over his 
or her racquet to deliver an effective shot, among other attributes. Suppose players 
on a college tennis team are classified as successful versus unsuccessful in terms 
of their competitive ability as depicted in Fig. 15-11a. There will probably be a lack 
of perceptual independence in the sense of a positive within-group correlation. 
Because successful performance is positively related to both dimensions, there will 

FIGURE 15-11 (a) Distributions of successful and unsuccessful tennis players on the basis of racquet control and 
racquet strength. (b) Partitioning the classes by a discriminant function. Observations are 
predicted to be successful when the taU to they top and right. (c) A nonlinear optimal declalon rule 
that is optimal when there is heteroscedastlclty. 

(a) Distributions of successfulllfld 
unsuccessful tennis players 

.lb) Discriminllflt uis 

Successful 
players 1 

J 
Racquet strength 

(c) Curved decision "ax.is· 
with hetet'Oscedasticity 

Decision 
"axis" 

Racquet strength 

Racquet strength 
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also be a positive between-group correlation; high SCores on either dimension lead to 
success. 

A key issue is how to partition the data into predicted successes and failures. Ashby 
and Maddox (1990) and Ashby and Gott (1988) have considered this general probl~m. 
If the within-group correlations are of the same magnitude, One may employ a discrimi
nant function as discussed in Chapter 14 (see Hake, et al., 1967; Hake & Radwan, 1966; 
Hake, Radwan. & Weintraub, 1966; Radwan & Hake, 1964). The discriminant function, 
by definition. maximizes between-group variation relative to within-group variation and 
reduces the situation to a univariate problem. The function may be used as a signal de
tection strength axis and partitioned to provide classification. 

When the scatter plots are of different shapes. a different strategy is necessary. One 
optimal decision rule is to measure the probabilities that a given observation is a ran
dom deviation from each of the two groups and to assign the observation to the "near
er" (more probable) group (see Hake et al .• 1967). Bayesian considerations (Chapter 4) 
may also be included. For example, if one population is larger than the other, one 
could require that the probability that the observation came from the smaller group ex.
ceed the probability that it came from the larger group. This may lead to a nonlinear 
decision rule. as in Fig. 15-11b. Needless to say, subjects could well have difficulty 
performing optimally under these conditions. 

MDS, Dissimilarity Judgments. and Generai Recognition Theory 

Simplifying Ashby and Perrin's (1988) notation slightly, let the perceived dissimilarity 
of stimuli A and B be denoted as d(A. B). As noted in the last chapter, rYlDS produces 
distance relations among stimuli by transforming a data matrix in various ways thai 
depend upon the definition of distance (ordinary Euclidian, weighted Euclidian, city· 
block, etc.) and the data's measurement level (ratio, interval, ordinal). Ashby and Per
rin (1988) describe four deductions from the Euclidian modeL 

1 The dissimilarities of perceived stimuli to themselves or self-dissimilarities are 
all equal; i.e., dCA, A) =: d(B, B) d(C, C) .. , . 

2 The dissimilarity of two stimuli cannot be less than their self-dissimilarities, a 
condition known as minimality. Thus, d(A, B) ~ d(A. A) and d(A. B);:: deB. 8). 

3 Dissimilarities are symmetric: d(A. B) =: dCB. A). 
4 The triangle inequality of Chapter 14 holds. so that dCA, B) + dCB, C) ~ dCA, C). 

Although these assumptions seem reasonable, they may be violated. "Whether or not 
this is possible depends upon how the data are gathered. To save time, most paired 
comparison tasks do not compare stimuli to themselves and present different stimuli in 
only one order. Violations of deductions 1, 2, and 3 cannm be detected under these 
conditions. However, these violations may be detected if all possible pairs of stimuli 
are presented. If they occur. MDS is inappropriate. 

Ashby and Perrin (1988) illustrate how various anomalies may arise when the dis
tributions are unequal. Le., when the variances or within-group correlations differ. Foe 
example. suppose a clinician rates the physical and verbal hostility of a series of pa
tients on each of several days. Patient A varies in physical assaultiveness but rarely en-
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gages in verbal hostility, patient B is consistently not hostile, and patient C shows con
siderable variation in verbal hostility but little physical assaultiveness. Assume for 
simplicity that the two types of hostility are uncorrelated over days for each of the 
three patients. Figure 15-12 contains these scatter plots. Patients A and B overlap 
substantially because neither is verbally hostile, patients Band C overlap substantially 
because neither is physically hostile. but patients A and C overlap very little. 

The distances drawn between the means of the three scatter plots in Fig. 15-12 ob
viously fit a Euclidian framework (which follows from the fact that they were drawn 
on a flat surface). However, the issue is whether one actually perceives the similarities 
and dissimilarities among patients as dictated by their physical proximity. They well 
might not be. Patients A and B may be perceived as similar because of their lack of 
verbal hostility, and patients Band C may be seen as similar because of their lack of 
physical hostility. However, patients A and C may appear highly dissimilar. Conse
quently the sum of the distances from A to B and from B to C may well be less than 
the distance measured directly from A to C, thus violating the triangle inequality. 
James (1890) pointed out this anomaly many years before any distance models were 
fonnalized, and Tversky and Gati"(l982) examined its implications in depth. 

Based upon this and related examples, Ashby and Perrin (1988) proposed a mea
sure of similarity based upon distributional overlap. As noted above, the perceptual 
component of the theory states that variability in the perceived stimulus produces a 
distribution of effects in stimulus A, fA(x, y). For example, let A be the short-narrow 
stimulus. The decisional component of the theory states that a given response can be 
represented as an area in the space. Let the response in this case be the short-wide 
combination. The similarity of the short-narrow stimulus to the short-wide response 
is defined as that portion of the short-narrow stimulus distribution that falls in the 
short-wide response region, fA,(x, y). This need not be the same as fa(Y, x), so that 
their model can account for asymmetries in judgment. Their definition of similarity 

FIGURE 15-12 Scatter plots for three patients observed over time with regard to verbal and physical hostility. 

Patient A 

Patient C 

Patient B 

Verbal hostility 
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in terms of overlap is a multivariate extension of the way classical signal detection 
theory treated the problem of unequal variance. This approach also aCCOllnts for 
other violations of predictions made by Euclidian models, including the trianale in-
~~~ ~ 

Does Ashby and Townsend's work mean that we should discard MDS, since nearly 
everything we have previously discussed defines similarity in terms of distance? 
Ashby and Perrin (1988) distinguish quite explicitly between MDS as a deVice tOI' 
scaling stimuli and as a theory of perceived similarity. If one's intent is to describe the 
structure of stimuli, MDS would still be appropriate, but that is quite different from as
suming that the subjects' perceptions follow a geometric process. Of course, if the per
ceived distributions of the stimuli are hornoscedastic, a geometric or equal variance 
representation may be applicable. 

Implications for Measurement 

Thus far, Ashby, Townsend, and their colleagues have generaUy relied upon preex.ist
ing Thurstonian algorithms (see Ashby (1988) and Ashby and Perrin (1988) for an rel
evant discussion]. However, both the analysis of covariance structures (ACS, see 
Chapter 13) and categorical modeling explicitly appear potentially quite useful and 
readily available as tools ... 

Consider a dual rating task: in which it is reasonable to assume decisional separabil
ity and recall that decisional separability is necessary to evaluate lack of perceptual in
dependence in detail. ACS can compare the resulting variance-covariance matrices as 
follows. A general model allows all five parameters of the covariance matrices (two 
means, two variances, and a covariance) obtained from each stimulus comb.ination 
plus the measurement error to vary freely and therefore be estimated separately. If 
there are K stimuli, the data furnish K means, K variances, and K2 - K co variances for 
a total of K2 + K terms, but 6K parameters need to be estimated, leaving K2 + K - 6K 
or K2 - 5K degrees of freedom. Obviously the design requires sil{ or more stimuli. 
This model is too general to be of interest in itself; its importance lies in the following 
restrictions. 

Perceptual separability (assuming decisional separability) implies homoscedasticity 
of the distributions for each stimulus. This is testable by constraining each of the vari
ances, covariances, and unique error to equality over stimuli but letting the locations 
vary freely. This model estimates 2K (two means per stimulus) + 4 parameters. It is a 
nesting of tbe general model, and so the difference may be tested with (K2 + K - 2K-
4) - (K2 + K - 6K) = 4K + 4 df. If tbe difference is signific~nt, individual stimuli may 
be eltamined to evaluate latk (jf separability further. 

Assuming perceptual separability, perceptual independence may be evaluated by 
constraining each of the covariances to zero. This model estimates two means per 
stimulus and two variances and unique errors constrained to equality over stimuli for a 
total of 2K + 3 parameters. It is nested within the separability model and has (K,2 + K -
2K - 3) - (K2 + K - 2K - 4) = 1 df. It considers whether the common covariance term 
of the separability model can be considered to be zero. 

We have already noted the problems associated with using ACS to analyze data that 
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fall into a small number of categories, and so this procedure is not recommended in 
classification tasks, especially binary classification. Log-linear modeling offers a use
ful alternative approach. Again assume a binary classification task as discussed above 
where X and Y denote the two physical dimensions and x and y denote the associated 
responses (not, as above, their internal representations. The data matrix has 16 cells (4 
stimuli and 4 responses), but the 4 stimuli are constrained by the presentation proba
bilities, leaving 12 df. 

These may be analyzed by the methods described in the section titled "Multiple Re
sponse Categories in Predictor-Criterion Models." In particular, 

1 Lack of independence in using combinations of categories (marginal biases 
to use of the same or different response categories) indicates lack of decisional 
separability. 

2 Associations among X, Y, or their combination upon x OT y, adjusting for simpler 
effects, indicate a violation of marginal response invariance. 

3 Associations among X, Y, or their combination upon same versus different re
sponses, adjusting for simpler effects, imply a correlation in the error terms that under
lie errors, Le., lack of perceptual independence. 

Ashby (1988) and Wickens and Olzak (1989) discuss the implications of using a 
rating task. 

NONGEOMETRIC AND NON~EUCLIDIAN MODE~S 

Nearest Neighbors 

A major point to be gleaned from the previous discussion is that proximity (similarity) 
measures based upon a purely geometric (spatial, point) representation of the stimuli 
can produce anomalous results when some stimuli are more ambiguous than others 
(Le., have more perceptual variance) or the dimensions being judged are perceived as 
interdependent. The same arguments apply to scaling people and dominance relation
ships (preferences). 

Tversky and Hutchinson (1986) noted a problem associated with geometric (spatial) 
representations of proximity data. Assume that K stimuli have been rated for similari
ty. They used judgments of relatedness among 20 common names of fruits plus the 
word "fruit" itself obtained by Mervis, Rips, Rosch, Shoben, and Smith (1975). The 
data produce a 21 x 21 matrix of means, where larger numbers denote greater related
ness on a 5-point scale. By definition, stimulus j is the nearest neighbor of stimulus i if 
stimulus j is closer (has a smaller distance) to stimulus i than any other stimulus is to 
stimulus i; e.g., the letter B is the nearest neighbor to the letter A in terms of its serial 
position in the Roman alphabet. Assuming that ratings are at least ordinally related to 
distances, the nearest neighbor of a given stimulus is the stimulus with the highest 
mean similarity rating. Excluding ties, a given stimulus can have only one nearest 
neighbor, but that nearest neighbor can also be the nearest neighbor of other stimuli. In 
particular, "fruit" was the nearest neighbor of every specific fruit save for "olive" and 
"lemon" whose ne.arest neighbors were, respectively, "date" and "orange." 
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Tversky and Hutchinson (1986) show how geometry constrains the number of 
points that may have the same nearest neighbor. Specifically. no stimulus Can be the 
nearest neighbor of more than 2 points in a one-dimensional space. For exumple. if 
three stimuli are ordered X-Y-Z. Y is the nearest neighbor of X and Z. Tf stimulus 
W is added and also has Y as its nearest neighbor, W becomes the nearest neighbor of 
X or Z depending upon whether it falls to the left or right of Y. Likewise. no stimulus 
can be the nearest neighbor of more than 5 points in a two-dimensional space 01' of 
more than 11 points in a three-dimensional space. Even though Mervis et al.'s (1975) 
two..cIimensional MDS representation appeared reasonable, it failed to reflect this as
pect of the data. 

Tversky and Hutchinson (1986) derived two statistics. Let Nj equal the number of 
stimuli for which stimulus i is the nearest neighbor. Since the index runs from 0 to LV 
(the number of stimuli). there are N + 1 terms. Because each stimulus has only one 
nearest neighbor (ignoring ties), the sum of these teons is N + 1 and the mean is 1. 

1 The centrality (C) of the data set reflects the extent to which one or a few stimuli 
dominate the data. It is defined as 'L.V~/(N + 1) which equals the sample variance plus 
1. The C will be at its maximum of (N2 + l}/(N + 1) when one stimulus is the nearest 
neighbor of all other stimuli save itself, and it will be at its minimum value of 1 if each 
stimulus is the nearest neighbor of only one other stimulus. 

2 The reciprocity of a given relationship describes the extent to which that rela
tionship is symme~c. Let R\ denote the rank order of stimulus j's similarity to stimu
lus i, where stimulus j is the nearest neighbor of stimulus i. It will equal 1 if stimulus i 
is also the nearest neighbor of stimulus j (reciprocity), as when two people are each 
other's closest friend, and equal N + 1 when the relationship is totally asymmetric, as 
when person j prefers person i the most but person i despises personj. The overall rec
iprocity of the set (R) is simply the average of the individual Ri values. A low value of 
R implies high reciprocity, and vice versa. Its minimum value is 1, which occurs when 
each stimulUS is the nearest neighbor of its own nearest neighbor. Its maximum value 
of N? + lI(N + 1) reRects total lack of reciprocity. It can be shown that C ~ 2R - 1. 

Tversky and Hutchinson (1986) explored a number of data sets which were either 
perceptual, involving similarities among physical stimuli such as hues and letters of 
the alphabet, or conceptual, like the words in the Mervis et al. (1975) study. In general. 
geometric representations. and therefore MDS-type models, fit perceptual judgments 
fairly well but did not fit conceptual judgments. The obtained R was considerably 
higher than the R inferred from the ]\lIDS solution. 

Tree Representations 

Tversky and Hutchinson (1986) discussed an alternative way to represent data, known 
as an additive tree, that may prove more useful for conceptual judgments than the geo
metric MDS approach. AdditiVe trees are discussed more fully in Sattath and Tverslcy 
(1977; also see Tverslcy, Rinott, & Newman, 1983). Figure 15-13a illustrates a simple 
additive tree. The distance (dissimilarity) between two stimuli is proportional [0 the 
horizontal distances along the tree limbs (the vertical distances are immaterial); the 10-
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(a) A simple tree repre~entution 

A B c D 

(e) A singular tree that illustrates 
that one stimulus CA) is the 
nearelll neighbor of all others 

A 

~ 
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(b) A binary tree that 
illuSll'llte~ reciprocity 
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(d) A nested tree that illustrates 
sup~rior-suborclinute relations 
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FIGURE 15-13 (a) A simple additive tree. (b) A binary tree reflecting -=omplete reciprocity. (e) A singular tree (star 
or fan) that emerges when one stimulus is the nearest n.:lighbor 01 all other stimuli. (d) A nested 

. tree (brush) reflecting a hierarchy where each position Is more closely related to its subordinates 
than to its superiors or peers. 

cations of the stimuli are referred to as nodes. This representation, unlike the geometric 
one of ?vIDS, can accept a very high degree of centrality (many items sharing the same 
nearest neighbor). Figure 15- L3b indicates a special form known as a binary tree which 
arises from complete reciprocity. In the extreme case, both C and R are at their mini
mum values of 1. No individual is the nearest neighbor of more than one other individ
ual, and the nearest neighbor relation is completely symmetric. Preference ratings 
among a series of contented couples would form this pattern. Figure l5-13c depicts 
what is variously referred to as a singular tree, a star, or a fan. Both C and R are high be
cause a small number of stimuli tend to be foci for other stimuli, serving as their nearest 
neighbors. Students in classes who do not know each other well and who compare them
selves to each other and their instructor might form such a relationship. Figure lS-13d 
depicts a nested tree or brush in which C is low but R is high. Only the longest branch is 
not a nearest neighbor, but each point is closer ta a point on its shorter branch than on Its 
longer branch. Tversky and Hutchinson (1986) exemplify this pattern with a military hi
erarchy-each level is closer to its subordinates than to its superiors. 

Tversky examined several alternatives ta geometric representation other than addi
tive trees, including hybrids of geometric and other models. These include comman 
and distinctive features (Tversky, 1977) and discrete clusters (Sattath & Tversky, 
1977; also see Carroll, 1976; Johnson, 1967; Shepard & Arabie, 1979). The latter is a 

. modification of more traditional forms of geometric clustering considered previously. 
Tversky's work highlights some deficiencies in the geometric approach that has 

dominated psychometric theory and multivariate analysis, including this book. How
ever, his findings also strengthen the applicability of geometric models like MDS to 
physically defined stimuli. It is perhaps unlikely that classical geometric methods will 
ever be totally replaced, but tree algorithms will likely offer added flexibility to mea-
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surement. We therefore stress the importance of this work as a caution to the bl ind use 
of MDS and related methods, especially with semantically defined sets. but not as any 
dictum to avoid their use. Further note that even though a tree representation is non
geometric, it does represent stimuli as points rather than as distributions as in O'eneral 

o 
recognition theory. 

Network and Graph-Theoretic Approaches 

In general. graph theory deals with the structure of a series of nodes (points) and their 
connections. Tree repre::;entations and clustering are thus both based upon graph theory 
[for this particular application of clustering, see Johnson, (1967)]. In the present con
text, nodes are stimuli and connections are the strength of their relationships. They 
might be used to depict the strengths of word associations to a cognitive psychologist 
or interactions in a small group of people to a social psychologist. Some relations are 
nondirected (symmetric) in that the connection from stimulus i to stimulus j is the 
same as the connection from j to i. Consequently the distance from i to j (d ij ) equals 
the distance from j to i (djj ). Distances between cities are nondirected-the distance 
from Dallas to London equals the distance from London to Dallas. Other relations are 
directed (asymmetric). and so djj ::/! dj !. Liking someone may not be reciprocated. The 
term "graph" by itself implies nondirected distances, and the term "directed graph'~ or 
"digraph" implies directed distances. Trees, as discussed above, are a special type of 
graph or digraph in which each stimulus (node) is connected (linked) to every other 
stimulus but one camlOt form a cycle or path through the graph back to the starting 
point. 

Cartwright and Harary (l956) introduced graph theory into psychology. [es first 
major use was in "sociometry," the study of interaction patterns and affective relations 
in small groups. Figure 15-14 describes patterns of communication among eight com~ 
mittee members, A to H. For simplicity, we assume that "speaking to" is reciprocal. 
which it need not be, and so the figure is a graph rather than a digraph. Figure 15-4a 
shows a group polarized into two factions-A, B, C, and D communicate only among 
themselves (but A also does not speak to D) and E. F, Gf and H communicate only 
among themselves. Polarization may arise for many reasons, e.g., political, ethnic, or 
gender. Figure 15-14 shows lack of polarization. Even tbough everybody does not 
speak to everybody else, patterns of communication are idiosyncratic. 

Cognitive psychology has recently used graph-theoretic concepts to study hypothet
ical neural networks which have been proposed to explain a variety of phenomena. 
This approach is called connectionism or parallel distributed processing (Rummelhart. 
McClelland, & the PDP research group, 198&1, 1988b). Schvaneveldt's Pathfinder 
model (1990; Schvaneveldt. Durso, Goldsmith, Breen, Cooke, Tucker, & DeMaio, 
1985; Schvaneveldt, Dearholt, & Durso, 1989; Schvaoeveldt, Durso. & Dearholt, 
1988; Schvaneveldt, Durso. & Mukherji. 1982) is a particularly good example of the 
application of graph theory. The model produces a tree representation (either as a 
graph or a digraph) of scaled distances called a Pathfinder net (pfnet) based upon dis~ 
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(a) A group that is polarized into two ructions 

(b) A group that is not highly polarized 

FIGURE 15-14 (a) A graph reflecting a highly polarized group. (b) A graph for a nanpolarized group in Which 
some people do not communicate with others. 

tances as defined by their inverse, proximities. Stimuli i and j may be directly linked, 
linked through additional stimuli, or not linked at all. It uses Minkowski r metrics, in
troduced in Chapter 14, to account for proximities with a minimum of internode con
nections. Equation L5- L8 defines the r-metric distance from i to j (dij) in terms of the 
distances from ito k (dj0 and fromj to k (dJk): 

The parameter r may vary from 1 to infinity. For example, r = 1 produces the city
block metric used in the initial graph-theoretic research, and r = 2 produces the Euclid
ian metric which this book has stressed. Although Pathfinder can define distances in 
these more conventional manners, it is novel for its emphasis on the dominance metric 
in which r = co and dij equals the larger of dik and djk• In general, the larger the value of 
r, the smaller the value of dlj. Tversky and Gati (1982) also explored nonmetric situa
tions where r < 1. 

Nodes i and j of a pfnet are directly connected if and only if dij is less than the sum 
of all indirect path lengths through other nodes, e.g., d1k + djk' In other words, the 
triangle inequality of Chapter 14 must be satisfied for either all paths or, optionally, 
paths of a certain length. Pathfinder estimates these dik values (path lengths or 
weights), which may be displayed graphically, and indexes the similarity of two net
works. One particular reason to estimate similarity is to establish the stability of data 
by comparing networks obtained from split halves. Pathfinder presently has two im
portant limitations: 
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1 wleasurement is deterministic. Pathfinder does not optimize the proximities to re
move the effects of sampling error nor does it allow ordinal or interval transforma
tions, as MDS does. 

2 Proximities are treated as unipolar, and so Pathfinder does not provide for nega
tive (inhibitory) relations. Consequently, it cannot analyze a cOITelation matrix with 
negative correlations since these become infinite distances, just as zero correlations do 
rather than strong negative relations. ' 

We simulated three sets of proximities among 12 nodes (XI to X12) to illustrate one 
of Pathfinder's uses, clustering, starting with data in which there was no sampling 
error. In the first- or single-cluster case, all pairwise proltimities were 0.72. In the sec
ond or correlated cluster, case, the pairwise proximities were 0.72 among XI to X6 and 
X to Xll, but 0.46 among nodes in different sets, e.g., Xl and Xg• Finally, in the uncor
related cluster case, the pairwise proximities were also 0.72 among XI to X6 and X to 
Xl, but were 0.0 between variables in different sets. We used a dominanee metric and 
required the triangle inequality to apply to all possible paths to minimize the number 
of connections. Pathfinder incorporates a threshold proximity below which distances 
are assumed infinite. This was set at 0.1. Distances were defined as 1 plus the thresh
old minus the proximities, another program option. 

The single-cluster graph (pinet) is presented in Fig. 15- LSa (we have omitted the 
symbol X for simplicity). It linked every stimulus with every other stimulus at the 
same distance (0.38 unit). This was because all links are 0.38 (I + 0.1 - 0.72), and so 
this value is perforce the largest distance between any links, and the largest distance 
qetermines the path length in a dominance metric. 

Perhaps paradoxically, the correlated cluster graph in Fig. is-ISh, also linked 
every stimulus with every other stimulus with paths of the same length, 0.64 unit. 
The distances between links in the same cluster were 0.38 unit as above, but the dis
tances between links in different clusters were 0.64 unit (1 + 0.1 - 0.46). Paths be· 
tween any two stimuli, whether or not they are in the same cluster, contain links 
from different sets; e.g., the path from XI to X']. includes a link from XI to X6 and a 
link from X6 to Xl' These between-cluster links establish the path length because 
they are larger than the within-cluster path lengths. Figure 15-L5a and IS-ISh were 
drawn to differem scales. They are equivalent (i.e., their similarity is 1.0) because the 
paths are of the same length in each case but the lengths are different. Whether or 
not this equivalence of the two solutions is psychologically valid is an interesting 
question to examine. 

Finally, the uncorrelated cluster solution provided the two disjoint graphs in Fig. 
15-15c. Wi.thin each cluster, each node was linked to every other at a distance of 
0.38 unit, but there were no paths linking nodes in the two clusters. 

We then introduced sampling error into each of the three data sets to make them re
semble real data. Proximities in the single-cluster solution varied from 0.65 to 0.73. 
Proximities in the correlated cluster case varied from 0.73 to 0.77 within clusters and 
from 0.44 to 0.54 between clusters, and proximities in the uncorrelated cluster case 
ranged from 0.72 to 0.76 within clusters and from -0.01 to 0.10 within clusters. These 
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(a) Single cluster (b) Correlated clusters 

(c) Uncorrelated clusters 

FIGURE 15-15 Graphs (pfnets) for (a) single-cluster data, where all measures are equally similar to one another, 
(b) two correlated clusters, where variables within the same clUster are equally similar and 
variables in different clusters are less highly related, and (0) two uncorrelated clusters, where 
variables within the same clusler are equally correlaled but the two clusters are unrelated. Even 
though the configurations (a) and (b) are equivalent, the path lengths are different. 

Conclusions 

results appear in the three graphs in Fig, 15-16. As can be seen, the underlying struc
ture is considerably less clear, save for the uncorrelated cluster case. 

Our goal is writing this chapter was to call attention to the potential usefulness of sev
eral procedures that have attracted somewhat less interest among psychometricians 
than those discussed in earlier chapters. Psychologists, especially those in experimental 
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(a) Single cluster (b) Correlated clusters 

(e) Uncorrelated clusters 

FIGURE 15-16 Solutions obtained from (a) single cluster data, (b) correlated cluster data, and (c) uncorrelatecl 
cluster data when sampling error is introduced. 

areas, should find these methods especially useful. It is particularly important that cnt
egorical models directly address frequently studied substantive issues such as judg
mental independence. Similarly, Ashby and Townsend's general recognition model 
flows from the signal detection theory and Thurstonian traditions and, in the process, 
introduces several relevant distinctions. Although tree and network models are also 
applicable to current problems, perhaps a bit more caution is advised before abandon
ing tried and true geometric models, especially factor analysis. One advantage of fac
tor analysis is that the skilled user' has a large literature available to know irs llmi[a-
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tions. Moreover, one key application of geometric models, its use with perceptual 
stimuli, has actually been strengthened. At the same time, anyone seriously interested 
in measurement needs to know alternative methods of representing data structures. 

The issues raised in the last section of this chapter one further point. We strongly 
argued in the first chapter that formal approaches to measurement can be counterpro
ductive. This is certainly true to the ex.tent that one becomes bogged down in issues 
like "Is a score that sums across items truly defined on an interval scale?" We have 
steadfastly argued in defense of summing to get on with the business of applying the 
powerful methods of multivariate analysis and psychometric theory. However, once 
that is done, one can then proceed to the more positive features of the representational 
position as seen in the worle of Tverslcy, Schvaneveldt, and others. 

Categorical modeling has been applied to several traditional problems: (1) studying re
lations among categorical variables (log-linear modeling), (2) predicting categorical 
variables from other categorical variables (predictor-criterion modeHng), (3) predict
ing a categorical variable from a quantitative variable (logistic regression), (4) parti
tioning sources of variance, as in the continuous-variable ANOYA and MANOYA, 
and (5) testing matrices for specific properties such as symmetry. The basic logic of 
most categorical modeling is (1) the probability that two independent events will joint
ly occur is the product of their individual (marginal) probabilities, (2) consequ~ntly the 
natural logarithm of this joint probability is the sum of the natural logarithms of the in
dividual probabilities, and (3) natural (base e) logarithms are mathematically more 
convenient than common (base La) logarithms. The logit or log-odds ratio of two 
events is the natural log of their ratio. 

The log probabilities of individual events are related to regression (~) weights used 
to test for independence. If two individual events are binary, the model used to test for 
independence uses 3 df, leaving 1 dfto test for their association. If there is an associa
tion, an additional parameter needs be added to the model. The resul~ing saturated 
model cannot be tested, but the magnitude ot' the associative parameter can be estimat
ed. Related models can test hypotheses that either or both the row or column probabili
ties are .5 using hierarchical principles discussed in Chapters 4, 10, and 13. 

Strength of association may be defined by (1) the value of ~ associated with an ef
fect, (2) the effect logit or 2 times ~, and (3) the odds ratio itself (<X) or square root of 
the reciprocal of Shepard's distance measure, Eq. 14-5. Yule derived two additional 
measures from a: (4) the measure of association or conditional probability of agree
ment between two responses, and (5) the measure of colligation, which corrects the 
measure of association for marginal differences. Tetrachoric r is another, less highly 
recommended possibility. Three inferential statistics are (1) the residual likelihood 
ratio chi-square (G2) based upon the disparity between predicted and obtained model 
frequencies; (2), the difference G2 between two nested models, which evaluates the sig
nificance of the constraint(s); and (3) the effect G2 , which tests whether or not a given 
parameter differs significantly from zero. 
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The generalized logit of an event is the log ratio of its probability relative to an 
baseline event, regardless of the number of possible events. Generalized logits can be 
modeled just like log probabilities and produce equivalent results. 

There is an important distinction between structural and random zeros in a model. 
A structural zero is a constraint introduced to eliminate one or more cells (e.g., the di
agonals), from a model. In contrast, random zeros are empirical outcomes. Many ran
dom zeros imply too small a sample andlor poody chosen categories. 

The information transmitted is a measure of effect strength of a multilevel variable. 
Difference and residual, but not effect, G2 values test such effects inferentially. A mul
tivariable analysis was then performed to evaluate data containing Simpson's paradox. 

Predictor-criterion models designate variables as predictors or criteria, unlike log
linear models which do not. A predictor-criterion analysis can be conducted as a log
linear analysis, but not necessarily the converse. Comparable effects will produce the 
same C2 value. A predictor-criterion model will have fewer terms because it includes only 
relations between predictors and criteria, not among predictors or criteria. Effects pres
ent in more complex designs depend upon whether variables are quantitative or not and 
whether one considers combinations of effects. These effects include (1) marginal biases 
(unequal outcomes), (2) direct predictor-criterion relations, and (3) higher-order effects. 

Categorical modeling's three main assumptions are that (1) categories are opera
tionally independent, and so there !!Ie no built-in relationships; (2) all observations 
have the same distribution; and (3) the number of observations is large. Repeated ob
servations from subjects are a problem because the results confound variability be
tween subjects and within subjects. If the ratio of observations per subject to estimated 
parameters is large, estimates can be obtained separately for each subject and pooled. 
If this ratio is small, consider randomly grouping subjects and estimating parameters 
from each group. The consistency of the parameter estimates should be evaluated in 
both cases. A traditional requirement is five expected subjects per cell, but this may be 
too conservative. Finally, classification should be reliable. 

Item response models assuming equal discrimination (Le., Rasch models) can 
be written as log-linear models, allowing tests of differential item functioning 
(Chapter 10). However, mOre complex item response models are not log linear. 
Moreover, item response theory is inherently latent variable modeling; categorical 
modeling is not. 

Quasi-independence means that categories are unrelated in the presence of structur
al zeros even though they may be related when these observations are included in the 
model. Symmetry means that all ~ij :: ~ji' It may not hold because of either differential 
association (inherent associative asymmetry) or marginal heterogeneity (differences 
in row and column distributions). A model that is asymmetric because of marginal 
heterogeneity is quasi-symmetric. 

Logistic regression relates a quantitative predictor to a categorical criterion. Group 
differences in slope may be evaluated independently of differences in intercept, and 
vice versa. However, logistic regression usually provides more residual degrees of 
freedom than other categorical modeling problems, and so important sources of vari
ance may be present in a nonsignificant residual. 
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Binary classification was introduced in the conte;<t of the theory of signal detection 
(TSD) in Chapter 2. In a yes-no task subjects judge the presence or absence of an at
tribute. The important data are the hit rate (conditional probability of saying yes when 
the attribute or signal is present) and the false alarm rate (conditional probability of 
saying yes when the signal is absent). The subject is assumed to locate a response cri
terion along a decision axis. The response is yes when the observation exceeds criteri-
on. and no otherwise. . 

The most common TSD model is based upon Case V Thurstone scaling. This 
equal variance Gaussian model assumes that the variability (discriminal dispersions) 
in the absence of signal (the noise distribution. n) is the same as the variability in the 
presence of the signal (the signal-plus-noise distribution. s + n). The predicted re
ceiver operating characteristic (ROC) curve, which relates z transformations of the 
hit and false alarm rates over criteria, is linear whh a slope of I. The mean differ
ence between standardized distributions (d') describes sensitivity, and the ratio of the 
ordinate of the s + n distribution to the n distribution at the response criterion (~) de
scribes bias. In addition, the likelihood ratio (the ratio of the probability of s + n to 
the probability of n, conditional upon the observation) is a monotonically increasing 
function of X: The larger the magnitude of the observation. the more probable it is 
that signal is present. 

If. however. signal is also variable. an unequal variance Gaussian model is more 
applicable. The z-transfonned ROC curve is still linear. but its slope is the ratio of the 
standard deviation of the n distribution to the standard deviation of the s + n distribu
tion. In addition, the likelihood ratio does not increase monotonically with X: Both 
large and small observations are more likely to contain signal than are intermediate
sized observations. Categorical modeling can be used for the equal variance but not 
the unequal variance model. 

In contrast to geometric (vector-based) approaches, TSD and Thurstone scaling 
treat stimuli as regions of either equal or unequal size. General recognition theory 
(Ashby & Townsend, 1986) extends this conception to dual judgments. Several tasks 
are relevant to the issue, although only the first three actually involve dual judgments: 
(1) ratings-there are more response leve)s per dimension than stimulus levels; (2) 
identification- the two are equal; (3) categorization-there are more stimulus levels 
than response levels; (4) filtering-one dimension is responded to and the other is ig
nored; (5) condensation-subjects judge a combination of attributes; and (6) control
an irrelevant dimension is held constant. Results depend upon the dimensions being 
judged. Integral dimensions are relatively easy to condense but difficult to filter; sepa
rable dimensions are the converse. 

Perceptual independence means that the sensory variation (discliminal dispersion) 
is uncorrelated between dimensions for each stimulus pair, and decisional indepen
dence means that the criteria used to classify dimensions are independent of each 
other. When both perceptual and decisional independence occur, (1) the stimulus cen
troids form a rectangular pattern; (2) the sensory variation about each centroid is of the 
same magnitude and shape; (3) perceptual separability holds for each stimulus-sen
sory variation in one dimension is independent of variation in the other; (4) the stimuli 
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exhibit sampling independenc.:e-the accuracies dual judgments will be the product of 
the separate accuracies; and (5) the stimuli ex.hibit marginal response inv,lriance-the 
accuracy of judging a dimension w11\ be the same at all levels of the other dimension. 
Petformance parity means that dual judgment accuracy is the same as accuracy ob
tained when separate judgments are made. 

If marginal response' independence fails under dual judgments, one cunnm de
termine whether it is due to lack of perceptual or decisional independence. rf both 
marginal response independence and sampling independence hold, there is percep
tual independence. If marginal response independence holds but sampling indepen
dence does not, there is perceptual and decisional separability but not perceptual 
independence. 

If psychological similarity depends upon proximities in Euclidian space, four prop
erties should hold: (1) Stimuli must be equally dissimilar from themselves, (2) stimuli 
must be more dissimilar to all other stimuli than to themselves (minimality), (3) dis
similarity must be symmetric, and (4) the triangle inequality of Chapter 14 must hold. 
Ashby and Townsend show how all of these may fail. They propose that similarity be 
based upon distributional overlap. Their model is then related to the analysis of covari
ance structures and categorical modeling. 

Tversky and Hutchinson (1986) note other problems with traditional geometric 
conceptions. They define the nearest neighbor of a stimulus as that stimulus that is 
most similar to it. Geometry constrains the properties of nearest neighbors. For exam
ple, only two stimuli can be the nearest neighbor of a given stimulus in a one-dimen
sional space. Judgments of the similari[y of physical stimuli usually do not violate 
these geometric constraints seriously, but judgments of concepts usually do. Two prop
erties of nearest-neighbor analysis are the ex:tent to which similarity relations show: 
(I) centrality-one or a few stimuli tend to be nearest neighbors of most stimuli (foci), 
and (2) reciprocity-if stimulus A is the nearest neighbor of B, then B is the nearest 
neighbor of A. They propose a tree structure as an alternative to spatial representation; 
similarity is represented by distances along branches. Three types of tree structure are 
(1) binary-there is complete reciprocity and low centrality (no stimuli are foca!) , as 
in affective judgments of contented couples; (2) singular (star or fan)-a few stimuli 
are focal and reciprocity is high, as in a class where students do not know one another 
but know the instructor who in tllm knows them: and (3) a nested tree (brush) in which 
centrality is low but reciprocity is high. as in a hierarchy. 

Graph theory concerns nodes (poi nes) and their connections (paths). If connections 
can be asymmetric, the graph is directed, and if connections are symrnetric.:, the graph 
is non directed. Schvaneveldt's (1990) Pathfinder model uses Minl<owski r metrics in 
which the path length from one node (stimulus) to another is the i'th root of the Sum of 
their path lengths through a third stimulus raised to the rth power. If r = I, distances 
obey the city block metric of Chapter l4; if r:: 2, distances obey the Euclidian metric; 
and if r = co, distances obey a dominance metric in which the length is simply the 
larger of the individual lengths. Although the present form of the model is limited in 
that it does not COlTect for measurement error not' handle inhibitory relationships, it ap
pears to be a useful way to describe similarity. 
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Osgood's. 602-610.624.629,632.638,641. 
648 

Shepard's, 632-633. 662, 704 
Divergent validity, 93, 1I2 
Domain of content, 295-296. 310-312, 324, 334-

336,489 
in speeded tests, 349 

Domain of observables, 86-88 
Domain referencing. 310 
Domain sampling model, 209. 211-212, 215-220. 

226-228,236.238.241-242.248-250.253-
254.263.265.279 

Domain score (see Score. true) 
Dontinance.52. 595-596. 630.633. 638.645-648 
Dominance model. 700, 701 
Double standardization, 52&-529 
Dummy coding. 190.206,665 

Effect indicator, 447, 449, 451,484 
Efficiency, 155-156 
Eigenanalysis. 473,477,519-520,615 
Eigenvalue (~). 448, 473--476. 482-483,518-519. 

522-523.535,539.572-573.606,617.642 
biasin,475-476,489 

Eigenvector. 473-475. 477. 606. 617 
Empirically oriented construction, 312, 320-322 
Endogenous variable, 578-586. 593 
EQS.543 
Equal-appearing intervals, 48 
Equal probability model, 371 
Equal variance Gaussian model, 682-685.706 
Equal weighting. 100, 148. 154. 156, 160, 188, 

201-202,332,549.569 
Equally weighted sum, 472 
Equamax rotation. 506 
Equidiscriminating test, 295, 329-332. 336 
Errors. omission vs. commission, 354-355 
Estimators. 148 

bias of, 154-156,213.238,·244,246,359-360. 
510 

Eta (TI), 114, 135-139, 156 
Euclidian model, 606-608. 692, 694-695, 700, 

707 
joint, 647 
weighted. 692 
weighted joint, 647 

Exogenous Variable, 578-586, 593 
E:nreme response tendency, 386 

. 
Fdistribution, 139,186-187,19'2,426 

(See also Analysis of variance) 

Face validi ty, 109-11 0, lLJ 
Facet, 274, 291 
Factor: 

bipolar, 468, 471,487-488 
difficulty, 573 
general,448.467-468,487,492.502-503, 

506,532,534,544.546,642 
group, 448. 467-468. 487. 502,511 
higher-order, 578 
null,469,488 
second-order (see Factor analysis. higher-order) 
singlet. 469. 488. 511. 524, 539 
Spearman's "g", 324, 467, 515, 518,544-548, 

590.593,595 
speci fic, 448 
types of, 467-468 
unipolar, 467 
uniq~e,448.455-456,458,466-467,486-

487 
as variable grouping, 454-455, 486 
variance, 470, 513 
as vector, 460-465, 472,487 

Factor analysis. 10, 111-113,242.260.295,313, 
316-319,335.445-490,596.598,618.632, 
634,637,642,645,651,703 

ad-lib,493,531-532,534,540 
alpha analysis, 481-482 
basic conceptS, 454-468 
cautions, 533-536 
centroid. 448, 472-474, 488, 494,525-526, 

598-599,607,611-612,642,651,689, 
706 

centroid factor score weights, 508 
conunon,448,455-456,458,463,467,471. 

477-478,481-489,509,514-526,535, 
548,559-560,648 

component, 447, 449, 455-456, 461, 463,466, 
471,f77,481-489,508-S09.514-515, 
517,535-536.538-539,550,552,560, 
648 

component 'IS. common factor. 509. 514, 
522-526,539-540 

condensing variance, 458, 468-472, 486 
confirmatory, 94, 111.445.535,542-594 
designs, 492, 526-531 
determining the number of factors. 448, 482-

484 
diagonal method. 481 
estimating coq:elations, 457-458 
eltploratory, 445-541 

'IS. confirmatory, 448. 450-451, 486-487 
general model, 455-457 
geometric and algebraic interpretations, 460-

466.487 
higher-order, 532-533, 540 
image analysis, 481, 508,524,540 
initial solutions (see condensing variance, 

above) 
item·level, 316-318, 335,448,535,543,570-

576.592 



Factor analysis (Cont.): 
maximum likelihood (ML) and related 

methoda. 448. 458. 469. 411. 411-481. 
488-489.511,522.525.534.542-543. 
547.566.569,513-575,590 

minimum residual method (minres). 481 
multiple correlations in. 455-456. 470. 480. 

486 
multiple group method, 201. 511.555-561. 

563.566.568,510,516-577,589-590. 
592.598.606.631.644 

multiscale analyses. 575-576 
non lineill', 456 
o design, 527,529-530.540 
oblique factor. 448. 458-459, 465. 486-487. 

494,496,498-503.523.532.536-537. 
558.608 

orthogonal factors. 448. 458-459. 464-465, 
470-471,475.478.486-488,494, 
496-504,506-508,510.513.533. 
536-537,542,550.608-609.611.649 

other methods. 481-482 
P design. 527.529-530,549 
practical considerations. 535-536 
principal component (Pre) and principal axis, 

448.468,411.473-477.480-481. 
488-489.493-494.498.500,506,508, 
520,522,530-531,539,542,548.552. 
560-562, 567, 575. 593. 606. 616, 
631-632,635,638 

Pte factor-score weights. 508 
properties of solution, 470-412. 
proportion of variance accounted for. 456. 471. 

474,483,486 
Q design. 527-530, 540, 596.601.604 
R design. 526-530. 540 
raw-score, 604-608,624,629,649 
reference vector. 503-505. 531 
reftection. 468 
and regression analysis, 449. 451 
relations among matrices. 492, 512-514. 540 
residuals. 513,519.523.539 
role of correlation matrix., 469-470 
rotation. 448. 451, 451. 464.468.471.483.486 
scale-level. 316. 335. 448 
and scientific generalization. 451-453 
solid staircase method, 481 
squlll'e root method, 481. 531. 539 
successive vs. simUltaneous. 459-460. 487 
Tdesign, 527.530.540 
three-mode. 492,530-531.642 
units of measurement. 457 
uses of. 441. 449-454 
variable and subject selection. 453-454 
variance condensation. 496. 519 
X design. 527.530 

Factor comparisons. 548-554 
ACS approaches. 554 
classical approaches. 549-551 
overall comparisons. 553 
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Factor compariso~s (Com.): 
practical aspects, 552-553 

Factor composition. 11 I 
Factor correlation (phi. CPo $) 45H. 498. 301, S04. 

510.512.514.518,532.537-539,555 
557-558. S62.566. 568-569. 371 ' 

Factor pattern (B, 13), 448. 456-457, 470, 
477-418.486.492.495.498-503,507_508. 
SI0.SI2-5l4. 516. 518-519. 534.536-539, 
549-550.554-555,558.561-562 564 566 
568-569,574. 582. 585. S8&-S89:591:593' 

Factor reliability. 513 
Factor rotation. 491-541, S52 

analytic. 505-507. 537 
geometric analogy. 494-496 
mathematics of. 494-498 
oblique, 498-502.S37, 339-540 
orthogonai.49J-498.538-541 
Procrustes. 507 
prornax.49B. 503,S06-507, 558,567 
quartimax. 505-506. 537-538 
varimax.502, 505-507. 536. 538. 606 
visual. 496-491. 537 

Factor score (X,. x,), 491, 507-5l2. 514.527.538. 
542.S49,606 

estimation. 491.507-512 
indeterminacy, 509, 538 
orthogonality. 510 
uni vocality. 510 
validity. 5 10 

Factor-score Weight (W. w), 508-512, 5l4. 538 •. 
549-553,592 

Factor structure (5, s). 448. 459, 465-466. 
470-473,477.481.484.492,494-496. 
498-502.510.512-514.516.518-520,523, 
530,534,536-539.544-551.553-555, 
558-562,568.570,592-593,621,635.637. 
644 

in variance. 366 
Factorilll cornplel(ity. 212 
Factorial domain sampling model. 212. 227-228. 

241. 246 
Factorial validity (see ConsU1Ict validity) 
Fallible score (see Score, obtained) 
False allUill. 681. 106 
False allUill race. 50. 682-685 
False negative. 371 
False /Iegad ve rate, 80 
False positive, 371 
False positi ve rate. 80 

(See also False all11'!D rate) 
Fechnerilm psychophysics (see Indirect 

psychophysics) 
Fechner's law. 45. 41 
Filtering task. 687. 692 
Fisher z: uansfonnation. 200, 374 
Fit index (FI). 565 
Fitting function (see Loss function) 
Fixed racet, 289-290 
Fle:dlevel test. 430.441 
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Floor effect, 570 
Focal group, 359 
Forced categorizations, 627 
FOTced-choice taSk, ]45 
"Four-fifths" rule, 339, 389 
Free sort, 637 
Full-infonnation method, 415 
Fullenon-Cattelllaw, 39,49,62,81 
Functional measurement, 25 

Q study (SIIII Generalizability srudy) 
General-impression model, 375, 391 
Genetallinear model, 44S 
General recognition theory, 57, 645, 654, 686-

696 
Generalizability coefficient (pl), 280, 282-290, 

292,375 
Genera!izability study, 280, 284, 286, 288 
Generallzability theory, 256,279-291,393 
Generalization, 8 
Generalized least squares (GLS), 148-149, 156, 

201,207,260,415,420,478,480,489,522, 
6S4-65S 

Generic reliability coefficient (see 
Generalizability coefficient) 

Geometric orthogonality, 550 
Geometric representation, 696, 704, 706 
"Golden rule," 427 
Goodness-of-fit indele (GPI), 565, 567 

adjusted, 565,567,569 
Grand mean, 117 
Graph-theoretic approaches, 699-704,707 
Group centroid, 557 
Guessing, 209, 250, 290, 340-348 

Abbott's fonnula, 339-341, 388 
blind,340-347,354,381, 388, 410,440 
correction for, 338-348, 388 
sophisticated; 345-346 

Guttman scale, 72-75, 81, 215, 245, 404,430, 
440 

Halo. 209,338-339, 373-376, 388. 391 
Heterogeneity of variance/covariance 

(heteroscedasticity), 129-130,204, 680, 692 
Heywood case, 515. 518. 520-522, 535 
Hicrurchical clustering, 603-604 
Higher-order partialling, 180 
Hit, 681 
Hit rate, 50, 682-685. 706 
Homogeneity: 

ofvariancelcovariance (homosccdasticity), 
129-130,177,184,215,612.689,695 

(Sell also Internal consistency) 
Homogeneity model, 660, 666 
Homogenous association model, 666 
Hoyt's method, 249, 254,274-278.281,283 

, Hyperplane, 50S 
Hyperplane count, 503, 537 
H~e,462,494.649 

Improper discrimination, 338. 357-374. 388-390 
[nadequate discrimimltion model, 376, 391 
Incremental fit, 564 
Incremental vlllidily, 160, 186, 192-193 196 

467.487 • • 
[ndcpendence, 204 

dimensional, 689-690 
Independence model. 666-667 
Index. 449 
Indicator, 578-580. 582-585. 593 

(Sell al30 Dummy coding; Score) 
Indirect psychophysics, 45, 49, 81 
Indirect scaling model, 56 
Individual difference scaling (lNDSCAL) 642-

643 ' 
Inferring causality. 583-585 
Infonnation theory, 686 
Infonomon transmitted, 665, 70S 
Integral vs. separable dimensions, 687, 692 
Interaction. 276 
Intercept bias, 360-362, 390 
Internal consistency, 51, 54-55, 90.103,212-213, 

227,243,246,251-252,290,339,442,484 
(S88 also Coefficient alpha; Reliability) 

Interval estimation, 627 
Interval of uncertainty, 44 
Interval scale (see Scale, interval) 
Intrinsic validity (SII Content validity) 
Invariance, 19-20 
"It don't make no nevenuind" (see Equal 

weighting) 
Item analysis, 301-304, 318-319, 326 
Item-characteristic curve (slle Item response 

theory, trace line) 
Item difficulty, 70-71, 205, 318, 39~. 405 

(SIl' also p value) 
Item discrimination, 70-71,395 
Item keying, 313-315 
Item overlap, 386-387, 391-392, 533 
Item pool, 311, 320 
Item response theory (lRT), 67,209,313, 

393-443,571,574,592 
anchor items, 420-421 
Bock. nominal model, 394, 409-410,414,418, 

440 
branching rule, 431, 441 
commentary, 433-435 
continuous rating model, 414 
difficulty (Ioeaa on, threshold) parameter (b J. 

398-401,405,408,416-418,420,429, 
431,439, 574 

discrimination parameter (a), 404-406, 
416-418,420,429,439 

guessing parameter feJ, 406-407,412,414, 
416,420 

item information. 394, 407-409, 431, 
440 

log-linear model, 672-673. 705 
multidimensionlll model, 414, 434 
nonmoDotoDe detenninistic items, 414 



Item response theory (IRT) (COni.): 
non parametric model, 394, 413-414, 440 
one-pllrameter model, 394, 398-404,407, 414, 

420-421,434-435,439,672,705 
partial credit model. 414 
ra8ch model (see one-parnmeter model, above) 
rating scale model, 414 
relative efficiency, 409 
Sllmejima's graded response model, 394, 410-

414,440 
standard error of estimate, 401-403,420,432 
stopping rule, 429 
test information, 394, 407-409, 432,440 
three-parameter model, 394, 406-407,414, 

420,440 
uacenne,31,67-Bl,393-394,400-402,4Q4-

405,407-409,411-413,416,419-420, 
429,439-440 

two-parameter model. 394,404-407,414,417, 
420-421.435,439,440 

Item selection, 305-308, 326 
Items, rules for writing, 296--300 
Iterative estimation, 666 
Iterative proportional Ii tting, 28 

Job analysis, 296, 334, 366. 390 
Judgments vs. s~ntiments, 50-51 
Just-noticeable difference (JNC) (see Difference 

threshold) 

Kaiser-Guttman rule, 482 
Kendall's tau (1'), 125 
Keying, reversing direction of, 326 
Kuder-Richlll'dson formulas, 235, 251 
Kurtosis, 122 

Latent class theory, 395-398 
Latent trait theory, 395 
Latent variable, (.see Construct; Factor) 
Law ofcomparativejudgmenc.. 26, 34, :n-65, 81, 

215, 64S, 651 
Least squares, 114, 148, 155-156, 159,163, 188, 

200,207,238,245,415,456,478-481,489, 
561,592,638 

Likert scale, 67, 70, 76, 160,317,375,412.414, 
440 

Limited infonnation method, 415, 420 
Line of best lit (see Regression) 
Linear combination, 159-166,205,212,215,275, 

445-449,451-452,455,459-460,464-465, 
486,508-509,514,516,531,542-543,549-
550,557,590,610,618,648 

mean of, 166-167, 169 
reliability of, 266-274, 291 
variance of, 160-166 
weighted, 160 
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Linear discnminant function, 613-614, 649 
mUltiple, 615-617, 649 

Linear growth, 244. 247 
Linear model, 294, 674 
Linear regression, 114. 123, 139-143, 147, 

339 
Linearity, 130. 137 
LISCOMP, 147,435,543,571,574-575.592 
LISREL, 147, 20l, 543, 565, 567. 579, 593 
Local independence, (see Conditional 

independence) 
Log-odds ratio, (see Logit) 
LOGIST,415 
Logistic distribution, 63-65, LJ7. 393, 395, 402, 

439 
Logistic function. 674 
Logistic regression, 674-680,704-705 

example, 676-678 
group comparisons. 676 
residUals, 678-679 

Logit,658,661-663,668, 675-677,679, 704 
generaUzed. 664, 668 

Lord's plU'adox, 394,405 
Loss function, 140, 148, 156,487,489. 513, 566, 

589 

McCall T score, 309, 335 
Magnitude estimation, 26, 48, 624, 626 
Marginal homogeneity, 653, 674 
Marginal proportion, 656 
Marginal response invariance, 690-691, 696,705. 

7m 
Marginal utility, 369 
Marker variable, 453, 486 
Mastery learning, 394, 435-438, 442 
Matched design, 275 
Mathematics, 1,3,8,29 
Matrix: 

confusion, 625, 630. 650 
co-occurrence (see joint, below) 
core, 531 
correlation fRo), 164-165,218,220,236,458. 

460,463.469-470.472-475.477-479. 
481,488-489,492,512,514-518, 
520-524,526,531. 533,535,538-539, 
544-547,550-552.556-558,562-564, 
566,581,592.598,641.648,651 

data (X), 33-36, 454, 486,512,514.526-527, 
550,556,596,671.638-639 

disparity, 638-639 
factorable, 516 
granrian,516-5t7,539,632.645.651 
hypothesis. 556, 559, 561, 592,669 
identity, 616 
image-score, 481 
inverse, 616 
joint, 630, 63'2 
multitrait-multimethod. 93, 578 
canlt. 462, 465, 516-517, 519-520 



748 SUBJECT INDEX 

Matrix (Cont.): 
symmetric. 616 
symmetry, 653 
trace, 475, 477, 488 
transformation, 498, 513-514, 538 
transition. 630, 665, 673 
z-score (Z), 457,486,492.512.516,526.538 
(See alsQ specific topics, for example: Factor 

structure) 
Maximum a posteriori estimate, 401, 403, 439 
Maximum information, 431,441 
Maximum likelihood (ML), 148-149, 1:)3, 

155-156,395.401,403,439.654-655 
(See also Factor analysis) 

Mean, 120, 148. 150. 152 
Mean square, 274-278, 280. 282. 286. 291 

error, 155 
expected,275 
(See also Variance) 

Measure, 449 
Measure of association (Q), 662,704 
Measure of colligation (Y). 662, 704 
Measurement, 3, 8,29 

erro~211-215,221,240,246,248-253,263, 
278.290,343-344,448.455,466-467, 
509.570,582,621 

model. 579 
theory, L07-108 

Median, 122 . 
Meta-analysis. 101 
Method, 93 

of adjustment, 40 
of constant stimuli, 40 
of moments, 148, 153. 156 
variance, 569,573 

Methodological heterogeneity, 313,321-322,314 
MILS, 147 
Minimality, 693 
Minimum chi-square, 679 
Minkowski r metrics, 624, 654,700, 707 
Miss, 681 
Miss rate, 682 
Missing data, 36, 123 
M ... \tIP[ (Minnesota Multiphasic Personality 

[nventory), 6; 302, 309, 312, 320-32[,324. 
327.336.380-387.599 

Mode. 122 
Model parameters, 638 
Moment, 121-122. 124 
Monotone mOdel, 78-80 
Monotonic function. 69, 135. 137 
Monotonicity; 129 

(Se~ also Transformation. monotonic) 
Monte Carlo method (see Computer simulation) 
Multicollinearity; 190-191.206 
Multicllmensional scaling (MDS), 595-596, 608. 

621-645.647.650-651.686.697-699 
• additive constant, 636-638, 650 

alternative approaches, 624-625 
attribute ratings. 625. 629 

Multidimensional scaling (MDS) (Cont.): 
commentary, 644-645 
of correlation matric~s, 641-642 
empirical properties, 640-641 
euclidian distance ratios. 631-635 
example, 643-644 
indirect. 625, 629-630 
of individual differences, 642-643 
interval,636-637 
ordinal, 637-640 
similarity, 625-629 
spatial conception. 623-624 
vector-space ratios, 630-63 I 

Multidimensional unfolding (MDU), 647-648 
Multidimensionality, 307 
Multi-item measures, 220-221 
MULTILOG. 403. 415. 433, 673 
Multiple correlation, 159-160. 182-202 

bias in, 160, l8S-189 
capitalization upon chance, 188-189 
determinants of. 187-189 
significance of. 185-186 
two-predictors, 182-183 

Multiple regression. 139, 159-160, 182-202.274, 
314,613.652-653.659.665.668.670,680 

nil possible subsets, 195-196 
compensation, 368-369 
hierarchical, 149-152, 160, 188, 193. 196-200, 

207.661 
moderated. 101,197-201.207.339-340 
stepwise, 160, 194-197,306,589 
cwo-predictors. 1~2-183 

Multiplicative transfonnation (5ee 
Transformation, multiplicative) 

Multiscale tests, 338. 383-387 
Multivariate analysis of variance (MANOVA), 

611,618.649.653 
Multivariate normal distribution, 478 

Nearest neighbors, 696-697.707 
Nested design. 150-15 I, 275. 290 
Nested model, 403, 660 
Network approaches, 699-704 
Newton-Raphson algorithms, 28 
1964 Civil Rights Act, 358, 372 
1991 Civil Rights Act. 359, 372,390 
Node, 699-700.707 
Noise distribution, 683-686, 705 
Noise trial, 681-683 
Nominal scale (.ree Scale, nominal) 
Nomological network, 91 
Nondirected graph, 699 
Non-Euclidian model. 623-624. 632. 636-637. 

654.696-704 
Nongeometric model. 595, 654. 696-704 
Nonhierarchical model. 661 
Nonindependem:e (see Association) 
Nonlinear correlation (S611 Eta, Categorical 

modeling) 



Nonlinear fit. 640 
Nonlinear relations. 160. 203-204. 2(17 
Nonrnonotone model. 75-77 
Nonrnonotonic function. 69 
Nonnormed-lit index (NNFl). 365 
Nonrecursive model. 587, 593 
Normal distribution ;md test scores, 168 
Normalized vector. 473 
Normalizing, 309 
Mormed-fit index (NFn. 565 
l'Ionns, 308-JIO, 32J,326. 334-3JS 
Null model, 562-563, 592 
l'Iumbers of subjects. 300-301 

Observables. 449 
Odds ratio. 661 
Ogive.40-41.63.67,78.222,224-225,231-238. 

240-244,246.248,393-394,439 
One-parameter logistic (IPL) model (see Item 

respotllle theory, one-parameter model) 
Open-form solution (.ree SoludOll, closed- VS. 

open-fono) 
Operational independence, 670-611 
Operational theory, 21 
Operationalism, 21, 316 
Optimal Weighting, 154, 200-205 
Optimum. scaling parameters, 638-639 
Ordered menic, 18 
Ordinal methods, 53-54 
Ordinal scale (see Scale, ordinal) 
Ordinary lease squares (see Leasl squares) 
Orthogonality, 184, 577 

geometric vs. statistical. 475. 4.88 
ostensive characteristics, 21-22 

Oudier, 204, 201 
Overlapping clustering, 603-604 

p value. 118, 134-135,230,249.265-266.305, 
318,327-330,336,349,356,400,417-418, 
422-423,423-426,428,430,434-435, 
437-438,441,576 

Paced measures, 352, 388-389 
Paired comparisons, 56, 625, 628, 693 
Parallel distributed processing. 699 
Parallel form, 482 
Parallel test model, 212, 223-227, 234,243,246 
Parallelism, 450, 577 , 593 
Parameter, 10, 25, 28, 41, 43,46,63, 140, 142, 

148-157,189,191,229 
con&ttaincd,151,201-202.207,403-404 
fixed,151,201-202.207,563,569,576, 

588-589 
free, 150,201,207,563,565,588-589,593 

Partitioning or variance, 144-146 
Path coefficitmt, 579-580, 582-5&8 
Path length, 700, 707 
PatlUinde~654,699-704, 707 
PlIlletll analysis, 620-621, 649 
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Percentiles. 309-310 
Perceplual equivalence, 64:3-644 
Perceptual independence, 688-691 , 695-696 

706-707 ' 
Perceptual separability, 689, 691-692, 695, 706 
Perfonnance parity, 692 
Pfnet (see Pathfinder) 
Pi VOl variable, 481, 531 
Platykurtic distribution, 481 
Polynomials, 137,203-204 
Pooled vs. separate group norrtlll, 373 
Positive manifold, 470-471,488 
Power test, 339, 388 
Precision (see Standard error, of measurement) 

of reliability estimates, 228-230 
Predicring categorical criteria, 679-680 
Predictive validity, 31, 83, 94--101, 108-113, 160, 

310,324-326,334.336.338 
Predictor, 94-97,99-100, ItO-ll2, 159-160,449 

importance of, 19.2-193,206 
selection of, 193-203 

Preference (see Dominance) 
Preferred rate of response, 352, 388 
PRELl8.571 
Probabilistic model, 75-80 
?rocruste5,543,561-562,566,S68-570,592 
Profile: . 

analysis, 595-596, 598-610, 648 
dispersion, 599-603, 648 
leve~ 599-603, 648 
scatter (see dispersion, above) 
sbape,S9~603,648 
Similarity mensure~, 601-602 
ttansfonnation, 608-610 

Proportion of variance, 513, 593 
Proportional square 1'00t (PS) analysis, 631-632 
Proxinrity,52,59S-596,623,626,628-630,64L-

642,645-646,648,651 
Proximity measures, 696, 700-701 
Pseudofactors, 559-560, 568--569, 576, 671 
Pseudogroups, 424 
Psychometric function, 40-43, 429 
Psychophysical methods, 636 
Psychophysics, 33, 398 
Pythagorean distance, 602,623,633,636,650,654 

(Slle aho Distance measure) 

Quantitication, 5 
Quotas,339,360,368-372,390 

multiple, 370 

r metric, (Silt Minkowski r metrics) 
Random error, 213, 215, 22~, 275 
Random facet, 289-291 
Randomization method. 424 
Randomly parallel tests, 220, 239 
Range restriction, 97-99, 10l, 130-l35, 156,426, 

442 
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Runkings, 61.7 
Rusch model (see [tem response theory, one-

purameter model) 
Ratio estimation method, 48 
Ratio methods, 56 
Ratio production method, 48. 53 
Ratio scale (see Scale ratios) 
Rational test construction, critique, 319-320 
Rational zero (see Zero, rational) 
Receiver (relative) operating characteristic (ROC) 

curve, 683-685,706 
Reciprocity, 697-698, 707 
Recognition vs. recall, 347 
Rectangularity, 689 
Recursive vs. nonrecursive model, 587 
Recursive mode. 587. 593 
Redundancy, 577 
Redundancy analysis, 205 
Reference group, 359 
Reflexivity, 20 
Regression: 

and bias, 360-362 
equation, 160.237 
linear. l14, 123. 139-143. 147.339 
raw-score form, 141-142 
reverse. 339, 364 
ridge. 191 
and salary disputes; 362-363 

Regression analysis, 422 
Regression weights,,142, 159,332,588, 613, 704 

stability of, 191 
Relevance (see Content validity) 
Reliability (internal consistency), ll, 28-30, 

56,63,67,77,92-93, 1l5, 146, 165, 
168-169,205.209.211-292,452,487 

and alternative forms, 250-254,256,263-264, 
290 

and analysis of.vadance (see Hoyt's method) 
coefficient ('Il, 'n, etc.), 212, 221-222, 235. 

237-238,241.246,249,261-262, 
217-278,291 

(See also Coefficient alpha) 
and disparity, 261.;...262 
estimation of;22 [-222, 228, 251-255 
importllnce of, 22 1.;...222 . 
index (rll), 211. 22'1-222. 241,246.260,375 
limitations on, '265' ... 266 
of Iinear.,<;ombinations, principles concerning. 

2710..:274 ;'" 
and reteSt ~ethod. 254, 290 
split-half, 232:254, 291 
standardS'of: 264 
of a sum. 272 
and teSt length, 212. 230-23 I, 262-264, 291 

Representational theory. 20, 646 
Representativeness '{se!!;Content validity) 
Residuals, 140. 143.".146, 175-176,225.239,659 

" analysi~. 160,203..:.204: 207. 364-365 
mu!rix, 460. 547, 558io598-599, 617 
variance and covariances of, 142,471.489 

Residuals (Cont.): 
(See aLro Standard error, of measurement; 

Variance, error) 
Response bias. 209. 338-339, 376-386, 388. 391. 

653.681,685.691 
Response style, 338-339.376-388,391 
Response-time scores, 352 
Root-mean-square (RMS) error, 458. 460. 477. 

479-480,513,523,559-561,566.574 
Ross ordering. 628-629 
Rotating standard, 628-629 
Routing test, 428.441 

Salary compression, 365 
Salient dimension model. 375, 391 
Salients, variable, 466-468, 483-484, 487. 492, 

496.499-501.511,639 
Sampling, 10 

error, 278, 454 
independence. 690.707 
objects vs. people, 228 

SAS, 123, 147 
CATMOD, 655.675. 680 
DISCRIM, 534 
!NlL.641 
means, 277 

Saturated model. 659, 666, 704 
(See aLto Unconstrained model) 

Scalar product, 638 
Scale: 

absolute. 18,213 
interval. 11. 14-16,75,628,647,692 
nominal. 11-13, 27,652 
ordinal. 11, 13-14.56,75,692 

Scale ratios. 11. 16-18,25,213,636,692 
Scaling,3,652 
Scientific generalization (see Generallzation) 
Score: 

deviation (.r). tl7, 124,161.217.224.237-
238.244 

difference, 244-245 
discriminant, 613, 617, 649 
error (e). 225,239-240 
number correct, 78, 81,160,201,395 
obtained (X). 2tl-212. 215-216. 222-226. 

238-244.246,270,339,375 
partialled, 175 
"Platonic" true. 217 
raw (X), Il7-118, 120.124,141.143.161,163. 

168.175.182,206.218.236 
raw regression weights, 142, 160-161. 182. 192 

(See also Multiple correlations; Multiple 
regression) 

standard, 114. 118. 120-122. 164,217-218, 
309 

true (t). 67, 211-212, 215. 217. 222-224,228, 
230,232,217-240.242.244-246.248, 
260,374 

(See also Factor score) 



Score disU"ibucions, characteristics of, 166-170 
Scoring, dichotomous. 13,326 
Scaring matrix (see Factor-score weight; Matrix) 
Scree,476,482-483,489 
Selection fairness, 368-372, 389-390 
Self-dissimilarity, 692 
Semibasis, 608 
Sensitivity (see Accuracy) 
Shared common variance (SCV), 354-355, 357, 

389 
"Shotgun empiricism," 317, 336 
Signal detection theory (see Theory of signal 

detection) 
Signal likelihood, 83-684 
Signal-plus-noise distribution, 683-686. 705 
Signal-plus-noise trial, 683-685 
Similarity (see Proximity) 
Simple strUcture, 491,502-507,537 
Simpson's paradox, 181.339,365-366,666,668 
Single-faced design, 281, 289 
Single-group validity. 362 
Single standardization. 528-529 
Sixteen personality factor test (16-PF), 321 
Skewed distributions, 169-170 
Skewness. 122 
Skewness model. 576 
Slope bias. 360-362. 369. 390 
Social desirability, 51. 315. 340. 382-385. 391 
Sociometry, 699 
Solution, closed- vs. open-fonn, 28. 30. 55 
Sophisticated guessing. 340-341.345-346 
Space. 462' 
Spearman-Brown prophecy formula, 212. 234, 

246.249.291,300,351,388 
Specified vs. unspecified attributes. 53 
Speed instructions, 352 
Speeded test, 209. 293. 338, 348-357, 388-389 

correction for guessing. 354-355 
distribution shape, 353 
factor composition. 351 
internal structure. 349 
and item imercorrelations, 349 
item pool. 349-350 
one-trial measures, 353-355, 389 
VS. power test, 357 
reliability, 351 
speed-difficulty tests. 356-357, 389 
timed-power tests, 355-356, 389 
variables affecting, 352-353 

Sphericity,469,475.479,483 
SPSS: 

LOGUNEAR, 655 
RELIABILITY, 265. 277, 306 

Squared sU"ess (SSTRESS), 639-641 
Staircase method. 429-430. 441 
Standard deviation, 117-118, 120, 124. ISO, 152, 

156,173,176,220,223-224,258 
Standard error, 593 

of correlation, 306 
of estimate, 142-144 
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Standard eeror (COII/.): 
of estimation (see of measuremenc. below) 
of mean, 229 
of measurement. 211, 215,239-240, 242-24J, 

246,258-262,265.283,466 
of raw score (see of measurement, above) 
of true score (see of measurement. above) 

Standardization, 4, 6, 245 
Standardized score (see Score. standard) 
Standardized variable, 159, 172 
Standardized weights (see Beta weights) 
Stanine, 309, 335 
State measure, 243.252.290 
Statistical orthogonality, 550 
Statistical validity (see Predictive validity) 
Statistics, 9-10 
Step function, 67, 74 
Stepwise analysis, 450 
Stevens' law, 46 
Strength axis, 683-685 
Stress (STRESS), 639-641 
Strong theories, 543,545, 576-580, 589-590,593 
Structural analysis, 422, 543 

(See also Analysis of covariance structures) 
Structural equations, 114, 139, 146-147, 

156 
Structural model. 579 
Structure element (see Factor structure) 
Styles, 209 
Subjective estimate model (see Direct scaling 

model) 
Subjectivity of scoring. 251 
Subliminal perception. 379 
Substantive model, 107-108. 562-563, 576,592 
"Subtle" vs. "obvious" items. 321 
Successive categories, method of, 54, 60 
Sufficiency, 155, 157 
Sum of dichotomous distributions. variance of, 

164-165, 174 
Sum of products (SP, ~;cy), 458, 486, 516, 539 
Sum ofsquares (U), 276, 278, 287 

bierarchical, 664 
sequential, 664 
simultaneous, 664 
type 1,..664 
type II.:664 . 

Sum ofstllitdard scores, variance of. 164 
Supersubj~ts. 671' 
Suppressorrelarionship, 181-188 
Symmetry, 20 
Systematic discrimination, 358, 389 

t -!CSt, 671. . 
Tailored ~,'394, 398. 428-433. 441 
Tau-equivalcllce, 571 
Temporal stability, 51-52. 212. 214. 243-247. 

251.255.263,312 
Test, 449 
Test bias, 338-339, 357-373, 388-390 
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Test bias (Canl.): 
in content-validated measures, 366 
and range restriction, 369 
and standard errors, 362. 364, 368-369 

Test-free measurement, 395, 438 
Test length, optimal. 300 
Tetrad,545,590 
Theory-driven analysis (see Multiple Regression. 

Hierarchical) 
Theory of Signal detection (TSD). 49-50,57,345, 

388,653,681-688,703,706 
"Third variables" and disparity, 364-365 
Three-pnrnmeter logistic (3PL) model (set! Item 

response theory. three-parameter model) 
Threshold. 398, 429-430, 441 
Thurstone scale of attitudes. 78-79 
Thurstone scaling, 654, 681, 686-687. 689, 695, 

704, 706 
(See also Law of comparative judginent) 

Time-limit accuracy, 352. 388 
Time-limit measures. 352 
Time limits, 353 
Tolerance (see Standard error, of measurement) 
Trait-by-situation interaction, 380 
Tiait measure, 243. 252, 290 
Trait Validity (see Construct validity) 
Trait variance. 573 
Transformation. 640 

monotonic. 14.25 
multiplicative, 18, 118-120 

Transiti vity. 20 
Treatment effect. 275 
Tree representations, 654, 697-699, 703, 707 
Triuds, method of, 54, 627, 637 
Triangle inequality. 623, 65P, 693-694, 700. 707 
Triangulation (see Converging operations) 
TrisectiOil, method of. 627 
TlUe negative, 371 
TlUe positive, 371 
True score (see Score, true) 
Truncated observation; 570 
Two-way indcpendence, 656-658 
Type I and type II errors, 188,266 

Unbiased score (see Score, true) 
Unconstrained model. 192. 198, 562-563,592 
Uncorreilited factors (see Factor analysis, 

orthogonal facto!'S) 
Unequal variance Gaussian moclel, 684-685, 706 
Unfolding, 646-647 
Unidimensional scaling, 35-36, 621, 628.650 
UnidimensiCinality,312-313 

(See also Multidimensionality) 
Unipolar vs. bipolar attributes, 295, 326-327, 336 
Unique error. 621 

Uniqueness, 192-193.513,538,562,580.582, 
586,588;592-593 

Unit-length vector, 461-463 
Universe score (see Score. true) 
Unreliability of scoring. 253 
Unweighted least squares (utS) (see Least 

squares) 
Utility of decisions. 372, 390 

Validation,24,69:84 
Validity, 214, 286 

(See also specific types, for example: Construct 
validity) 

Validity coeffiCient, 99-100.160, 183.325.452. 
459 

Validity generalization. 100-101 
Variance, 114, U6-liO, 130-131. 142-143, 

148-149. 156. 159, 165,217,219,222-224, 
230.246,249,551 

between-group, 615-616. 679 
condensation, 445,448,451 
error (a!. s!), 136, 142,156,237,261, 

281-283,285,287,343-344,466-467, 
487 

of items, 230 
of linear combination, 167-168, 171 
model. 576 
obtained (a;, ,,!), 261, 267. 269 
specific, 466-467. 487. 509.522,621 
total. 278. 280 
oftrnnsformed SCOres, 119-120 
true (ufo s;). 136, 156,237.261,267,269.278, 

280 
uhique (Il~); 455-456, 467, 481, 514,517,522 
withili-group. 615-617, 679 

Vector product, 630-632, 650 
Verbal and performance intelligence, 324 

Wave. 214 
Wellk theories, 543, 545. 555-570, 576, 592 
Weber fraction, 44 
Weighted sum: 

reliability of, 270-271 
variance of, \63-164 

Weighting of items. 295. 332-333, 336 
Wilks' lambda, 610 

Yea-saying, 385-386. 391 
Yule's measures (see Measure of association; 

Measure of colligation) 

Zero, rational, 17.45.55 


